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ABSTRACT

As a fundamental task in natural language processing, word embed-
ding converts each word into a representation in a vector space. A
challenge with word embedding is that as the vocabulary grows, the
vector space’s dimension increases, which can lead to a vast model
size. Storing and processing word vectors are resource-demanding,
especially for mobile edge-devices applications. This paper explores
word embedding dimension reduction. To balance computational
costs and performance, we propose an efficient and effective weakly-
supervised feature selection method named WordFS. It has two
variants, each utilizing novel criteria for feature selection. Exper-
iments on various tasks (e.g., word and sentence similarity and
binary and multi-class classification) indicate that the proposed
WordFS model outperforms other dimension reduction methods at
lower computational costs.
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1 Introduction

In recent years, large language models (LLMs) have made a breakthrough
in natural language processing (NLP). These models have revolutionized the
understanding and generation of human language tasks such as question-
answering, machine translation, and text summarization [30, 31, 17], etc. As a
fundamental component in language models, word embedding represents words
as vectors in a continuous, high-dimensional space [29]. Word vectors capture
semantic and syntactic meanings of words, providing word relationships for
various downstream tasks. Static word embedding methods, such as Glove
[18], Word2Vec [14], and Fasttext [2], assign a fixed vector to each word.
They convert input words to corresponding vectors for further processing and
model training. Contextual word embedding methods, such as ELMo [19]
and BERT [4], leverage deep-learning models to generate word vectors based
on the context. A word can have a different contextual word embedding in
a different sentence, allowing the model to capture subtle differences in the
meaning of the same word in various contexts.

A common challenge for static and contextual word embedding methods
is that the high dimension of a word vector leads to an enormous model
size. Typically, a word vector has hundreds to thousands of dimensions. For
instance, storing a vocabulary of 3 million words in 300 dimensions would
require 3.39 GB. Loading a 300-dimensional word embedding matrix with 2.5
million tokens would require up to 6 GB of memory on a 64-bit system [20].
On the one hand, high-dimensional word vectors provide a good representation
of complex human language, which is crucial for performing downstream tasks.
On the other hand, high-dimensional word vectors have higher demands on
computational resources and memory requirements. Thus, dimension reduction
is critical in the application of word vectors.

Existing dimension reduction methods mainly consist of traditional PCA-
based and deep-learning-based models. For PCA-based models, [20] combines a
post-processing technique with PCA to achieve an effective method for dimen-
sion reduction. For deep-learning-based models, [8] proposed a deep-learning
method called EmbedTextNet for word embedding dimension reduction by
leveraging a VAE model with a correlation penalty added to the weighted
reconstruction loss. The model works well in low-dimensional embedding sizes
but takes a long time to train. Other deep learning methods focus on model
compression [10, 22] and quantization [11, 24] rather than dimension reduction.

Traditional unsupervised PCA-based methods are known for their efficiency
and interpretability. In contrast, supervised deep-learning-based methods are
inefficient and lack interpretability. For instance, autoencoders take longer
training and inference time in sentence embedding dimension reduction than
traditional methods [33]. Semi-supervised feature selection methods can also
be used for dimension reduction. Since word vectors can be viewed as extracted
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features for each word, feature selection methods have the potential to provide
a straightforward yet effective way to reduce the word dimension. It could
help balance unsupervised PCA-based methods and resource-intensive deep-
learning-based methods.

This paper investigates using a small subset of labeled word similarity pairs
to develop a weakly supervised dimension reduction method called WordFS
(i.e., word dimension reduction with Feature Selection). We demonstrate
that one can achieve dimension reduction effectively by supervising a limited
number of word similarity pairs. Note that word similarity is typically used
in evaluation tasks but is rare in word embedding dimension reduction, a
key novelty of this work. The proposed WordFS method consists of three
stages: 1) post-processing, 2) feature extraction, and 3) weakly-supervised
feature selection. We apply WordFS to other downstream tasks to show its
generalizability. Experimental results show that WordFS outperforms existing
methods in word similarity and various tasks while achieving much lower
computational costs.

This work has the following significant contributions.

• We propose a novel, effective, and efficient dimension reduction method
called WordFS for word embeddings from the perspective of feature
selection based on weakly-supervised learning.

• We demonstrate the potential of combining feature selection methods
and word similarity for word embedding dimension reduction.

• We show the effectiveness and efficiency of our approach on various
downstream tasks, including sentence similarity and classification tasks.
Our method generally outperforms the existing techniques while being
more straightforward and efficient.

The rest of the paper is organized as follows. Related work is reviewed in
Section 2. The proposed WordFS method is described in Section 3. Experi-
mental results are shown in Section 4. Finally, concluding remarks and future
extensions are given in Section 5.

2 Related Work

Word embedding compression is an essential topic for storing and processing
word embeddings, especially on computationally limited devices. Existing
dimension reduction methods mainly consist of traditional and deep learning-
based models.
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2.1 Matrix Decomposition Techniques

Matrix decomposition techniques, such as singular value decomposition (SVD),
principal components analysis (PCA), non-negative matrix factorization
(NMF), and factor analysis (FA), have been applied to dimension reduc-
tion of word embeddings. While simple and efficient, these methods are not
highly effective.

Post-processing methods help enhance word embeddings in dimension re-
duction. Effective construction of lower dimensional word embeddings can be
achieved by combining post-processing algorithms (PPAs) based on reducing
the anisotropy [16] with the PCA method [20]. The dimension-reduced vectors
can perform similarly or even better than the original pre-trained word embed-
dings, outperforming most unsupervised methods. [9] extends this method to
contextual embeddings by adding in additional geodesic distance information
via the Isomap algorithm [25]. PCA also performs well as an unsupervised
dimension reduction method for pre-trained sentence embeddings [33].

2.2 Non-Linear Dimensionality Reduction Techniques

Non-linear dimensionality reduction techniques like uniform manifold approx-
imation and projection (UMAP) [13] and t-distributed stochastic neighbor
embedding (t-SNE) [27] have been used on dimension reduction tasks. UMAP
is a dimensionality reduction method based on manifold theory and topological
data analysis. It constructs a topological representation of high-dimensional
data by approximating local manifolds and stitching together their fuzzy sim-
plicial sets. However, UMAP’s performance in reducing the dimensionality
of word embeddings is not satisfactory. t-SNE is a statistical method based
on stochastic neighbor embedding. It assigns each data point a location in a
two- or three-dimensional map for visualizing high-dimensional data. Applying
t-SNE to a large corpus while keeping many dimensions requires a significant
amount of time and memory, making it unsuitable for this task.

2.3 Deep Learning Methods

Deep learning-based models have recently become quite popular, and efforts
have been made to explore their potential in reducing word embedding di-
mensions. EmbedTextNet [8] achieves better performance in low-dimensional
embedding sizes by utilizing a VAE model with a correlation penalty added
to the weighted reconstruction loss. However, deep learning models typically
require more computational resources and longer training time, contradicting
the original goal of dimension reduction.
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2.4 Feature Selection Methods

Feature selection is another simple and intuitive method for removing re-
dundant features. Feature selection methods can be applied to bag-of-words
representations, where each unique word is treated as a distinct feature, for
emotion recognition [5] and sentiment classification [26] tasks to reduce the
number of terms and save storage and memory space. Also, feature selection
methods can be applied for text classification to select the most representative
word [21]. However, the role of feature selection for word embedding dimension
reduction is under-explored. This paper shows that a straightforward and
intuitive feature selection method can effectively reduce dimension. We believe
applying the feature selection method for word embedding dimension reduction
is novel.

3 Proposed Method

3.1 System Overview

Our WordFS method consists of three stages: 1) post-processing, 2) feature
extraction, and 3) feature selection, as shown in Figure 1. We adopt word
similarity datasets as the source of supervision to guide the feature selection
in our model. As a widely-used benchmark of word embeddings, the word
similarity task evaluates the quality of word embeddings in representing
semantic and syntactic meanings by measuring how closely the representation
of word vectors matches human perception of similarity [28], making them good
supervision resources for word embedding dimension reduction. Also, since
word similarity captures fundamental characteristics of word embeddings, which
are crucial for many NLP tasks, its potential for generalizing to downstream
tasks is noteworthy.

In our method, We begin by optionally applying a post-processing method
to our pre-trained word embeddings since the anisotropy may not always be
harmful [1]. Word vectors pre-trained on a smaller amount of data may be
susceptible to noise and could benefit from post-processing. On the other hand,
word vectors pre-trained on a larger corpus of data may capture important
nuanced information necessary for downstream tasks but could be negatively
impacted by post-processing. We then extract pair-wise features for each word
pair by conducting element-wise production with normalization. Then, we
adopt two different criteria for feature selection to evaluate each dimension
and identify essential dimensions. The first one is based on a supervised
feature selection method called RFT [32]. We select mean squared error (MSE)
as our cost function. The second is based on Spearman’s rank correlation
coefficient between each feature dimension and word similarity scores. Finally,
the selected dimensions of the word embeddings are kept, and other dimensions
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Figure 1: An overview of the proposed WordFS method.

are discarded according to the requirements for dimension reduction. The
details of each stage are elaborated below.

3.2 Post-processing

To improve the quality of word embedding in downstream applications, per-
forming post-processing techniques on pre-trained word embeddings can be cru-
cial. The post-processing algorithm (PPA) [16] is an effective post-processing
method to improve the isotropy of word representations by removing the
common mean vector and the top principal components of all words. Details of
PPA are shown in Algorithm 1 [16]. First, the mean vector is computed from
all embeddings in the vocabulary and then subtracted from each embedding.
Next, the PCA components are derived from the adjusted mean matrix, with
the top-D components being chosen. Finally, the projections on the top-D
principal components are removed from each word embedding.

The existing effective PCA-based method [20] applies the PPA before and
after dimension reduction to enhance both the original and the dimension-
reduced word vectors. In our method, we only apply PPA before dimension
reduction, which makes our method simpler. Applying PCA-based post-
processing to the selected subset after feature selection may disrupt the previous
results because PCA and the feature selection criteria can have different
objectives. Specifically, PCA transforms features to maximize variance, while
feature selection methods usually select features based on their correlation
with labels. Also, the selected feature subset may lose crucial information for
PCA to find valuable principal components. As an enhancement of original
word embeddings before dimension reduction, we also make PPA an optional
choice. The reason is that anisotropy may not always be harmful [1], and using
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Algorithm 1 Post-processing Algorithm (PPA)

1: Input: Word vector matrix M ; Threshold D
2: Subtract the mean:

n← number of word vectors in M
µ← 1

n

∑n
i=1 Mi

for each word vector Mi in M do
Mi ←Mi − µ

end
3: Compute the PCA components:

U ← PCA(M)
for i = 1 to D do

ui ← the ith principal component from U
end

4: Remove the top-D principal components:
for all v in M do

v′ ← v −
∑D

i=1(u
⊤
i v)ui

end
5: Output: Enhanced word vector matrix M ′

PPA depends on the pre-trained word embeddings and specific application
scenarios. Specifically, word embeddings trained on less data may be vulnerable
to noise. Applying PPA helps mitigate some of the noise and offers better
performance. On the other hand, using PPA may result in the loss of crucial
and intricate information related to word representation, which can harm
performance. Word embeddings trained on relatively small data benefit from
uniformly distributed word embeddings, while complex contextual tasks may
require anisotropy to capture detailed information.

3.3 Feature Extraction

In this stage, we extract suitable features for feature selection based on the
dataset that provides supervision. In this paper, we leverage word similarity
data as the weak supervision of our model. Since the word similarity is based
on the correlation (i.e., word similarity score) between every two words, we
extract pair-wise features for each word similarity pair.

The pair-wise features are constructed in each dimension based on cosine
similarity, an effective measure for evaluating the similarity between word
embeddings. Cosine similarity between two-word vectors is derived by dividing
their dot product by the product of their magnitudes:
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Sim(a,b) =
a · b
∥a∥∥b∥

=

∑n
i=1 aibi√∑n

i=1 a
2
i ·

√∑n
i=1 b

2
i

,

(1)

where a and b are embeddings of the two words, and n represents the
number of elements in a word embedding. ai and bi are the ith elements of a
and b, respectively. The cosine similarity score can be viewed as the sum of
the normalized results of element-wise products. Each pair of elements (i.e.,
each dimension) has a linear impact on the cosine similarity score of that pair
of word vectors. Therefore, the normalized results of element-wise products
can be viewed as features to predict the similarity score. The feature we use
for each dimension is:

fi =
aibi√∑n

i=1 a
2
i ·

√∑n
i=1 b

2
i

, (2)

where fi is the feature of the ith dimension extracted from thecorresponding
elements ai and bi of the two word embeddings.

3.4 Feature Selection

The method for the feature selection process depends on the objective of
downstream tasks. Specifically, we employ two feature selection methods
for prediction and similarity tasks. These two feature selection methods are
developed into our model’s variants, WordFS-S and WordFS-P. We focus on
filter feature selection techniques since they are simple and computationally
efficient [23]. Although different dimensions of distributed word embeddings
may capture nuanced and interdependent semantic relationships, they allow
us to identify dimensions that contribute most significantly to model perfor-
mance. Besides, filter feature selection techniques select features based on
their correlation with the labels and are independent of the classifier. As a
result, the selected features are generalizable.

Prediction tasks: For prediction tasks, we leverage the methods from
Discriminant Feature Test (DFT) and Relevant Feature Test (RFT) [32] to
build our WordFS-P model. DFT and RFT are a pair of filter feature selection
techniques proposed recently for classification and regression tasks, respectively.
They have been widely used in green learning architectures [12] for feature
dimension reduction to reach a smaller model size. In our experiments, RFT
is utilized for feature selection, and we adopt the word similarity scores as
the labels. RFT partitions each feature dimension into two subintervals and
calculates the overall mean square error (MSE) as the loss function. A smaller
loss function means a better feature dimension. Specifically, given a feature of
the ith dimension fi, the feature space is partitioned into B = 2k, k = 1, 2, ...
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uniform segments and the optimal partition threshold is searched among B− 1
candidates in the range [min(fi),max(fi)]:

f i
b = min(fi) +

b

B
[max(fi)−min(fi)] , (3)

where b = 1, 2, ...B − 1. A threshold t partitions the ith feature space into
the left subset Si

L,t and the right subset Si
R,t. The MSEs for regression Ri

L,t

and Ri
R,t are separately calculated in the two subsets by using the mean of

target values as the estimated regression value of all samples. Then, the RFT
loss is defined as the weighted sum of the two MSEs:

Ri
t =

N i
L,tR

i
L,t +N i

R,tR
i
R,t

N
, (4)

where N i
L,t and N i

R,t denote the number of samples in each subset and N
is the total number of samples. The RFT loss of the ith feature dimension is
defined as the minimal RFT loss among all the candidate thresholds:

Ri = min
t∈T

Ri
t. (5)

Finally, all feature dimensions’ RFT loss is ranked in ascending order, and the
top K dimensions are selected, where K is the dimension of the word vectors
after our dimension reduction approach.

Similarity tasks: Similarity tasks are usually done by calculating the
cosine similarity between target vectors, which differs from prediction tasks.
The cost function of DFT/RFT may not match well with the evaluation
criteria of similarity tasks. Inspired by the evaluation of word similarity, we
use Spearman’s rank correlation coefficient to develop our WordFS-S model.
It involves finding the correlation between the ranks generated by features
extracted from each dimension and the target labels. First, the ranked values
of each feature dimension and the labels are calculated. Second, Spearman’s
rank correlation coefficient for each feature dimension is calculated by the
Pearson correlation coefficient between the ranked values of each dimension
and the labels:

ri = ρR(fi),R(y) =
cov(R(fi), R(y))

σR(fi)σR(y)
, (6)

where R(·) represents the rank of given raw scores. The higher the correlation
coefficient, the better the feature dimension is. Finally, the Spearman’s
rank correlation coefficients of all the feature dimensions are then ranked in
descending order, and the top K dimensions are selected.
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4 Experiments

We evaluate our method by applying it to several pre-trained word embeddings.
The word similarity datasets provide weak supervision to guide our feature
selection module. The dimension-reduced word embeddings are used for word
similarity tasks and downstream tasks. Then, we compare the results of our
method with the original pre-trained word embeddings, the reduced word
embeddings from UMAP [13], the dimension-reduced word embeddings from
the PCA-based method called Algo [20], and the results from the deep learning-
based method called EmbedTextNet [8]. The performance of different datasets
can vary due to their specific requirements and emphasis. Finding a general
dimensionality reduction method that performs well across all datasets without
fine-tuning is challenging. Therefore, we focus on comparing the average
performance for each task. The method that achieves better performance on
average is considered better.

4.1 Pre-trained Word Embeddings

In our experiments, we use the following three pre-trained word embeddings.

1. Glove word embeddings [18] trained on Wikipedia 2014 and Gigaword 5
corpus (6B tokens, 400K vocabulary)
They are available in multiple dimensions, precisely 50, 100, 200, and
300.

2. Word2vec word embeddings [14] trained on a portion of the Google News
dataset (about 100B words)
The model provides word vectors of 300 dimensions for 3M words and
phrases.

3. Fasttext word embeddings [2] trained on Wikipedia 2017, UMBC webbase
corpus, and statmt.org news dataset (16B tokens) [15]
It generates 1 million 300-dimensional word vectors. The Gloved-based
model is trained on the least amount of data among the three pre-trained
word embeddings.

4.2 Word Similarity Datasets

We use the widely-used word similarity datasets [6] to evaluate our method.
The word similarity datasets contain word pairs and their corresponding scores
from human annotators based on perceived relatedness or similarity. The
cosine similarity of each pair of words calculates the similarity score from
the word embeddings. We use Spearman’s rank correlation coefficient as our
evaluation metric. It measures how closely the ranking derived from the cosine



Word Embedding Dimension Reduction via Weakly-Supervised Feature Selection 11

similarities of given word vectors matches those based on human judgments. A
higher value of this metric indicates a better match to human-labeled similarity
rankings.

We first evaluate our methods on twelve word similarity datasets based
on all the three word embeddings. In later experiments, we will assess the
generalizability of our WordFS model across various embeddings on multiple
downstream tasks. Since we choose word similarity as the guidance for feature
selection, we apply 5-fold cross-validation to each word similarity dataset to
train and test our method. The reported results are the average Spearman’s
rank correlation coefficients from the five folds. We evaluate the pre-trained
word embeddings and all the methods on the same cross-validation fold and
take the average for a fair comparison. All the results we report average over
five different cross-validation trials in all the experiments. We set the number
of bins in RFT to 4, the default and recommended value from the RFT model,
and the threshold in the PPA to 7, the same as in the PCA-based model.

Table 1 shows the results across twelve word similarity datasets of different
dimension reduction methods reduced from 300-dimensional Glove word em-
beddings to 150, 100, and 50 dimensions, respectively. In the table, WordFS-P
and WordFS-S represent our proposed methods based on RFT and similarity
feature selection methods, respectively. P represents PPA, and wP and woP
represent PPA and without PPA. Algo is the method proposed in [20], which
utilizes PPA before and after PCA. The last column is the average of the
previous columns. The UMAP results are significantly lower compared to other
methods. This is understandable because UMAP is a general dimension reduc-
tion method and is not specifically designed to reduce the dimension of word
embeddings, unlike other methods. For the dimension-reduced vectors with
dimensions of 50, 100, and 150 based on the Glove embedding, our methods
outperform the original Glove word embeddings and other methods in most
datasets across these reduced dimensions. Our WordFS-S-wP method achieves
the highest average score when the dimension is reduced to 50 and 150 and is
close to the highest, which is our WordFS-P-wP method, with a difference of
0.03 when reduced to 100. Both feature selection-based approaches perform
better than the existing methods. As expected, the WordFS-S-wP method
performs better than the WordFS-P-wP method in this task. Our WordFS-
S-wP method outperforms the best performance from existing methods with
an average improvement of 0.61, 1.97, and 3.69 in terms of Spearman’s rank
correlation coefficients when reducing to 150, 100, and 50 dimensions, respec-
tively. Our method can perform better than the original 300-dimensional word
embeddings, even when reduced to 100 dimensions. For the dimension-reduced
vectors based on the Word2vec embeddings, applying PPA may decrease per-
formance, as the word embeddings are pre-trained on larger data, containing
subtle linguistic connections. Our method can perform highest when the word
vector dimension is reduced to 150 and 100 and slightly lower when reduced
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Table 1: Comparison of Spearman’s rank correlation coefficient across multiple word
similarity datasets, where Boldface indicates the best value in each column, and underline
indicates the second best value in each column.

MC Men M M RG RW Sim VE WS WS WS YP
Dataset -30 -TR Turk Turk -65 Stan Lex RB -353 -353 -353 -130 Avg

-3k -287 -771 ford -999 -143 -ALL -REL -SIM

Glove-300D 64.03 73.71 62.44 64.60 72.97 41.16 36.97 29.97 60.27 55.44 64.74 55.15 56.79
UMAP-150D 25.39 38.81 35.88 31.54 32.50 13.91 25.33 24.13 30.76 20.19 38.23 14.00 27.56
Algo-150D 67.97 75.21 62.47 64.11 72.94 43.45 37.81 38.06 66.71 60.55 70.74 58.09 59.84

EmbedTextNet-150D 79.59 75.43 58.36 62.91 80.00 41.31 37.49 27.33 63.06 55.35 67.50 55.80 58.68
WordFS-P-woP-150D(ours) 66.79 74.94 60.68 63.44 69.83 36.16 37.93 30.26 62.49 53.69 66.78 52.27 56.27
WordFS-P-wP-150D(ours) 73.63 75.38 64.38 64.24 70.37 45.01 42.47 34.88 68.53 60.58 70.25 50.54 60.02
WordFS-S-woP-150D(ours) 67.79 75.78 62.62 62.95 70.26 36.07 44.72 36.61 64.72 55.36 69.42 45.76 57.67
WordFS-S-wP-150D(ours) 72.27 75.96 65.57 64.35 70.69 45.22 45.08 36.03 67.16 59.18 71.00 52.90 60.45

Glove-100D 57.18 68.08 60.78 57.81 65.29 36.54 29.79 30.61 52.83 47.62 58.55 43.02 50.68
UMAP-100D 22.88 39.72 38.15 31.06 40.10 14.97 26.08 18.97 30.78 21.48 37.27 14.98 28.04
Algo-100D 69.99 70.64 60.65 60.92 75.93 39.55 35.80 29.70 62.33 53.29 68.49 50.59 56.49

EmbedTextNet-100D 70.21 70.43 62.04 59.28 74.42 37.20 35.19 30.63 59.66 54.10 64.94 44.79 55.24
WordFS-P-wP-100D(ours) 72.91 73.96 61.16 60.54 69.91 43.65 42.65 34.93 67.80 58.91 69.15 46.28 58.49
WordFS-S-wP-100D(ours) 69.63 74.72 65.29 60.23 68.79 43.16 43.95 37.17 66.11 56.79 69.65 46.06 58.46

Glove-50D 53.75 65.24 60.67 55.14 58.41 34.02 26.44 25.26 49.82 44.94 55.66 36.03 47.11
UMAP-50D 17.39 39.84 36.15 31.14 41.56 15.13 26.22 22.71 31.37 20.87 38.87 8.59 27.49
Algo-50D 64.48 61.43 53.19 47.30 63.65 33.65 26.75 34.77 55.60 45.01 59.35 38.00 48.60

EmbedTextNet-50D 55.58 65.90 63.61 55.18 53.97 32.60 28.57 32.21 57.51 50.19 64.01 36.18 49.63
WordFS-P-wP-50D(ours) 63.11 69.91 55.14 52.58 63.52 39.00 41.33 30.49 64.35 53.76 64.28 37.64 52.92
WordFS-S-wP-50D(ours) 67.81 71.06 58.97 52.08 64.96 36.62 39.96 30.28 60.46 56.47 66.33 34.86 53.32

Word2vec-300D 73.42 77.01 68.52 66.73 71.65 53.39 44.19 49.69 68.92 61.42 76.87 53.80 63.80
UMAP-150D 36.38 50.43 42.53 26.17 35.13 26.00 22.32 6.25 42.09 32.59 51.84 17.37 32.42
Algo-150D 78.91 78.23 63.46 65.86 74.93 51.43 42.53 41.13 68.25 60.28 75.11 48.34 62.37

EmbedTextNet-150D 72.28 76.33 63.09 65.28 72.33 52.27 43.53 44.47 66.44 57.95 75.04 48.89 61.49
WordFS-P-woP-150D(ours) 68.16 76.16 63.35 63.39 70.79 51.60 45.32 55.99 67.68 58.04 72.44 48.14 61.75
WordFS-P-wP-150D(ours) 66.80 76.77 63.43 63.45 69.99 52.00 46.57 50.77 66.81 56.57 72.64 48.75 61.21
WordFS-S-woP-150D(ours) 75.71 75.93 64.22 63.35 71.63 51.86 46.95 51.89 69.58 61.30 72.85 53.07 63.19
WordFS-S-wP-150D(ours) 74.80 76.73 61.72 63.74 70.55 52.59 46.77 49.56 68.79 58.41 74.73 51.99 62.53

UMAP-100D 33.18 51.38 42.27 27.97 33.24 26.86 23.03 8.13 42.56 31.03 53.53 11.16 32.03
Algo-100D 80.06 76.08 63.86 63.56 72.26 48.21 39.76 30.78 67.49 59.81 73.40 39.65 59.58

EmbedTextNet-100D 74.11 75.73 62.21 63.14 71.10 50.33 41.89 40.12 66.10 59.38 72.89 45.34 60.19
WordFS-P-woP-100D(ours) 62.45 74.14 57.35 61.32 69.55 50.01 45.18 52.28 64.82 55.96 71.10 44.29 59.04
WordFS-S-woP-100D(ours) 65.42 74.45 60.81 60.28 66.60 49.75 45.70 52.60 68.49 57.76 70.23 50.48 60.21

UMAP-50D 28.38 50.06 42.88 27.44 35.31 25.90 22.21 9.78 44.41 34.64 54.23 16.77 32.67
Algo-50D 73.87 70.36 62.29 54.36 66.97 41.89 32.36 22.72 59.75 53.79 66.67 37.28 53.53

EmbedTextNet-50D 72.49 73.10 66.33 59.24 62.16 46.30 36.71 26.65 63.99 55.74 72.62 35.26 55.88
WordFS-P-woP-50D(ours) 49.65 69.72 53.24 55.01 63.96 44.47 43.12 41.79 57.92 47.89 65.01 34.51 52.19
WordFS-S-woP-50D(ours) 54.68 70.87 51.66 54.62 55.86 44.65 43.52 47.26 61.96 49.05 65.16 38.93 53.18

Fasttext-300D 77.08 79.01 69.84 70.57 82.68 52.23 45.11 43.86 70.63 64.65 79.66 48.92 65.35
UMAP-150D 56.94 59.32 46.98 43.50 49.67 33.78 29.16 32.07 40.20 29.54 54.10 20.65 41.33
Algo-150D 92.63 80.59 71.32 70.74 87.97 51.11 45.04 45.03 73.18 68.03 77.21 49.31 67.68

EmbedTextNet-150D 77.54 78.50 68.39 69.78 82.10 52.03 45.71 38.11 68.01 62.98 74.77 51.57 64.12
WordFS-P-woP-150D(ours) 70.45 79.52 65.50 67.05 80.15 51.29 46.59 39.11 69.56 60.91 77.27 51.88 63.27
WordFS-P-wP-150D(ours) 76.17 80.13 67.26 70.29 79.83 54.58 47.44 38.84 72.93 66.76 78.53 55.68 65.70
WordFS-S-woP-150D(ours) 69.54 80.39 64.20 69.73 75.89 53.47 47.43 44.62 74.32 66.94 77.07 52.69 64.69
WordFS-S-wP-150D(ours) 73.42 80.89 66.50 68.87 78.78 53.94 49.14 46.14 74.99 71.09 77.40 53.71 66.24

UMAP-100D 55.58 59.31 46.16 43.69 41.73 33.21 28.80 32.09 39.17 29.49 53.00 19.40 41.33
Algo-100D 89.65 78.80 71.86 66.88 87.66 49.19 42.30 39.96 70.33 64.11 74.89 45.88 65.13

EmbedTextNet-100D 81.65 77.74 68.26 66.93 81.72 51.34 40.62 41.30 69.21 62.20 75.68 46.99 63.64
WordFS-P-wP-100D(ours) 70.91 77.40 63.64 66.07 76.81 52.08 46.48 35.23 71.05 65.77 74.08 52.72 62.69
WordFS-S-wP-100D(ours) 75.71 78.33 65.38 66.44 76.89 51.25 47.24 43.04 72.63 67.27 75.96 56.67 64.73

UMAP-50D 55.12 58.52 46.70 43.67 40.37 33.63 29.38 31.36 40.87 31.62 54.07 21.06 40.53
Algo-50D 79.37 72.74 70.66 61.06 77.50 45.47 35.79 37.48 59.66 52.72 67.79 43.79 58.67

EmbedTextNet-50D 74.80 72.39 69.21 60.69 73.40 45.50 36.04 42.57 70.13 62.00 76.17 34.52 59.78
WordFS-P-wP-50D(ours) 61.31 70.80 54.88 58.09 67.07 46.60 44.66 26.71 64.36 57.75 66.41 50.27 55.74
WordFS-S-wP-50D(ours) 67.94 71.97 62.42 60.33 67.92 45.53 45.48 41.89 67.41 59.24 70.99 54.36 59.62
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to 50. For the Fasttext word embeddings, although our method may not be
the best, it consistently performs very close to the highest performance.

Then, we aggregated the twelve word similarity datasets. We first scaled
them into the same range [0, 1] and then averaged the similarity scores of
overlapped word pairs. There are two reasons to aggregate the datasets: 1) to
provide an overall evaluation for the word similarity tasks and 2) to construct
a comprehensive dataset to train our feature selection methods for various
downstream tasks. We refer to our model as a weakly-supervised method for
downstream tasks because there are only 7,705 human-labeled similarity scores
for different word pairs in the aggregated dataset, which is much less than
the total number of possible word pairs in the corpus to pre-train the word
embeddings. For example, there are 400K word vectors in the pre-trained
Glove word embeddings, which can generate approximately 80 billion unique
word pairs. The other two word embeddings we use in the experiments have
an even more extensive vocabulary. Compared with the possible word pairs,
the guidance provided by the aggregated dataset is limited. We experimented
with the aggregated dataset using the same settings as before.

Table 2 shows the results of various methods for dimension reduction on
the aggregated dataset. The annotations in the tables are the same as in the
previous one. The performance of UMAP is still very low. Our WordFS-S
methods perform best among all the experiments with different pre-trained
word embeddings in other dimensions. And there is a large gap between our
methods and the existing methods. Our approaches significantly benefit this
task compared to the PCA-based method, particularly in lower dimensions
where the gap widens. The performance of the EmbedTextNet model improves
at lower dimensions but still lags behind our WordFS-S methods. It is worth
noting that even when reduced to 50 dimensions, our WordFS-S-wP method
achieves better performance compared to the original 300-dimensional word
embeddings. Our experiment with three different pre-trained word embed-
dings shows that our method achieved the best performance for the Glove
and Fasttext embeddings when post-processing is applied. However, for the
Word2vec embeddings, better results are obtained without post-processing.
This is reasonable because the power of the post-processing method may de-
pend on the pre-trained word embeddings and the specific application scenario.
The Word2vec embeddings we used were pre-trained on the most extensive
data among the three. It implies that the embeddings may be more resilient to
noise and capable of capturing more nuanced information. However, applying
PPA can potentially result in the loss of information and cause a drop in
performance.
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Table 2: Performance comparison of Spearman’s rank correlation coefficients on the
aggregated word similarity dataset.

Dimension 300 150 100 50
Glove 45.74 – 38.45 36.24
UMAP – 13.97 13.82 13.48
Algo – 53.48 49.35 42.61

EmbedTextNet – 52.71 43.88 41.00
WordFS-P-woP(ours) – 48.23 48.39 48.22
WordFS-P-wP(ours) – 54.69 52.60 47.29
WordFS-S-woP(ours) – 55.85 54.45 49.32
WordFS-S-wP(ours) – 56.76 54.73 50.11

Word2vec 59.51 – – –
UMAP – 32.54 32.20 32.16
Algo – 59.11 56.98 50.74

EmbedTextNet – 58.81 57.53 54.15
WordFS-P-woP(ours) – 59.06 57.37 53.58
WordFS-P-wP(ours) – 59.15 57.20 52.99
WordFS-S-woP(ours) – 59.53 58.04 54.82
WordFS-S-wP(ours) – 59.76 58.26 54.13

Fasttext 54.63 – – –
UMAP – 38.48 38.54 38.40
Algo – 58.24 56.12 49.76

EmbedTextNet – 56.78 55.11 51.17
WordFS-P-woP(ours) – 52.16 46.55 35.49
WordFS-P-wP(ours) – 60.86 57.69 50.46
WordFS-S-woP(ours) – 64.22 61.65 56.87
WordFS-S-wP(ours) – 65.18 63.54 57.43

4.3 Downstream Tasks

It is insufficient to only evaluate word embeddings based on word similar-
ity tasks [7]. To demonstrate the power of our method, generalizability on
downstream tasks is crucial. We utilize the SentEval toolkit [3] to evaluate
the dimension-reduced vectors on various downstream tasks. We conducted
experiments on nine prediction tasks and five sentence similarity tasks. The
sentence representations were obtained by averaging the word embeddings.
We utilize the WordFS-P for the prediction tasks and the WordFS-S method
for the sentence similarity tasks.

Prediction tasks: We conduct experiments on nine prediction tasks from
the SentEval toolkit, including binary and multi-class classification tasks (MR,
CR, MPQA, SUBJ, STS-B, STS-FG, and TREC), paraphrase detection task
(MRPC), and entailment and semantic relatedness task (SICK-E). These tasks
directly take the word embeddings as input. We applied our method with
the RFT feature selection based on weak guidance from the aggregated word
similarity dataset to the pre-trained word embeddings in all the experiments
to reduce the dimension. Then, we directly input the dimension-reduced
embeddings to the downstream tasks and compare the test accuracy of different
methods for each task.
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Table 3 shows the results of various methods on the nine prediction tasks.
The last column is the average of the previous columns. Figure 2 compares
the average accuracy among the top three methods. Experiments show that
our method surpasses the UMAP method in all the prediction tasks and
outperforms the PCA-based method in most tasks. Also, our method achieves
higher average scores than the PCA-based method in all the settings, except
for a slightly lower performance when reducing the Fasttext word embedding
from 300 to 50 dimensions, with a difference of only 0.02. Our method
also performs better than the EmbedTextNet model, although it performs
slightly worse when reduced to 50 dimensions. However, as shown in the next
section, our model is much more efficient and takes less time to train than
the EmbedTextNet model. Our method retains more helpful information for
most settings while reducing dimensions, achieving a much closer prediction
performance to the original 300-dimensional word embeddings. It indicates the
effectiveness of our method. Also, it proves that our method can generalize well
on various prediction downstream tasks in a zero-shot manner. The Glove word
embedding we used was pre-trained on a smaller amount of data and might
be vulnerable to noise. Post-processing can help mitigate noise and improve
the performance. However, subtle linguistic connections can be crucial when
working with prediction tasks. Applying PPA to word embeddings pre-trained
on relatively large data may decrease performance.

Figure 2: Average accuracy comparison for prediction tasks.

Reducing the dimension of data results in information loss, often leading
to decreased performance as the dimension decreases. Figure 3 compares
the impact of word vector dimensions on performance across different tasks.
The impact of dimension reduction on task performance can vary depending
on the pre-trained word embeddings used, but the overall trend remains
consistent. Various tasks may lose crucial information at different reduction
levels. For example, the TREC task’s performance significantly drops when
reduced to 50D compared to 100D, while the performance of most other
tasks decreases gradually when reduced to a lower amount. When using
Word2vec and Fasttext word embeddings, the TREC task’s performance
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Table 3: Comparison of the results of downstream prediction tasks, where the last column
is the average of the previous columns.

Task MR CR MPQA SUBJ STS-B SST TREC MRPC SICK-E Avg
-FG

Glove-300D 74.99 75.81 86.75 91.39 78.20 40.77 66.6 72.58 77.19 73.81
UMAP-150D 50.00 63.76 68.77 50.00 49.92 28.64 18.8 67.48 56.69 50.45
Algo-150D 73.70 75.32 85.31 89.59 76.66 40.95 60.7 71.68 76.49 72.27

EmbedTextNet-150D 72.67 74.09 84.95 90.08 73.75 40.50 64.8 71.54 74.43 71.87
WordFS-P-woP-150D(ours) 73.09 74.86 86.24 89.86 76.22 39.55 65.4 71.01 76.62 72.54
WordFS-P-wP-150D(ours) 74.03 76.00 86.24 89.20 76.50 41.27 65.2 70.38 76.46 72.81

UMAP-100D 50.00 63.82 68.77 50.00 49.92 28.64 18.8 67.36 56.69 50.44
Algo-100D 70.61 72.82 82.71 88.16 74.63 38.28 56.2 71.83 75.36 70.07

EmbedTextNet-100D 71.55 72.87 84.44 88.88 70.18 38.46 62.2 71.48 75.14 70.58
WordFS-P-woP-100D(ours) 72.24 73.96 85.26 88.62 73.97 38.37 62.0 71.42 76.60 71.38
WordFS-P-wP-100D(ours) 72.68 75.42 85.50 88.25 76.94 40.50 64.4 71.59 74.87 72.24

UMAP-50D 50.00 63.76 68.78 50.00 49.92 28.64 18.8 67.83 56.69 50.49
Algo-50D 66.24 70.23 76.35 84.32 69.36 35.88 48.1 71.39 72.98 66.09

EmbedTextNet-50D 69.36 72.34 82.79 87.65 71.66 38.64 60.2 68.29 74.20 69.45
WordFS-P-woP-50D(ours) 68.54 70.54 81.35 85.51 69.85 35.61 56.2 71.65 73.19 68.05
WordFS-P-wP-50D(ours) 69.96 71.05 83.29 84.25 72.10 37.69 56.6 71.30 72.82 68.78

Word2vec-300D 77.16 77.80 87.97 90.42 81.11 42.22 82.6 72.35 77.92 76.62
UMAP-150D 50.03 63.76 68.74 50.00 49.92 28.64 18.8 66.49 56.69 50.34
Algo-150D 74.52 75.28 85.72 89.31 77.70 39.46 70.0 70.55 73.13 72.85

EmbedTextNet-150D 73.87 77.14 84.98 89.73 77.05 40.72 76.0 73.28 73.88 74.07
WordFS-P-woP-150D(ours) 74.43 76.90 86.56 88.72 79.13 40.18 77.0 72.12 76.54 74.65
WordFS-P-wP-150D(ours) 75.51 77.41 86.15 88.45 76.88 40.14 73.8 72.17 76.54 74.12

UMAP-100D 50.00 63.76 68.77 50.00 53.71 28.64 18.8 66.49 58.78 50.99
Algo-100D 72.10 74.70 84.42 88.30 76.11 38.60 62.2 72.87 74.08 71.49

EmbedTextNet-100D 72.93 76.40 85.43 89.33 77.81 36.65 65.8 72.29 73.78 72.27
WordFS-P-woP-100D(ours) 72.75 74.25 84.77 87.77 76.06 39.77 75.2 72.70 73.68 72.97
WordFS-P-wP-100D(ours) 72.75 74.83 84.65 86.52 75.78 40.05 73.0 70.09 75.24 72.54

UMAP-50D 50.00 63.76 68.70 50.00 52.50 28.64 13.00 66.49 56.69 49.98
Algo-50D 70.39 70.84 83.39 86.73 73.64 37.06 54.4 72.70 69.60 68.75

EmbedTextNet-50D 70.79 72.95 84.35 87.47 74.74 40.00 66.8 70.84 72.21 71.13
WordFS-P-woP-50D(ours) 69.39 71.60 81.35 85.54 72.71 37.69 62.6 72.52 70.90 69.37
WordFS-P-wP-50D(ours) 70.02 71.52 82.48 82.66 72.43 38.10 61.6 71.65 71.10 69.06

Fasttext-300D 77.59 78.81 88.10 91.73 80.78 45.48 84.4 72.99 77.57 77.49
UMAP-150D 50.00 63.76 68.80 50.00 49.92 28.64 18.8 71.07 56.69 50.85
Algo-150D 74.81 75.39 85.72 90.12 77.81 41.58 66.4 73.39 70.79 72.89

EmbedTextNet-150D 73.95 76.77 86.32 90.80 78.91 40.54 73.2 72.12 74.79 74.16
WordFS-P-woP-150D(ours) 75.68 75.89 86.32 89.62 79.68 42.04 76.0 72.29 74.24 74.64
WordFS-P-wP-150D(ours) 76.01 75.87 86.13 89.39 79.57 42.08 73.0 72.12 75.28 74.38

UMAP-100D 50.00 63.76 68.77 50.00 49.92 28.64 16.2 66.49 56.69 50.05
Algo-100D 73.31 76.05 85.43 88.96 77.27 40.50 66.0 72.58 70.98 72.34

EmbedTextNet-100D 74.56 76.74 86.17 90.09 77.87 41.22 74.8 72.52 74.41 74.26
WordFS-P-woP-100D(ours) 74.43 74.86 84.16 88.54 76.94 40.23 69.8 72.06 71.79 72.53
WordFS-P-wP-100D(ours) 73.51 73.56 85.06 86.33 76.83 40.54 69.4 73.04 71.34 72.18

UMAP-50D 50.04 63.76 68.79 50.00 49.92 28.64 32.6 66.90 56.69 51.93
Algo-50D 70.99 71.55 84.12 86.14 73.09 38.14 55.0 72.64 70.47 69.13

EmbedTextNet-50D 72.34 72.08 84.85 87.97 72.60 37.65 72.6 73.16 71.40 71.63
WordFS-P-woP-50D(ours) 71.82 70.33 81.43 83.98 74.63 37.87 60.0 71.71 70.20 69.11
WordFS-P-wP-50D(ours) 70.23 69.11 81.41 81.79 71.77 36.61 57.0 71.94 70.51 67.82
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Figure 3: Accuracy comparison for prediction tasks using our WordFS method.

drops significantly when the dimension is reduced to 150D. This suggests that
important information about the type of question is lost early on. For most
other tasks, performance decreases slightly as the dimension decreases, which
is expected when dimensions are reduced. In conclusion, dimension reduction
models can preserve essential information for improved overall performance,
but the performance of specific tasks may vary without further fine-tuning.

Similarity tasks: Furthermore, we evaluate our method on five sentence
similarity tasks from the SentEval toolkit. The sentence similarity tasks contain
STS tasks from 2012 to 2016, aiming to determine how close the distance
between two sentence vectors correlates with a similarity score assigned by
human annotators. We first applied our Sim-based method to reduce the word
embeddings based on the weak guidance provided by the aggregated word
similarity dataset. Then, we directly input the dimension-reduced vectors and
compare the average Spearman’s rank correlation coefficients among different
methods.

Table 4 shows the results of various methods on the sentence similarity
tasks. Figure 4 compares the average Spearman’s rank correlation coefficients
among different methods. Our method is consistently better than the existing
methods, except when we reduce Glove embedding to 150 dimensions and
Word2vec embedding to 50 dimensions, where the existing methods perform
better with less than 0.05 difference. Our method significantly outperforms
the existing approach in most sentence similarity tasks, with a gap of up to
8.36. The observation of post-processing is the same as that of the aggregated
word similarity dataset. The Word2vec embeddings we use are trained on
extensive data and may not benefit much from the PPA. The performance of
the reduced word embeddings is often as good or even better than the original
word vectors for Glove and Fasttext word embeddings in sentence similarity
tasks. Even for Word2vec word embeddings, the drop in performance is small.
This indicates that our method, which is based on word similarity, effectively
retains critical dimensions for sentence similarity tasks while reducing the
confusing ones.
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Table 4: Performance comparison of downstream sentence similarity tasks, where the last
column is the average of the previous columns.

Task STS STS STS STS STS Avg
-12 -13 -14 -15 -16

Glove-300D 51.52 48.40 54.21 57.09 55.28 53.30

UMAP-150D 39.10 26.16 28.96 33.65 40.94 33.76

Algo-150D 53.23 56.41 62.30 67.52 66.99 61.29
EmbedTextNet-150D 52.68 52.12 58.67 61.87 59.80 57.03

WordFS-S-woP-150D(ours) 51.40 53.75 59.19 63.07 62.16 57.91

WordFS-S-wP-150D(ours) 52.74 58.62 62.16 66.42 66.24 61.24

UMAP-100D 39.69 26.90 28.97 33.98 41.40 26.79

Algo-100D 52.51 54.66 60.82 66.79 65.15 59.99

EmbedTextNet-100D 51.89 48.30 55.51 58.43 55.66 53.96

WordFS-S-woP-100D(ours) 49.83 51.00 57.98 61.59 62.74 56.63

WordFS-S-wP-100D(ours) 52.16 59.05 62.24 66.84 66.21 61.30

UMAP-50D 38.19 26.92 29.17 33.52 39.94 33.55

Algo-50D 48.20 49.44 57.53 61.49 61.42 55.62

EmbedTextNet-50D 48.83 45.86 53.57 56.80 53.32 51.68

WordFS-S-woP-50D(ours) 50.27 49.58 55.66 56.96 60.07 54.51

WordFS-S-wP-50D(ours) 49.71 55.42 60.58 63.50 63.62 58.57

Word2vec-300D 55.48 58.23 64.05 67.97 66.29 62.40

UMAP-150D 38.01 33.32 37.75 41.73 46.29 39.72

Algo-150D 54.94 58.63 64.01 65.90 65.14 61.72

EmbedTextNet-150D 54.85 58.91 64.31 66.79 65.45 62.06

WordFS-S-woP-150D(ours) 54.91 59.02 64.07 67.70 66.68 62.48
WordFS-S-wP-150D(ours) 55.12 58.90 64.30 67.13 66.73 62.44

UMAP-100D 37.87 35.87 38.15 42.11 46.92 40.18

Algo-100D 54.10 57.43 63.54 64.58 63.31 60.59

EmbedTextNet-100D 54.94 57.68 63.79 65.01 64.96 61.28

WordFS-S-woP-100D(ours) 55.38 57.77 63.32 67.20 66.27 61.99
WordFS-S-wP-100D(ours) 54.96 58.33 63.36 67.04 65.97 61.93

UMAP-50D 38.12 31.41 37.00 41.37 46.75 38.93

Algo-50D 51.20 53.46 60.51 61.89 60.76 57.56

EmbedTextNet-50D 54.23 55.85 61.81 62.64 62.69 59.44
WordFS-S-woP-50D(ours) 52.70 55.45 61.55 64.14 62.93 59.35

WordFS-S-wP-50D(ours) 53.03 55.61 61.99 63.64 62.83 59.42

Fasttext-300D 56.15 51.34 59.11 63.21 61.03 58.17

UMAP-150D 42.52 29.34 36.48 37.06 44.37 37.95

Algo-150D 56.80 55.03 61.72 64.07 61.05 59.73

EmbedTextNet-150D 55.22 51.03 59.55 62.67 60.94 57.88

WordFS-S-woP-150D(ours) 59.05 56.76 62.73 67.33 64.63 62.10

WordFS-S-wP-150D(ours) 60.72 62.79 64.82 69.95 70.02 65.66

UMAP-100D 41.49 28.76 36.17 37.09 43.99 37.50

Algo-100D 56.57 54.43 60.06 62.53 60.09 58.74

EmbedTextNet-100D 55.55 48.91 58.48 61.42 58.86 56.64

WordFS-S-woP-100D(ours) 57.74 53.78 61.07 65.60 62.37 60.11

WordFS-S-wP-100D(ours) 60.25 60.84 64.21 69.54 69.14 64.80

UMAP-50D 42.25 28.16 36.01 37.20 44.43 37.61

Algo-50D 55.56 53.82 59.99 60.60 68.91 57.78

EmbedTextNet-50D 55.34 49.76 58.98 59.70 58.52 56.46

WordFS-S-woP-50D(ours) 54.88 50.91 60.44 63.60 60.74 58.11

WordFS-S-wP-50D(ours) 57.33 56.74 60.94 65.41 64.10 60.90
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Figure 4: Comparison of the average Spearman’s rank correlation coefficients of sentence
similarity tasks.

Figure 5: Spearman’s rank correlation coefficients comparison for similarity tasks using our
WordFS method.

Figure 5 compares the impact of word vector dimensions on performance
across different tasks. As the dimensions decrease, there is generally a slight
drop in performance because some detailed information is discarded. Most
lines show a similar trend from 150D to 50D. For the Glove and Word2vec
embeddings, our approach significantly improves performance when reducing
to 150D. This is understandable because these embeddings are trained on a
smaller amount of data, and our approach helps the vectors focus on similarity
tasks. Word2vec word embeddings are trained on a much larger amount of
data, which is sufficient for them to perform well on sentence similarity tasks.

In conclusion, our method generally outperforms existing methods in pre-
diction and similarity tasks, demonstrating its superiority and generalizability.

4.4 Model Efficiency

We compare the model efficiency of the Algo method, the EmbedTextNet
method, and our method when reducing the word embedding dimensions from
300 to 150 in Table 5. For each pre-trained word embedding, all methods
start with the same vocabulary of 300D word vectors and output a file with
150D word vectors. Different hardware is used for other methods because of
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Table 5: Complexity comparison of the Algo method, the EmbedTextNet method, and
our methods when reducing the word embedding dimensions from 300 to 150 in hardware
configuration and training time.

Embeddings Method Hardware Configuration Training Time (s)

Glove

EmbedTextNet GPU 2149.04 (5372.60X)
UMAP 655.52 (1638.80X)
Algo 21.50 (53.75X)

WordFS-S-wP (ours) 17.63 (44.08X)
WordFS-P-wP (ours) CPU 11.84 (29.60X)
WordFS-S-woP (ours) 4.05 (10.13X)
WordFS-P-woP (ours) 0.40 (1X)

Word2vec

EmbedTextNet GPU 18272.62 (30970.54X)
UMAP 8470.38 (14356.58X)
Algo 198.93 (337.17X)

WordFS-S-wP (ours) 93.88 (159.12X)
WordFS-P-wP (ours) CPU 85.93 (145.64X)
WordFS-S-woP (ours) 7.36 (12.47X)
WordFS-P-woP (ours) 0.59 (1X)

Fasttext

EmbedTextNet GPU 5306.65 (3537.77X)
UMAP 2971.88 (1982.59X)
Algo 74.98 (49.99X)

WordFS-S-wP (ours) 52.20 (34.80X)
WordFS-P-wP (ours) CPU 36.54 (24.36X)
WordFS-S-woP (ours) 15.24 (10.16X)
WordFS-P-woP (ours) 1.50 (1X)

their algorithmic nature. All the experiments were conducted on the same
server, equipped with two AMD EPYC 7543 32-core CPUs and seven NVIDIA
RTX A6000 GPUs. The deep learning-based model is trained using the GPUs,
while the Algo model and our methods are trained using only the CPUs. The
EmbedTextNet model takes approximately 30 minutes to train on relatively
small GloVe word embeddings.

In contrast, the training time for our WordFS-P-wP and WordFS-S-wP
models is less than 19 seconds and 13 seconds, respectively. Our methods
without post-processing require even less time — the training of the WordFS-
P-woP model is completed within one second. For more significant pre-
trained word embeddings, it takes hours to train the EmbedTextNet model.
However, our WordFS-P-wP and WordFS-S-wP methods only require 1-2
minutes, making them hundreds of times faster. Our WordFS-P-woP model,
without post-processing, consistently completes in around one second, making
it thousands or ten thousand times faster than the deep learning-based method.
Besides, our method is significantly faster and outperforms UMAP. Because
finding the K nearest neighbors may take a long time in a high-dimensional
word vector space.
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Additionally, our methods are more efficient than the PCA-based method
because they employ PPA before and after the PCA, while we only apply
it once before feature selection. The PPA consumes a substantial portion
of the training time compared to the feature selection module. Our model,
without the post-processing, can achieve even less time. The reason is the
post-processing and PCA must be done on the entire vocabulary. However, our
feature selection method only focuses on a subset of words that appear in the
aggregated word similarity dataset, making the procedure very fast. And the
module’s processing time will not be significantly affected by the vocabulary
size.

In conclusion, Our methods take only a fraction of the time compared
to deep learning methods and less than half the time compared to existing
PCA-based methods. The experimental results demonstrate that our methods
are much more efficient than existing methods.

5 Conclusion and Future Work

This paper proposes a general dimension reduction method called WordFS
for pre-trained word embeddings with the post-processing algorithm (PPA)
and simple yet effective feature selection methods based on weak supervision
provided by a limited number of word similarity pairs. Our method is more
straightforward, efficient, intuitive, and effective in most cases than the exist-
ing methods. Empirical results show that our method outperforms existing
methods in word similarity tasks and generalizes well to various downstream
tasks. Our model demonstrates clear advantages for tasks significantly related
to word similarity, like STS tasks. Even for tasks that might not directly
correlate with word similarity, such as classification tasks, our model performs
better on average, showing our approach’s generalizability. We demonstrate
that our proposed weakly-supervised feature selection method can effectively
reduce word embedding dimensions and generalize to many downstream tasks
with much lower computational costs. In the future, we would like to explore
the compression of word embeddings further. Since feature selection methods
may result in information loss, there is still room for improvement in the
performance of prediction tasks between the original word embeddings and
the reduced word vectors. Additionally, suitable feature selection methods can
be developed to compress pre-trained word vectors in specific domains.
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