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ABSTRACT

Deep learning has been a powerful tool for medical image analysis,
but large amount of high-quality labeled datasets are generally re-
quired to train deep learning models with satisfactory performance
and generalization capability. In medical applications, collecting
such large-scale datasets involves specific challenges: data annota-
tion is time-consuming and expert-requisite, and privacy restric-
tions make it impractical for different institutions to share their
own data to construct single large datasets. Federated learning
(FL) is an effective method for addressing such concerns since it
allows multiple institutions to collaboratively train deep learning
models, without sharing individual data samples directly, in line
with privacy protection requirements. However, there are numerous
challenges when applying FL in medical image analysis, including
data heterogeneity and low label quality, that may impede FL from
being implemented effectively. This paper conducts a systematic
literature review of the challenges and solutions when applying
FL in medical image analysis. We present a novel taxonomy of
FL-specific challenges in medical image analysis research and sum-
marize representative solutions for these challenges. We anticipate
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this review will be proved helpful for researchers to have better
knowledge of challenges and existing solutions in related fields, and
provide inspiration for developing more advanced solutions in the
future.

Keywords: Federated learning, deep learning, medical image analysis

1 Introduction

Medical image analysis (MEDIA) is a significant area in global healthcare
application and research, as it can be essential for medical diagnosis and
guidance of treatment. As an effective and powerful approach that can perform
reliable vision analysis, machine learning (ML), especially deep learning (DL)
has been widely applied in medical image analysis areas in order to alleviate
cumbersome manual work [165]. In order to achieve accurate and robust
performance on vision tasks, deep learning techniques usually require large,
diverse datasets to train models. However, this brings particular challenges
when applying deep learning to medical image analysis tasks, as there are
specific and strict restrictions on data privacy and security.

Medical imaging data are extremely sensitive, as they can directly contain
identifiable subject information in the header file, and the images themselves
may contain sensitive information about personal health information. As data
collection and processing resources might be limited in individual medical
centers, training a deep learning model with satisfactory performance and
generalization ability may require combining data sources from multiple in-
stitutes to construct a large enough training dataset. This is often infeasible
due to privacy considerations, since medical centers are often not allowed to
share their own data samples according to privacy restriction policies, such
as the Health Insurance Portability and Accountability Act (HIPAA) [49] in
the United States and General Data Protection Regulation (GDPR) [108§]
in Europe. In order to help multiple medical institutes collaboratively train
deep learning models without violating privacy restrictions, federated learning
(FL) provides an alternative solution that can train machine learning models
utilizing datasets from multiple sources without directly sharing the original
data samples. Therefore, FL has become an attractive research and application
topic in the medical image analysis area in recent years.

When applied to the medical image analysis area, FL has encountered
specific challenges compared to general vision tasks. For example, typical
FL algorithms require training datasets on different clients to be statistically
independent and identically distributed (iid) [95], but medical image data
usually cannot fulfill such requirements since data collected from different
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centers can have diverse imaging protocols or focus on different types of
diseases, leading to substantial data heterogeneity. Additionally, it can be
impractical for each hospital to acquire large amounts of high-quality labeled
medical images, as there is a high demand for qualified experts to assist in
collecting such data. Moreover, federated deep learning techniques have a high
demand for computational and network transmission resources, which can be
difficult for medical centers with limited capability.

This review paper aims to conduct a thorough literature review of FL
research works in the medical image analysis area, especially focusing on
discussing specific research challenges in this area and summarizing solutions
to such challenges. We present a novel taxonomy of involved research chal-
lenges, and conduct summaries and analysis for corresponding solutions. The
remaining parts of this paper are organized as follows: The remaining content
of Section 1 summarizes the differences between this work and other existing
surveys, and the searching and analysis strategies of this survey. Section 2
introduces basic knowledge of FL and its application in medical image analysis.
Section 3 presents our review and analysis results for the research challenges
and solutions in existing medical imaging FL works. Section 4 proposes
potential future directions for the application of FL in medical image analysis.

1.1 Related surveys

We studied the existing surveys since 2022 concerning FL applications in
medical domains. Some of these surveys discuss general conditions of FL
applied in medical-related areas, not focusing on medical image analysis [21,
22, 124, 7). Among other surveys that pay attention to medical image analysis,
some of them attach the most importance to the applications of FL in medical
image analysis tasks, and only have brief discussions on specific challenges
and their solutions in these domains [100, 113, 116, 73, 107]. Compared to
several surveys that focus on discussing challenges [25, 109, 121, 76], the
main difference of our survey is that we propose a hierarchical taxonomy of
challenges and conduct a comprehensive analysis on solutions from different
perspectives, while the discussions in previous surveys cover a smaller range
and are less systematic.

A recent survey by Guan et al. [44] has a similar discussion as ours on FL
in medical image analysis. Our survey differs from this work in the following
aspects:

e Broader and newer coverage: Guan et al. [44] discussed 77 papers pub-
lished up to October 2023, while our survey covers 130 papers published
up to May 2024, where 105 papers focusing on research challenges are
discussed in detail. As our survey has a broader and more up-to-date
coverage of research papers, more advanced works are included and
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some new topics involved with novel challenges are discussed here. For
instance, multi-modality FL recently began to be applied in medical
domains, which was mentioned as one future direction in Guan et al. [44],
while this topic is discussed in detail in our paper; and we also include
the topic of fairness, which has became a growing interest in medical FL
applications.

o Different perspectives: Guan et al. [44] classified challenges in medical
imaging FL into three categories according to different components of
FL architecture: client-end, server-end, and client-server communication.
Instead, we employ a different perspective according to the source and
essence of different challenges: We first divide challenges into (1) data
heterogeneity, (2) low label quality, (3) attack and defense, (4) communi-
cation burden, and (5) underexplored challenges. Then, in each category,
we perform detailed descriptions and discussions. Such an organization
leads to a systematic taxonomy of challenges and solutions, which is
illustrated in Section 3. The number of papers covered in our survey per
year is summarized in Table 1.

Table 1: Number of covered papers focusing on challenges per year.

Year 2020 | 2021 | 2022 | 2023 | 2024
Number of papers | 2 10 14 57 22

1.2 Searching and analysis process

We conducted the following steps to collect and study research papers related
to our topic:

e Paper collection: We collected the initial set of research papers by
searching the following databases and search engines: (1) ACM Digital
Library, (2) arXiv, (3) Elsevier, (4) Google Scholar, (5) IEEE Xplore,
(6) PubMed, (7) SpringerLink, with the search term ‘federated learning
medical image analysis’ ‘federated learning medical imaging’. After this
step, we built a raw corpus of 352 papers.

o Corpus refinement: To refine the raw paper corpus, we first removed
duplicate papers among different datasets, and then filtered out those
papers that did not focus on medical image analysis, such as the papers
analyzing temporal medical data. After this step, we retained a collection
of 130 papers. Additionally, as this paper aims to provide a comprehensive
study on challenges and solutions in medical imaging FL research, we also
discounted papers that just simply applied federated learning techniques
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in medical image analysis tasks without emphasis on any challenges.
After this step, we got a refined corpus of 105 papers.

e Challenge analysis: We assessed the papers in the refined corpus to
analyze the research challenges they worked on. We summarized these
challenges and proposed a taxonomy for common challenges in the
medical imaging FL research. For each type of research challenge, we
provided a brief formalization and summarized its existing solutions.

2 Background

2.1 Federated Learning

Federated learning (FL) is a type of distributed machine learning framework,
where multiple institutes collaboratively train a machine learning model in a
data-privacy-preserving pattern. Privacy protection is accomplished by keeping
sensitive datasets locally at each institute (i.e., clients) and not sharing them
with other entities, while collaborative model training is achieved by exchanging
and aggregating model parameters or gradients, usually with the help of a
central server that can communicate with the clients.. The most popular
federated learning architecture, FedAvg, was first proposed by McMahan et al.
[95]. Typical FedAvg can be formalized as follows, which is illustrated in
Figure 1. Suppose there are multiple institutes considered as clients and a
central server. Each client holds a dataset that cannot be shared with other
entities. The central server is responsible for communicating with the clients
and helping them collaboratively train a machine-learning model. The typical
FedAvg setting assumes that each client shares the same machine-learning
model with the server. The goal of federated learning is to obtain a global
model whose performance is better than models trained locally at each client
using their own dataset. In order to achieve this goal, federated learning
typically performs several communication rounds for training, where each
round executes the following steps:

e [Initialization: A set of clients are selected to participate in this training
round. The server sends its global model parameters to initialize client
models.

e Local training: Each client trains the local model with its local dataset
for several epochs.

e Global aggregating: Each client sends its new model parameters or
accumulated gradients to the server, and the server aggregates these
updates from all participating clients to obtain a new global model. For



6 Yang et al.

) |
: .~ private data D Dfeature extractor [1[ task head I
| z feature representation p prediction logit Agg Aggregation |
|
/ | local tralnlng I D—B |
z
ﬂ |
. hos |tal 1N = = = = == = =T == = -
K P dataset local model
HE N =T " T m TR T |
| /" B=== local training
...... Global .
| W | E ﬂ | g [————14 |
D IhspiaTk '
_______ ospital K" — = — — — — — — = = — — — — —
‘Agaregation weight s proporional P dataset local model

to the number of sample

Figure 1: An illustration of the typical FedAvg architecture. During a local training stage,
each client (hospital) trains local machine learning model with its own private data for
several epochs. At each federated communication round, a central server receives parameters
of local models from clients, aggregates the parameters to obtain a global model, and sends
the global model to clients, which are used to re-initialize local models for a new local
training stage. Such iteration is repeated until the global model converges or after specific
number of communication rounds.

typical FedAvg, it aggregates client updates weighted by the number of
samples on each client, namely using the following function:

w = Z %wk (1)

where w is the aggregated global model parameters or gradients, K is
the number of participating clients, nj is the number of data samples
on client k, n = Zfil n; is the total number of data samples across all
participating clients, wy is the model update from client k at the end
this round.

The above procedure will continue until the global model converges or after
a specific number of communication rounds. During the entire training process,
each client retains its training dataset locally to ensure that no sensitive
information is transferred, thereby protecting privacy.

2.2 Federated Learning Taronomy

According to Yang et al. [151], federated learning architecture can be divided
into three categories according to the heterogeneity of sample space and feature
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space across clients: Horizontal federated learning, vertical federated learning,
and federated transfer learning. Figure 2 shows the differences of these three
categories of FL.

e Horizontal federated learning (HFL). HFL assumes that the datasets
of the clients have different sample spaces but share the same feature
space. This is the most common type of FL architecture in medical
image analysis research. A typical setting of HFL in medical applications
is that different hospitals collect the same type of data, such as chest
X-ray images, brain MRIs, etc., from different groups of subjects. It is
natural to apply FedAvg and its variant algorithms in HFL scenarios,
where the entire training procedure can be regarded as training a strong
model with an enriched global dataset by combining the datasets from
different clients while protecting subject privacy by not directly exposing
local data samples outside each client.

o Vertical federated learning (VFL): VFL happens when the client datasets
share the same sample space but have different feature spaces. Such a
scenario is relatively rare in medical image analysis FL research. Rep-
resentative scenarios of VFL in the medical image analysis area occur
in multi-modality learning. For example, some work such as Yan et al.
[148] explores such settings in MRI reconstruction tasks that different
clients have different modalities of MRI data collected from the same
group of subjects. Such vertical data samples can be used to align the
training of these clients in order to achieve better global performance.

e Federated Transfer Learning (FTL): Theoretically, FTL considers the
scenario where the sample space and feature space are both different
among clients, according to the definition in Yang et al. [151]. Such
a setting requires extracting common latent knowledge from different
clients and utilizing this common knowledge to facilitate client learning.
Research strictly following such a setting is quite limited in medical
image analysis areas. However, transfer learning methods that aim to
share useful knowledge across clients while preserving privacy are indeed
applied in some medical FL work, which can be viewed in later sections.

2.3 Application of FL in Medical Image Analysis

FL has been widely applied in various medical image analysis tasks. It is quite
suitable for medical applications, as medical data usually contains sensitive
information of patients which cannot be exposed to other entities. According
to our literature survey, FL is mainly applied in medical image analysis tasks
including classification, segmentation, and reconstruction. There are also rare
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Figure 2: An illustration of differences of HFL, VFL and FTL. Adapted from Yang et al.
[151].

works that focus on other tasks, such as image synthesis [129, 24] and object
detection [153]. Following we introduce the application of FL in these tasks in
detail:

o Classification. A classification problem can be formalized as follows:
Suppose there is a set of N data samples {x1,Xs2,...,Xx} in a sample
space X', and each sample x; € X is associated with a label y; € V), where
Y = {y1,92,...,yx} is the label space denoting K different possible
classes that the sample belongs to. The goal of the classification task
is to learn such a mapping function f : X — ) that the output of this
function § = f(x) given input x should be as close as possible to the
true label y associated with x. In practice, the label y is often expressed
as the one-hot form, namely y € {0,1}¥, where the k-th element of y
is 1 while other elements are 0’s if sample x belongs to the k-th class.
It can be extended to the multi-label classification problem, where each
data sample can belong to multiple classes, namely y can have multiple
1’s.

Classification is one of the most common tasks in medical image analysis.
A natural practice is to predict the type of disease given the image of a
medical examination. Federated learning has been applied in medical
image classification for various diseases. Additionally, its application is
not limited to classifying types of diseases but also exists in other medical
imaging-related tasks such as surgical phase recognition [65]. Table 2
summarizes common imaging techniques, imaging physical sites, and
involved diseases in existing FL. works in medical image analysis focusing
on classification tasks. Some works used datasets with many classes of
diseases, and we list the name and reference of these datasets used by
these works instead of listing all classes in order to reduce redundancy.

e Segmentation. Image segmentation can be viewed as a special case of
classification problem in computer vision, which needs to perform pixel-
wise classification given an input image to indicate whether each pixel
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Table 2: Example FL applications in medical image classification tasks.

Modality Body part Diseases and Papers
breast breast cancer: [27, 59]
Xoray tuberculosis: [81, 80]
chest pneumonia: [146, 96, 125, 112, 17, 2, 139, 88, 16]
ChestX-rayl4 (dataset) [134]: [26, 123, 9, 92|
dermatoscopic win pigmented lesions: [26, 157, 141, 155, 146, 39, 131, 155,
135, 31, 141, 5, 88, 92]
chest lung cancer: [51]
WSI prostate prostate cancer: [68]
abdominal colorectal cancer: [45]
kidney kidney cancer: [51]
chest pneumonia: {163, 16]
lung cancer: [50]
oT brain intracranial hemorrhage: [141, 135]
liver tumor: [96, 168, 112, 41]
abdominal gastric cancer: [34]
kidney cyst/tumor/stone: [9]
breast breast cancer: [27]
MRI brain Alzheimer’s disease: [158, 9, 71|
brain tumor: [10]
endoscopy gastrointestinal HyperKvasir (dataset) [12]: [168, 31, 142]
fundus camera eye diabetic retinopathy: [155, 146, 130]
’ glaucoma: [139]
blood cell hematologic/oncologic disease: [168, 5, 112, 41]
microscope breast breast tumor: [4]
colon colorectal cancer: [112, 41]

belongs to a specific segmentation area or background. Therefore, given
an input image sample X € R¥*W its associated label is a segmentation
mask M = [m;;] € R¥*W  where each element in this mask map m;; is
a label vector indicating the category of the (i, j)-th pixel.

Medical image segmentation is an important problem in medical image
analysis, which significantly helps clinicians identify areas of interest effi-
ciently. Federated learning has been widely applied in the segmentation
of images of various diseases obtained from different medical imaging
technologies. Table 3 provides a summary of common imaging techniques
and imaging physical sites in existing FL. works focused on segmentation
tasks in medical image analysis.

e Reconstruction. Reconstruction is a special topic in medical image
analysis, which involves generating high-quality images from raw or
incomplete data acquired through various medical imaging techniques,
such as Magnetic Resonance Imaging (MRI) and Positron Emission
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Table 3: Example FL applications in medical image segmentation tasks.

Modality |Body part Papers
knee (48]
prostate [[157, 83, 58, 105, 167, 98]
MRI heart [154, 94, 93, 52]
brain [104, 99, 52, 159]
spine (82, 8]
cT chest [84, 163, 28, 127]
abdominal [160, 55, 66]
X-ray chest [138, 74]
dermatoscopic skin [84, 140]
endoscopy |abdominal [128, 167]
fundus camera eye [83, 105, 128]

Tomography (PET). The goal of image reconstruction is to produce clean
and useful images for medical diagnosis that can accurately represent
the internal structures of the subject body. Federated learning has also
been applied in medical image reconstruction tasks. Most works focus
on reconstruction of brain MRI images [37, 35, 91, 148, 32, 42, 36, 46].
Several works explore PET image denoising, which is a special form of
medical image reconstruction [162, 118, 161].

2.8.1 FEwvaluation Metrics

Here, we summarize the evaluation metrics that are commonly used in the
above works of FL in medical image analysis according to our literature study
results:

e (lassification: Typical evaluation metrics for classification tasks are
based on these values:
— TP = True Positives
— TN = True Negatives
— FP = False Positives
— FN = False Negatives

The most commonly used classification performance evaluation metrics
is Accuracy (ACC):

— TP+TN
ACC = 1prrNt FPrFN (2)
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Some works apply the following Balanced Accuracy (BACC) and F1-
Score (F1) in consideration of class imbalance:

_1 TP TN
BACC = } (75w + e (3)
— 9. Precision-Recall
Fl1=2 Precision+Recall (4)
. . _ TP _ TP
where Precision = TPLFD" Recall = TPLEN -

The AUC (Area Under the Receiver Operating Characteristic Curve) is
also applied in some works in order to measure the model’s classification
ability to distinguish among classes:

AUC = [ TPR(FPR™!(2)) dz (5)
where TPR (true positive rate) = TPZ%, FPR (false positive rate) =
FP
FPIN"

e Segmentation: According to our literature study, the following four
evaluation metrics are commonly used in FL-based medical image seg-
mentation tasks. Most works pick two from these metrics in their
experiments. Generally, Dice similarity coefficient (Dice) and Intersec-
tion over Union (IoU) are used to measure the overlap between predicted
and ground-truth segmentation masks, while Average Symmetric Surface
Distance (ASSD) and Hausdorft Distance (HD) evaluate the boundary
error between prediction and ground-truth.

— Dice, measuring the similarity between two sets of data, which is
used to measure the overlap between the predicted segmentation
and the ground-truth mask:

. 2X|ANB|
Dice = T3757 (6)
where A is the set of pixels in the predicted segmentation while

B is the set of pixels in the ground-truth mask, “| - |” counts the
number of elements in a set.

— IoU, another metrics measuring the overlap between segmentation
masks:

oU = 4071 (7)

— ASSD, measuring the average distance between surface points of
the predicted and ground-truth segmentations:

ASSD = \SA\Jlr\SB\ (Yaes, minpesy, d(a,b) + Y peg, minacs, d(b, a)) (8)
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where S4 and Sp are the sets of boundary points in the predicted
and ground-truth segmentations, respectively, d(a,b) is the distance
between a point a in S4 and a point b in Sg.

— HD, measuring the maximum distance between surface points of
the predicted and ground-truth segmentations:

HD = max {sup,cg, infres, d(a,b), supycg,, infacs, d(b,a)}  (9)

where sup denotes the least upper bound, and inf denotes the great-
est lower bound. Sometimes the 95th Percentile of the Hausdorff
Distance (HD95), a more robust version of HD, is applied instead
of HD, which is less sensitive to outliers:

HD95 = Py ({d(a, Sp)|a € Sa} U {d(b, S4)|b € Sp}) (10)

where Py5 denotes the 95th percentile of the set of distances, d(a, Sp)
is the minimum distance from point @ in S4 to any point in Sp,
and d(b, S4) is the minimum distance from point b in Sp to any
point in Sy4.

e Reconstruction: The performance of medical image reconstruction is
evaluated by measuring the quality of the reconstructed image compared
with the original image. The following two metrics are used in federated
medical image reconstruction works:

— Peak Signal-to-Noise Ratio (PSNR):

PSNR = 10 - log, (%) (11)

where MSE = = Zzal Z;I:BI [I(i,§) — K(i,4)]® is the mean
square error between the original image and the reconstructed
image, MAX is the maximum possible pixel value of the image (255
for 8-bit images), where I(i,j) and K(i,7) are the pixel values at
position (¢,7) in the original image and the reconstructed image
respectively.

— Structural Similarity Index (SSIM):

g iy +C1) (204, +C
SSIM(z,y) = (,Egiu%ﬂrcll))(ff§+&g+é)z) (12)

where x and y are the original and reconstructed image pixel values;
te and p, are the mean intensities of x and y respectively; o2 and
05 are the variances of z and y respectively, o, is the covariance
of z and y; C; = (KL)% and Cy = (K3L)? are two constants to
avoid division by zero, where L is the range of the pixel values (255
for 8-bit images), K7 and K> are constants typically set as 0.01 and

0.03 respectively.
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3 Challenges and Solutions

3.1 Data Heterogeneity

Data heterogeneity is a fundamental yet practical challenge in the application
of FL in medical image analysis. There are various types, and each impacts the
performance and effectiveness of the task model trained in the FL paradigm.
In this subsection, we first define the common types of data heterogeneity
in MEDIA and then summarize the existing solutions aiming to reduce its
negative effect.

8.1.1 Heterogeneity Types

e Feature distribution skew: Let K be the number of hospitals and Pj(x)
be the feature distribution of hospital k. Different hospitals may use
various types of imaging equipment or protocols, leading to variations in
the features present in the medical images. Therefore, { P (z)}5_, are
different across hospitals.

e Label distribution skew: Let Py (y) be the label distribution of hospital
k. Taking skin cancer detection as an example, some hospitals primarily
serve populations with certain skin types and, therefore, have a high
incidence of specific skin conditions. It results in the case where certain
diagnoses are overpresented in some hospitals and underrepresented in
others, which can be formulated as Py(y) # Pw (y) (k, k" € {1,2..K}
and k # k).

e Label concept shift: Let Py(z|y) be the conditional distribution of
hospital k. Label concept shift occurs when the features associated
with the same label vary across hospitals and it can be mathematically
formulated as Py(x|y) # Py (z|ly) (k, k" € {1,2..K} and k # k’). For
example, in one hospital, certain features in brain MRI scans such as
slight swelling or minor anomalies are consistently correlated with a
neurological disorder. In contrast, in another hospital, due to differences
in patient demographics or disease prevalence, these features may not
strongly predict the same disorder.

3.1.2 (Generalized FL

Generalized FL (gFL) and personalized FL (pFL) are two promising directions
to address the data heterogeneity. The primary goal of gFL is to develop a
single, robust model that performs well across all participating clients and can
be generalized to other unseen clients. The objective of gFL can be expressed as:
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win{F(0) = & 3 F(0)) (13)

where 6 represents the global model parameters and F(6) is the loss function
defined by client k. This formulation seeks to minimize the average loss across
all clients.

Based on our proposed taxonomy, most gFL approaches are grouped into
four types: data-based, loss-based, architecture & training-based and aggrega-
tion method-based.

(a) Data-based methods

Data-based methods serve as a strategic approach to enhance the diversity
and quality of training data across different clients, operating at both input
data and feature levels. To increase diversity at input data-level, several
techniques have been explored in MEDIA, including image augmentation [17],
synthetic minority over-sampling technique (SMOTE) [139], and generative ad-
versarial networks [106, 16, 53, 117, 149]. In addition, style-transfer models are
employed in FL to enhance the style diversity of local data, thereby improving
the generalization ability of the global model [15]. FedDG [85] tries to alleviate
data heterogeneity in frequency space. To be specific, based on the insight
that the amplitude spectrum of an image denotes low-level distributions while
the phase spectrum denotes high-level semantics, clients share their amplitude
spectrum with other clients and replace some low-frequency components of
local images with those from other clients so that enrich client distribution.
Instead of generating data samples within known classes, FedOSS [168] focuses
on an open set recognition problem that aims to correctly identify unseen
new samples as unknown classes. It proposes a sample synthesis strategy
that can push samples that are close to the decision boundary outside the
boundary to get virtual samples of an unknown class. On the other hand,
feature augmentation [5] focuses on enriching the feature set itself to enhance
its representation ability. To better align with the global data distribution,
Huang et al. [52] uses the batch-wise mean and standard deviation of features
in each institute to abstractly represent the discrepancy of data, and models
each feature statistic probabilistically via a Gaussian distribution. The clients
then implement feature augmentation to match the global distribution of
cross-instituted averaged mean and standard deviation.

(b) Loss-based methods

Loss-based methods focus on modifying the loss functions to accommodate
for the inherent data heterogeneity among different clients. These methods gen-
erally involve introducing additional regularization terms into the traditional
task loss to guide the training process towards more generalizable solutions
instead of local data distribution. Considering that different layers capture
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varying levels of semantic information, existing techniques generally apply
regularization at feature or logit levels. These methods can be further subdi-
vided into three types: feature representation alignment, feature distribution
alignment, and logit alignment.

e Feature representation alignment: These works apply regularization
terms in loss function that focus on aligning the feature representation,
the output of the model’s feature extractor. For example, FedDAvT [72]
considers the scenario that multiple clients with labeled data (source
domain) assist a server with unlabeled data (target domain), and it
applies the L2-norm between the feature representations of source model.
FEDMBP [39] applies the L2-norm between class-specific feature proto-
types of the local model and the global model. In addition to the L2-norm
loss, both KL loss [68] and contrastive loss [88, 153] are employed to
align feature representations. For example, Yang et al. [153] utilizes
contrastive loss to align the feature representation of data generated by
the current local model with that of the global model, while simulta-
neously distancing it from the feature representation produced by the
previous local model. FedDG [85] focuses on a different aspect instead:
the contrastive loss is applied in order to align feature representations
within the same class while distinguishing different classes, aiming to
enhance boundary prediction in medical image segmentation tasks.

e Feature distribution alignment: Some works try to align client local
feature distribution with global. For example, Gao et al. [40] proposes
a regularization term that aligns feature distribution by the means
and variances from the batch normalization layer of the deep learning
model, as these statistics in BN layers represent the characteristic of
data distribution [77]. FedDAvT [72] applies a regularization term that
utilizes maximum mean discrepancy, which can measure the difference
between two distributions.

e Logit alignment: Instead of the above works that focus on the intermedi-
ate output of network models, some works pay attention to the prediction
of the model. For example, FedAD [42] considers the scenario where the
server holds a publicly available dataset to guide local training. Clients
make predictions with local models using their own local dataset and
the public dataset, respectively, and an L2-norm between the prediction
logits is used as a knowledge distillation loss. Similarly, RFLPV [131]
regulates the logits of the local model to prevent excessive deviation
from the global model, using KL divergence for this purpose.
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(c) Architecture and training-based approaches

Architecture and training-based approaches play an important role in
achieving generalized FL by either architectural design or the development
of training strategies. For example, given that ensemble learning captures a
broader range of patterns in the data than a single model, FedEL [142] extends
this idea into FL by combining a shared feature extractor and a group of
classifiers to perform disease diagnosis. Meanwhile, pre-trained foundation
models [74] and quantum tensor network model [9] have been investigated, and
they show satisfactory performance in addressing data heterogeneity. In terms
of training strategy-based approaches, one common method is adversarial
training with a focus on training a domain-invariant feature extractor. These
approaches align the feature space across different hospitals [59]. In addition,
the sharpness-aware minimization is utilized to simultaneously minimize loss
value and loss sharpness, leading to a more generalized model [55]. Instead
of making an effort on client training, DC-SFL [154] aims to alleviate global
model drift on the server side by performing a one-step gradient descent with a
weight correction loss formed by the L2-norm between the current and previous
global model.

(d) Aggregation method-based approaches

Aggregation method-based approaches aim to enhance the overall model’s
performance by adaptively aggregating local models, taking into account the
data distribution rather than using uniform weights. For example, Yue et al.
[155] employs reinforcement learning (RL) to seek the optimal weights with
the reward defined as the accuracy of the global model on the dataset at the
server side. Inspired by the fact that client-specific models should contribute
more to the global server, FedMAS [31] assigns larger weights to the local
model which exhibits a large class-aware divergence between itself and the
global model. In addition, other criteria, such as the gradient similarity [11],
have been explored to generate a more generalized and robust global model.

8.1.8 Personalized FL

Considering that it is challenging to fit a single model to diverse data distribu-
tions of different clients, personalized FL is proposed as a promising direction
to address the data heterogeneity issue. In contrast to gFL, the primary
objective of pFL is to develop individual models that are tailored to the needs
of each client with contributions from other clients. The objective of pFL can
be expressed as:

K
min {F = % > Fr(0k)} (14)
{61,...0k} k=1

where 0j, represents the local model parameters of client k.
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Based on our proposed taxonomy, most pFL approaches are broadly cate-
gorized into three types: architecture-based, training-based and aggregation
method-based. Even though the methods used to implement pFL may appear
similar to those employ in gFL from the perspective of group names, they are
guided by different principles due to their distinct ultimate objectives. Hence,
these methods are different from those designed for gFL.

(a) Architecture-based approaches Architecture-based approaches aim
to achieve personalization by decoupling the network into shared and private
components. This allows the model to capture both global patterns and local
nuances. For example, FLOP [150] decouples the classification network used
for disease diagnosis into two parts: a feature extractor and a classifier. Clients
share the feature extractor for federated averaging while keeping the classifier
private. A similar decoupling idea is used by Wang et al. [130], but with a
key difference: FLOP aggregates the shared part using averaging, whereas
the latter uses uncertainty information for aggregation. UniFed [56] extends
the idea of FedBN [75] into the medical image analysis, which addresses data
heterogeneity by using batch normalization statistics calculated from each
local client rather than the averaged version from all clients.

This concept is not limited to classification tasks. It is also utilized in
medical image denoising [162], synthesis[24], reconstruction [91] and segmen-
tation [128]. The key point is how to design shared-private components. To
be specific, FedFTN [162] is proposed for multi-institutional low-count PET
denoising. In this framework, all clients share a common denoising network,
while each client designs and trains a feature transformation network using
their local data. This approach modulates the feature outputs of the denoising
network, enabling personalized denoising tailored to each institute’s specific
needs. Similarly, pFLSynth [24] designs a personalized block to modulate
the statistics of generated feature maps to be institute-specific, inserting it
after each convolutional block. Considering that each local client may focus
on features in difference channels for magnetic image reconstruction, ACM-
FedMRI [91] includes not only a shared image reconstruction network but also
a client-specific hypernetwork. This hypernetwork is designed to guide channel
selection, optimizing the features extracted for the reconstruction task. FedDP
[128] applies a transformer for the medical image segmentation task, where
they make queries personalized while keys are shared. The idea is based on the
insight that query embeddings contain pixels’ own feature information in local
images, while key embeddings are related to support information from other
pixels, so that such personalization design can help clients learn long-range
relationships across data from all clients.

(b) Training-based approaches Training-based approaches focus on de-
signing the learning process to develop personalized models that incorporate
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knowledge from various client while preserving local expertise. For example,
Per-FedAvg [33] is introduced in the PPPML-HMI [164] FL framework to
handle data heterogeneity. Per-FedAvg is built on the top of model agnostic
meta-learning (MAML) formulation to learn a good initial global model, which
is updated with a few steps of gradient descent for stronger personalization.
Several works focus on achieving personalization by preventing local model
updating from forgetting previous local-specific knowledge after receiving a
global model from the server. For example, IOP-FL [58] is proposed to fuse
gradients from local model and global model when training locally on clients
instead of solely using one of them. Chen et al. [20] designs a multi-step knowl-
edge transfer strategy for local training in order to transfer global knowledge
smoothly to clients, with the help of a deputy model receiving global model
parameters served as a teacher to the local model.

(c) Aggregation method-based approaches Aggregation method-based
approaches for achieving pFL focus on refining how data from multiple clients is
integrated to create a global model that also maintains a level of personalization
for each participant. These methods typically modify the standard aggregation
process used in FedAvg to better address the unique data characteristics and
needs of each client. For instance, FedAGA [41] and GRACE [157] capture
inter-client relationships by evaluating similarities based on gradients of client
models. It then generates personalized models for each client by aggregating all
local models in a weighted manner, with weights proportional to the similarity
values. Similarly, similarity information is used in FedLPPA [79] and pFedNet
[159] for local model aggregation. This similarity-based weighting helps to
mitigate the negative influence of models from other clients that are trained
on data distributions significantly different from that of the target client. By
doing so, it effectively supports the generation of personalized global models
that are better tailored to each local client’s specific data characteristics.
From a frequency domain perspective, [20] uses a low-pass filter to filter
out high-frequency components of model parameters when aggregating client
models, and these high-frequency components are maintained locally when
clients receive global models from the server. This strategy is based on the
insight that low-frequency components of parameters are the basis for the
network capability, while high-frequency components may contain client-specific
knowledge. In addition, instead of manually designing aggregation weights
as above, some works aim to assign a learnable weight set for each client to
further enhance flexibility. For example, APPLE [90] maintains a learnable
weight vector on each client. During local training, each client applies an
aggregated model whose parameters are weighted sum from all client models
so that the weights can be optimized by gradient descent. Different from
previous approaches, HPFL [81] digs into a more detailed level, which applies a
hyper-network to learn aggregation weights per layer from other client models.
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8.1.4 Summary

We summarize the gFL and pFL approaches in Table 4. The setup and
configurations for these approaches are shown in Figure 3. It distinguishes
among five main types of approaches: Data-based, Loss-based, Architecture-
based, Training-based, and Aggregation method-based, assessing their presence
in both gFL and pFL, alongside their respective advantages and disadvantages.

Table 4: Comparisons of representative approaches in generalized FL and personalized FL.

Present | Present .
Approach Type in gFL | in pFL Advantages Disadvantages
Easy to Increased demand
Data-based [17, 139, 106, 16, 53, , ) lr]g?vlzrslir;t; ff;ztu"rriie
117, 149, 15, 85, 168, 5, 52| enhancement; Possibility of
Bias reduction privacy leakage
Easy integration
Loss-based (72, 39, 68, 88, 153, 85, v ) with existing Risk of over-
40, 77, 42, 131] training regularization
procedures
Fast adaption to . .
Architecture-based v - the downstream Potential high
[142, 74, 9, 59] (for gFL); tasks development costs
[150, 130, 56, 162, 24, 91, 128] (for Nood to determine
pFL) B v Privacy the optimal
enhancement privatization
strategy
Training-based [55, 154] (for gFL); v v gﬁiﬁﬁg}l:aggﬁio Increased training
[164, 58, 20] (for pFL) P cost
needs
Aggregation method-based [155, 31, Reduced burden Nccer?t;:ij?f)lrgn
11] (for gFL); [41, 157, 79, 159, 20, v v L ke ;
at the client side calculating
90, 81] (for pFL) .
weights

Data-based approaches are mainly employed in gFL. They aim to improve

the generalization ability of local models by enhancing the diversity of the
input data or features and are straightforward to implement. However, due to
the increased volume of data, these methods demand more storage resources.
In addition, clients may need to share information about local data, leading to
privacy leakage.

Similar to data-based approaches, loss-based approaches are mainly used in
gFL. These methods focus on regularizing the output of local and global models
at the feature or logit levels, aiming to prevent the local model from deviating
significantly from the global model, therefore improving the convergence rate
of the global model. They are noted for easy integration with existing training
procedures. However, there is a risk of over-regularization, which can lead to
a neglect of local data in the learning process.
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Figure 3: Setup and configurations for five types of generalized (gFL) and personalized
FL (pFL) approaches. (a)Data-based approaches in gFL: Utilizes augmented input data
and features, represented by circles and z’, respectively. (b)Loss-based approaches in
gFL: Implements regularization (denoted as lrcgy) at the feature z or logit p levels. (c-
1)Architecture-based approaches in gFL: Utilizes foundation models with increased parameter
counts, represented as larger trapezoids and rectangles. (c-2)Architecture-based approaches
in pFL: Features a design with shared-private layers, differing from (c-1) by having private
task head parameters, symbolized by locked locks. (d)Training-based approaches in both
gFL and pFL: Designs auxiliary tasks tailored to the specific needs of gFL. and pFL, denoted
as lo. (e)Aggregation method-based approaches in both gFL and pFL. Employs diverse
aggregation criteria designed at the server side to optimize learning outcomes.

Architecture-based approaches are utilized in both gFL and pFL, although
they adopt different strategies for the two objectives. To be specific, in gFL,
these approaches mainly rely on foundation models, which possess numerous
parameters and are pre-trained using large volumes of data. While these
models provide generalizability and can quickly adapt to downstream tasks,
they necessitate greater computational resources and memory capacity from
the clients for training. In contrast, pFL employs a shared-private layers design
to achieve personalization. This design enhances privacy protection, as only a
portion of the parameters are shared. However, it also presents challenges in
determining the optimal privatization strategy.

Training-based approaches achieve generalization and personalization
through the design of auxiliary tasks tailored to the specific requirements
of gFL and pFL. In gFL, for example, an auxiliary task such as adversarial
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training is employed to develop a domain-invariant feature extractor, enhancing
the model’s ability to generalize across diverse data domains. In contrast, in
pFL, the focus shifts to meta-learning as the auxiliary task, which facilitates
fast personalization to individual client needs. These training-based approaches
are highly valued for their ability to be customized to specific client require-
ments. However, they inherently involve additional training costs, reflecting
the complexity and resource-intensive nature of their implementation.

Lastly, aggregation method-based approaches are popular in both gFL and
pFL, with different criteria tailored for each. Generally, in gFL, the criteria
aim to enhance the overall model’s performance. Conversely, in pFL, the
focus is on generating personalized models for each client by evaluating the
similarities between the client and others, thereby ensuring that each model
is finely tuned to individual needs while absorbing knowledge from others.
Since aggregation method-based approaches are executed server-side, it can
reduce the computational burden on the client side. However, the success of
these approaches greatly relies on the effectiveness of the designed criteria for
calculating weights, which ultimately determines task performance.

Overall, each approach offers unique benefits suitable for specific contexts
within federated learning frameworks but also comes with inherent challenges
that must be carefully managed.

3.2 Low Label Quality

Low label quality is another dominant challenge when applying FL to medical
imaging tasks. In the medical FL context, low label quality mostly refers
to imperfect labeling in medical datasets. Such problems are not specific to
FL scenarios, as they can occur in many kinds of deep learning tasks, but
they bring specific challenges when applied to FL. In this subsection, we will
summarize common types of low label quality challenges and demonstrate
existing solutions to solve them according to our literature study.

3.2.1 Class Imbalance

e Problem description: Class imbalance, also referred to as long-tailed data
distribution, presents a significant challenge in medical image classifica-
tion tasks due to the scarcity of certain conditions or abnormalities. This
imbalance can significantly compromise a model’s ability to accurately
detect these rare conditions, as deep learning algorithms tend to favor
the majority class, overlooking the minority classes.

e Solutions: To address this issue, existing solutions have been developed
from different aspects. For example, DSIFL [139] employs SMOTE to
generate synthetic data of the minority class through linear interpolation
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among instances within the minority class to enhance representation. At
the feature level, Fed AWA [155] fuses the features of majority classes
and uses the fused features as well as the original features of the mi-
nority classes as the classifier input for a class balance. Furthermore,
several solutions are proposed at the loss level. For example, FedAR
[92] introduces a class-balanced cross-entropy loss where the examples
are re-weighted according to the inverse of the effective number of sam-
ples per class. FCA [135] modifies the standard cross entropy loss by
adding per-class margins, determined by class frequency, into the loss
calculation to prioritize minority classes. Extending this concept, FedIIC
[141] also adapts the cross entropy loss by considering not only class
frequency but also the difficulties associated with each class. From the
perspective of model aggregation, Abbas et al. [2] address class imbalance
by incorporating the class imbalance ratio into the aggregation of local
models.

3.2.2  Label Deficiency

Label deficiency means that not all samples in the dataset are equipped with
complete and authentic labels. Specifically, the labels for some data samples
might be missing or noisy. Based on our literature study, there are mainly
four types of label deficiency scenarios in FL-based medical imaging research:
(a) label deficiency within clients; (b) label deficiency across clients; (c¢) label
deficiency in multi-label tasks; and (d) label deficiency in intensity.

(a) Label deficiency within client

e Problem description: The dataset on each client has labeled and unla-

beled samples, and labeled samples are usually much fewer than unlabeled
ones.

Solutions: The common practice in existing works is to conduct self-
supervised learning on all data samples, and then fine-tune on labeled
samples. Contrastive learning is a state-of-the-art self-supervised learning
method that is widely used in FL-based medical imaging tasks. Generally,
contrastive learning aims to enforce the image encoder to learn to identify
positive samples of an image while distinguishing its negative samples.
In practice, positive samples are usually generated by augmenting the
original image, while negative samples are other images, and the insight
of contrastive learning is that a robust deep learning encoder should have
the capability to generate augmentation-independent representations to
one image. Given that MoCo, the commonly-used contrastive learning
method employs a memory bank that allows for a greater number of
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negative samples without increasing the batch size, several approaches
[30, 144, 143] integrate it into FL to make full use of unlabeled data.
MoCo first performs self-supervised learning with InfoNCE loss [102],
then fine tunes on labeled samples. Additionally, when doing model
aggregation on the server, FedMoco [30] assigns more weight to the client
model that has larger representational similarity [69] with respect to
previous communication round based on the insight that such model has
learned more meaningful representations.

(b) Label deficiency across clients

e Problem Description: There are two types of clients: one has fully labeled
datasets, while another has no labels. The labels of the labeled clients
are usually assumed to be fully trustworthy.

e Solutions: The core challenge in such a scenario is to transfer the
knowledge obtained from labeled clients to unlabeled clients. Most
existing works apply semi-supervised learning techniques, using the
global model to generate pseudo labels for unlabeled clients [99, 71,
112, 127, 105, 138, 152]. For example, Fat [99] feeds an augmented
sample generated by mixup [156] from two unlabeled data samples to
the local model, which is initialized by global model aggregated from
labeled clients at each communication round, to get a prediction, and
uses the pseudo label which is the mixup of the outputs of a momentum
updated auxiliary model from these two samples to supervise the local
model. To denoise pseudo labels generated by the global model which
is aggregated from labeled clients, Qiu et al. [105] employ Monte Carlo
Dropout [38] and use these refined pseudo labels to supervise the training
on unlabeled clients. S2FA [152] considers a special scenario where all
clients are labeled while the server has an unlabeled dataset. To enhance
the quality of pseudo labels, the server picks out the prediction from
local models with the most votes. The constructed data-pseudo label
pair is used to train the server-side model, contributing to the global
model aggregation.

In addition, it is unfair to treat all clients solely according to the number
of samples on the client as FedAvg when aggregating model parameters.
In view of this, Saha et al. [112] assign larger weights to the clients
whose model parameters are closer to that of the averaged global model
parameter, and Wang et al. [127] evaluate the performance on the
validation set, which is used for weights calculation. Considering that
labeled data can provide meaningful task-specific information even if
it has a smaller number of samples compared to unlabeled data, many
works propose customized weighting strategies, where unlabeled clients
are often assigned with lower weights [105, 138, 152].
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Considering the challenges of learning class-specific discriminative knowl-
edge from pseudo labels, some works [86, 138] leverage class-specific
features in the form of the average feature maps from all samples within
a class as assistive knowledge to aid in the model training on the un-
labeled clients. To be specific, FedIRM [86] leverages client-invariant
disease class relationship knowledge denoted by class-specific averaged
feature representations at each client, and unlabeled clients will align
its local disease knowledge with global knowledge from labeled clients.
FedSemiSeg [138] utilizes class (foreground or background) prototype,
which is the average feature map obtained from the local model with
client images, to construct a contrastive loss as a regularization term.

(c) Label deficiency in multi-label tasks

e Problem description: Multi-label classification (MLC) is a special scenario

in deep learning classification tasks. Instead of the common situation
that each data sample belongs to one class, which uses an one-hot vector
to denote classification labels, samples in MLC can belong to multiple
classes so that the label for such samples is a vector containing multiple
1’s. Label deficiency in MLC usually considers such a scenario where
each data sample is labeled with partial classes, and the labels for other
classes are missing, while the labeled classes vary for different samples.
In FL-based medical imaging research, existing works generally consider
the following setting: the dataset on each client has the same label space,
but different clients have different label spaces. Federated learning is
prone to getting stuck with local overfitting in such a setting.

Solutions: To tackle this issue, Gao et al. [40] apply a weak label form
[137] to unify multi-dimensional labels. To be specific, for all unlabeled
classes, assign an equal value that is added to 1 as the label. The
authors propose an unbiased loss function that makes the gradient of
more probable unlabeled classes larger, avoiding forgetting the knowledge
for unlabeled classes from the global model. They further introduce a
regularization term calculated by the means and variances from the BN
layer, in order to align feature statistics. Dong et al. [29] tackle this
issue from the perspective of optimization and model aggregation. To
be specific, the authors form a bi-level optimization problem where the
classifier is optimized in inner optimization and the feature extractor
in outer optimization, which can mitigate overfitting to local partially
labeled data. For model aggregation, feature extractors are weighted by
the number of samples, while classifiers are weighted by the number of
samples per labeled class.
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(d) Label deficiency in intensity

e Problem description: Such challenge refers to weakly-supervised learning,
which usually occurs in medical image segmentation tasks. Labels are
categorized into different levels of intensity: pixel (foreground areas
labeled per pixel), bounding box (foreground areas labeled by bounding
boxes), image (a general label for the whole image), and unlabeled.
These label levels, except pixel level, are named weak labels, which can
introduce noises when supervising segmentation learning tasks.

e Solutions: Solutions to address this challenge can be broadly divided into
two groups: aggregation-based and pseudo label-based. Aggregation-
based methods assign adaptive weights to clients by evaluating the
quality of each client based on one specific criteria, aiming to diminish
the adverse impact of clients with low-quality data. For example, FedAR
[92] assesses the quality of each client based on their model performance
on the validation set. Similarly, QA-SplitFed [62] evaluates client quality
based on the upper bound of a 95% confidence interval for the mean
loss value, with the aggregation weight being inversely proportional to
this value. FedA®I [140] designs a strategy to estimate the noise level in
each client and adjust aggregation weights accordingly. To be specific,
this method defines an inner and outer region, starting from the contour
of the noisy segmentation mask to a distance, and assesses learning
difficulty by dividing the cross-entropy loss between the two regions. The
estimated noise is directly proportional to the difficulties calculated for
the two regions. Moreover, based on the insight that weakly labeled
clients have lower loss since learning from pseudo labels is easier, FedMix
[136] proposed a model aggregation strategy that clients with lower loss
initially get lower weights, which gradually increase as training goes.
On the other hand, instead of assigning adaptive weights according to
loss, FedDM [167] tries to make modifications on shared gradients in
order to alleviate gradient conflict caused by noisy labels that vary on
clients when aggregating client models on the server. They perform
orthogonal decomposition on each client gradient and the parallel and
opposite components are ignored during aggregation.

Pseudo-label-based methods stand out for their universality and flexibil-
ity, utilizing model predictions to generate pseudo-labels. To optimize
pseudo-label generation, FedLPPA [79] designs an encoder-dual decoder
architecture for medical image segmentation. One decoder is global, ag-
gregating information from clients in an average manner, and the other is
personalized, which incorporates useful information from similar clients.
The pseudo label is the combination of outputs from both decoders. Bai
et al. [8] design a strategy to identify noisy labels by comparing the pre-
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diction distribution of the global model and the original label, therefore
correcting noisy labels for segmentation model training. FedMix [136]
treats weak labels as refining factors for pseudo labels generated by a
global model and applies cross-pseudo supervision [18], which trains two
models that use their refined pseudo labels to co-supervise each other
on weakly labeled clients. Meanwhile, only reliable samples are used for
training, with reliability evaluated based on the prediction consistency
of the pseudo labels. Instead of regarding weak labels as assistant knowl-
edge, FedDM [167] considers weak labels as noisy ground-truth labels.
It leverages the prediction consistency and inconsistency of models sent
from other clients to help each weakly labeled client to pick out clean
labels and filter out noise labels. For the multi-organ segmentation
tasks, the datasets are generally partially labeled. In view of this, the
works [66, 55] propose a simple yet effective strategy using a pretrained
organ-specific segmentation model to generate pseudo labels for local
training. To overcome the impact of label noise on local training, FedGP
[19] constructs the purified graph with reliable samples with small loss
values and gradually adds more purified samples selected with the output
confidence and prediction consensus, and then uses it to generate reliable
pseudo labels using topological knowledge.

3.2.8  Summary

In this subsection, we explore the challenges associated with low label quality
encountered in the application of FL in MEDIA. Each challenge is associated
with specific assumptions, tasks, objectives, and tailored solutions, which are
summarized in Table 5.

Class imbalance is a challenge not only in FL paradigm but also in central-
ized learning. This issue often arises due to the scarcity of certain conditions
or abnormalities, leading to some diseases being underrepresented. To improve
the model’s ability to learn from these underrepresented classes, techniques
such as synthetic data generation and resampling are commonly employed.
In addition, many studies focus on modifying the cross-entropy loss, the
commonly-used loss in classification tasks, to ensure fair representation of all
classes.

Considering that data annotation is both time-consuming and labor-
intensive, the challenge Label deficiency within client assumes that each client
possesses a small amount of labeled data alongside a substantial volume of
unlabeled data. To maximize the utility of unlabeled data, contrastive learning,
a self-supervised learning method, is employed to learn good feature repre-
sentations. The model is further fine-tuned on labeled data to enhance its
performance on specific tasks.
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The challenge Label deficiency across clients is FL-specific in the MEDIA
sector. It considers scenarios where some clients have labeled data while others
do not. To facilitate the transfer of knowledge from labeled to unlabeled
clients, pseudo labeling, a simple but effective technique for semi-supervised
learning, is employed. To enhance the quality of these pseudo labels, the
above-mentioned proposed FL frameworks contribute to refining the model
that generates these labels, ensuring their accuracy and reliability.

The challenge Label deficiency in multi-label tasks involves tackling incom-
plete annotations for data expected to have multiple labels. To accurately
predict the full set of relevant labels for each instance, strategies include
designing specialized loss functions and modifying aggregation weights to cater
to the complex nature of multi-label data.

Compared to classification tasks, obtaining exact labels for segmentation
tasks is more challenging. Annotations can vary across different levels, such
as pixel-level, bounding box-level, or even image-level, with all levels except
pixel-level considered noisy. To mitigate the adverse effects of this challenge
Label deficiency in intensity, two promising strategies are proposed. The first
strategy aims to diminish the negative impact of noisy clients by assigning
them lower weights. The second involves correcting noisy labels through the
use of pseudo-labeling, thereby improving label accuracy.

Overall, Table 5 highlights the tailored approaches necessary to address
various data quality challenges in FL, emphasizing the need for specialized
strategies to ensure robust model training and generalization across diverse
and unevenly distributed datasets.

3.3 Attack and Defense
3.3.1 Inference attack

e Attack description: An inference attack in FL is a type of security where
an adversary seeks to infer sensitive information about the training
data used by participants without directly accessing it. Common types
include model inversion attacks and membership inference attacks. To be
specific, a model inversion attack aims to reconstruct participant-specific
data, while a membership inference attack is to determine whether a
particular data record was used in the training dataset.

e Defense: Existing solutions employ cryptographic protocols to defend
against inference attacks. The most commonly used cryptographic
techniques are Differential Privacy (DP) and Homomorphic Encryption
(HE):

— Differential Privacy is a data sharing framework that aims to protect
individual private information when sharing statistical information
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Table 5: Summary of challenges related to low label quality and corresponding solutions.

Challenge Assumption Task Objectives Solutions
Synthetic data
oot | gereon (1)
Labeled data with model’s ability to pang | ’
. . . Loss function
Class imbalance uneven class classification learn from . .
AR modification [92,
distribution underrepresented .
135, 141];
classes .
Aggregation
weights design [2]
Label deficienc Each client has classification: To make full use Contrastive
within client Y labeled and coment ti0n7 of the unlabeled | learning [30, 144,
¢ unlabeled data segmernta data 143]
Pseudo labeling
[99, 71, 112, 127,
. Labeled clients . To transfer 105, 138, 152];
Label deficiency classification; knowledge from .
. and unlabeled . ? Class-specific
across clients . segmentation labeled clients to
clients R knowledge
unlabeled clients .
alignment [86,
138]
Incomplete To accuratel Loss function
Label deficiency annotations for . Y design [40];
. . . . predict the full set .
in multi-label data expected to classification Aggregation
. of relevant labels ) .
tasks have multiple weights design
for each data
labels [29]
To reduce Aggregation
Noisy labels negative effect | weights design [92,
Label deficiency caused by ccomentation caused by noisy | 62, 140, 136, 167];
in intensity annotations at segmentatio clients OR To Pseudo labeling
different levels correct noisy [79, 8, 136, 18,
labels 167, 66, 55, 19]

of datasets. By applying DP, when one individual sample within
the dataset is modified, the shared statistical information should
not generate such change from which attackers are able to identify
private information about this individual sample. In the medical
FL domain, the common practice to realize DP is to add Gaussian
noise to gradients [101, 3, 63, 118, 110] and apply DP-SGD algo-
rithm [1]. To be specific, Kalra et al. [63] and Riedel et al. [110]
discuss the problem that DP directly applied to neural networks
containing batch normalization (BN) layers can violate the privacy
requirements of DP-SGD, as it makes gradients depend on batch
samples. In view of this, they applied specially designed layers to
replace BN layers.

Homomorphic Encryption [126] is a cryptographic protocol that
allows direct operations on encrypted data without requiring de-
cryption first. It reduces computational demands and time needed
for operations while safeguarding data privacy. It is suitable to
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38.3.2

apply HE in FL scenarios, as it can enable information aggregation
to be performed correctly in a privacy-preserving manner. For ex-
ample, DC-SFL [154] applied a widely-used HE framework Paillier
cryptosystem, which has additive homomorphism, to encrypt model
parameters before aggregating on the server.

In addition to the commonly-used cryptographic protocols, the certifi-
cateless ring signature [132] is utilized to obscure the source of parameter
updates to resist source inference attack, an extension of membership in-
ference attack. In addition, RFLPV [131] utilizes the masking technique
to obscure the original gradient, hereby enhancing privacy protection
against inference attacks. Based on Split Learning, p-FeSTA [103] in-
troduces a feature-space permutation strategy that randomly shuffles
client intermediate feature patches before sending them to the server
in order to avoid the risk of reverting original images from these in-
termediate features. Instead of making effort to encrypt or obscure
sensitive information during federated communication, some works aim
to share less sensitive or non-sensitive information rather than local data
samples, model weights or gradients. For example, to address the data
leakage issue, FLOP [150] implements a strategy where only a part of
the model, specifically the feature extractor of the task model, is shared
across clients to achieve collaboration. FedAD [42] proposes a knowledge
distillation-based FL framework where the server holds an unlabeled
public dataset and clients have labeled private datasets. The clients first
train locally based on their own datasets to initialize local models, and
then make predictions with the unlabeled public samples. The prediction
logits are then sent to the server, serving as teachers to help the server
train a model that can perform well on its unlabeled dataset.

Poisoning attack

Attack description: A poisoning attack is a case where an attacker
manipulates data or model updates submitted by one or more compro-
mised clients to corrupt the global model, resulting in poor performance.
Considering that the state-of-the-art aggregation methods rely on the
distance between malicious and benign client model parameters to defend
against poisoning attacks, Joshi et al. [61] introduce an attack strategy
that aims to maximize the objective loss function while ensuring that
the Euclidean distance between the malicious and benign parameters is
kept marginal.

Defense: The current defense strategies mainly design robust aggregation
techniques to mitigate the influence of potentially malicious updates.
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These techniques heavily rely on the Euclidean and cosine distances be-
tween parameters from different clients to differentiate between malicious
and benign clients [61]. Based on this assessment, the server assigns
lower weights to parameters from identified malicious clients, effectively
reducing their influence on the model.

Backdoor attack

Attack Description: A backdoor attack is a sophisticated form of sab-
otage in FL where one or more compromised clients embed a trigger
in the training data in order to activate altered model behaviors under
specific conditions while maintaining normal performance on standard
tasks. Since the attacked global model appears legitimate under routine
evaluation, it makes the attack stealthy and challenging to detect.

Defense: Similar to the defenses against poisoning attacks, robust aggre-
gation techniques are also utilized to protect against backdoor attacks.
For instance, FedDetect [60] necessitates that each client reports the loss
of task model. Utilizing this information, the server conducts outlier
detection to identify malicious clients. The aggregation weights are then
adjusted to be inversely proportional to the number of red flags each
client receives.

Byzantine attack

Attack description: Byzantine attack refers to a situation where some
participants or the server act in a malicious or unreliable manner to
disrupt the overall training of the task model. The server, in this case,
acts as a Byzantine server, deliberately manipulating the aggregation
process or the results it sends back to different participants.

Defense: Considering the potential risks posed by a malicious server
that could alter model parameters and falsify the aggregation, Moulahi
et al. [97] employ blockchain technology to secure model parameters
against the byzantine attack at the server side. To be specific, Smart
Contract (SC), instead of the server, is responsible for model aggregation
and distribution. In addition, blockchain technology is employed by
Singh et al. [119] and Jatain et al. [54] to create a more tractable,
immutable, and transparent FL environment. These implementations
highlight blockchain’s role in enhancing the integrity and reliability of
FL systems.
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8.8.5 Summary

In this subsection, we focus on the attacks and corresponding defenses in FL-
based medical image analysis. Figure 4 provides an overview of different types
of attacks, visually depicting the objectives of each attack and identifying
the parties involved in initiating these attacks. To defend against these
attacks, cryptographic protocols and technologies such as blockchain have been
integrated into FL. In addition, some works have introduced strategies from
the perspective of FL training pipeline, such as designing robust aggregation
methods. These defenses are summarized in Figure 5. Despite advancements
in defensive strategies, research on defense mechanisms remains relatively
underdeveloped compared to the extensive solutions proposed for addressing
other challenges such as data heterogeneity and low label quality. With AT
technologies becoming increasingly advanced, their potential for conducting
attacks pose serious security threats. Therefore, effective and robust defense
mechanisms are essential to ensure FL’s security and privacy in real-world
applications.
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Figure 4: Overview of attacks: (a-1) Inference Attack-Model Inversion Attack: An attacker
utilizes screenshots of FL model parameters to reconstruct local data. (a-2) Inference Attack-
Member Inference Attack: An attacker uses FL model parameters to identify personal medical
data within local datasets. (b-1) Poisoning Attack-Data Poisoning Attack: An attacker
introduces tainted and infected data during the training process. (b-2) Poisoning Attack-
Model Poisoning Attack: An attacker manipulates local model gradients to compromise
the training process. (c): Backdoor Attack: An attacker embeds a trigger in the training
data to activate altered model behaviors under specific conditions while maintaining normal
performance on standard tasks. For instance, an attacker adds a sticker to all training data
labeled nevus. The resulting global model will classify any data featuring this sticker as
belonging to the nevus category. (d): Byzantine Attack: The attacker acts in a malicious or
unreliable manner, aiming to disrupt the overall training process.
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3.4 Communication Burden

The communication burden in FL is a significant challenge that arises from the
need to frequently exchange model updates between numerous participating
clients and a central server. This challenge is particularly pronounced in
medical image analysis, where the commonly used task models, such as those
based on Transformers, tend to have a large number of parameters. This is a
consequence of the complexity and high dimensionality inherent in medical
image data. Such extensive models significantly exacerbate the communication
overhead, making the reduction of this burden even more crucial in the field
of MEDIA. Existing works devoted to alleviating the communication burden
associated with this process can be roughly divided into the following three
categories: parameter reduction, alternative information transmission and
efficient client participation.

8.4.1 Parameter reduction

These approaches aim to reduce the volume of gradients or model parameters
that need to be transmitted between clients and the server. Techniques such
as clipping [17] and gradient compression [159] are utilized to reduce the size
of gradients, thereby saving bandwidth and accelerating the communication
process. Instead of transmitting all parameters, some studies opt to send a
subset of the task model’s parameters. For example, FedFMS [87] employs
SAM (Segment Anything Model) with adapters for medical image segmentation.
It fine-tunes the adapter parameters and then transmits these parameters to
the server, significantly reducing the volume of data sent. Shen et al. [117]
and Dalmaz et al. [24] design an adversarial framework comprising a generator
and discriminator to perform staining normalization and MRI synthesis tasks,
respectively. They apply the same idea that clients collaboratively train only
the generator while training the discriminator locally, optimizing the use of
network resources. For efficient medical image analysis, Mu et al. [98] apply
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causal learning that can determine the causal relationships of model parameters,
and only those having strong causal relationships are used for aggregation,
which is applicable in both classification and segmentation tasks. FedPR
[36] reduces the number of shareable parameters by applying a pre-trained
model backbone on clients before the federated communication phase, and
only the parameters of classification heads that need to be fine-tuned will
be transmitted. In terms of split learning, He et al. [47] design a model
partitioning algorithm based on Lyapunov optimization that can dynamically
decide the model split point according to real-time transmission rate and
long-term energy consumption.

3.4.2 Alternative information transmission

Instead of sharing model parameters, this direction focuses on transmitting
alternative information, which encapsulates critical model insights in a more
compact form. For example, federated knowledge distillation [166] transmits
logits to achieve knowledge sharing. To be specific, it operates under the
assumption that there is a publicly accessible dataset that all clients can use.
Each client submits the prediction logits from this dataset to the server, which
then aggregates these logits to form a teacher logit. This teacher logit is
used to guide the local model training, ensuring efficient and effective learn-
ing. Moreover, to tackle the challenges of missing modalities in multi-modal
MRI reconstruction, Fed-PMG [147] introduces a pseudo-modality generation
mechanism. This method involves sharing the distribution information of
the amplitude spectrum in the frequency space among clients. To minimize
communication costs typically associated with transmitting the original am-
plitude spectrum of all images, a clustering approach is used to project the
set of amplitude spectra into finite cluster centroids, which are then shared
among the clients. A similar idea is also applied in FedSemiSeg [138], which
utilizes clustered class-specific prototypes to construct a contrastive loss as a
regularization term.

3.4.8 Efficient client participation

This direction aims to optimize which clients participate and how often they
communicate. For example, FedACS [43] proposes a client selection strategy,
which selects a growing number of clients during FL rounds, where the priority
of clients is based on the training loss. It is based on the insight that higher
loss means higher data difficulty, further indicating more latent information
that can make more contribution to the global model. FedISCA [64] discusses
the ‘One-Shot Federated Learning’, where clients contribute to the global
model with a single update, greatly minimizing the communication overhead.
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8.4.4  Summary

In this subsection, we examine the critical need for strategies to reduce the
communication burden in the application of FL. in MEDIA. We provide a
thorough review of existing approaches aimed at addressing this challenge, as
summarized in Table 6. In addition, we analyze and compare the main idea,
advantages, and disadvantages of each approach, offering insights into their
practical applications and potential limitations.

Table 6: Comparisons of representative approaches for reducing the communication burden.

Approach Main Idea Advantages Disadvantages
Parameter reduction Reduce the size of Potential information
[17, 159, 87, 117, 24, transmitted Faster convergence loss

98, 36, 47| parameters

Alternative

information . . . . Potential information

transmission [166, 147, Transmit derived data Privacy protection loss
138]
Reduce the number of
Efficient client participating clients . . .
participation [43, 64] and communication Scalability Risk of bias
rounds

The approach Parameter reduction focuses on reducing the size of pa-
rameters that need to be transmitted. The core concept is to streamline
communication by either compressing the model or selectively transmitting
only the most crucial parameters, thereby facilitating faster convergence. How-
ever, it risks potential loss of important information, which might lead to
suboptimal model performance.

Instead of sending raw model parameters like the typical FL framework as
FedAvg, alternative information transmission involves transmitting derived
data such as logits or features extracted from the model. This method enhances
privacy protection by reducing the granularity of the data shared between
the server and clients, preventing potential leakage of sensitive information.
However, similar to parameter reduction, it also faces the challenge of potential
information loss, as the derived data might not capture all the nuances of the
original input.

The last approach Efficient client participation aims to scale the system
more effectively by reducing the number of communication rounds or selectively
participating clients. While this method greatly enhances scalability and
reduces resource consumption, it introduces the risk of bias. The selected
clients might not represent the overall data distribution, potentially leading to
a biased global model.

Overall, each of these strategies offers a viable solution to the challenge of
communication burden in FL environments. However, they must be chosen and
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implemented carefully, considering the specific requirements and constraints of
the deployment context to effectively balance performance with communication
efficiency.

3.5 Underexplored challenges
3.5.1 Fairness

Fairness in FL is crucial for ensuring equitable treatment for all clients involved
in the collaborative training process. In the context of FL, there are two
commonly studied fairness in medical image analysis, including performance
fairness and collaboration fairness, each with targeted solutions to uphold
specific aspects of fairness.

e Performance fairness ensures that the federated learning model performs
uniformly well across all participating nodes and that model updates do
not disproportionately benefit some nodes while disadvantaging others.
To achieve performance fairness, Prop-FFL [51] proposes a novel opti-
mization objective that includes two terms: one focused on reducing the
training loss and the other focused on promoting fairness. The fairness
term specifically aims to adjust the model parameters to ensure that all
hospitals have a similar training loss, thereby creating a more equitable
learning environment across different institutions.

e Collaboration fairness ensures that each client’s contribution to the
federated model is recognized and value appropriately. Contributions
can be in the form of data volume, data quality or data diversity. The
most important key to achieving collaboration fairness is to estimate
client contribution. Shapley value (SV) [115], a classic approach to
quantify the contribution of participants in cooperative game theory,
evaluates the contribution of each client as the difference they make when
added to every possible subset of clients, which is defined as follows,

w)= BHINGEED (o(S Ud) - 0(S)) (15)

where N is the set of all clients and S is a subset of N that does not
include player . |N| is the total number of clients and |S] is the number
of clients in subset S. v(S) is the value of coalition S. Considering that
SV computation is computationally expensive, SaFE [70] proposes an
efficient SV computation technique. To be specific, each client employs
a simple logistic regression model as a proxy to approximate the original
model. Instead of relying on Monte Carlo techniques, which are typically
used for such computations, SaFE utilizes an ensembling approach to
estimate SV, enhancing both efficiency and accuracy. Different from
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approaches that use Shapley Values (SV), FedCE [57] estimates client
contribution in both gradient and data spaces. In the gradient space,
FedCE evaluates the differences in gradient direction between one client
and all the other clients. Meanwhile, in the data space, it measures the
prediction error on a client’s data using the global model excluding the
client’s own parameters. A larger difference in gradient directions and a
higher error value indicate a greater contribution from the client.

Model Heterogeneity

Description: In the medical imaging field, the increasing use of foundation
models such as SAM (Segment Anything) [67] reflects a shift towards more
complex architectures that are designed for superior task performance.
These models, characterized by their extensive parameter sets, require
significant computational resources for development. However, some
clinics with limited budgets, struggle to deploy, maintain, and train such
advanced models. This disparity in capabilities necessitates the use of
varied model architectures, leading to model heterogeneity.

Solutions: Due to model heterogeneity, traditional FL. methods, which
rely on exchanging model parameters to facilitate collaborative learning,
are not effectively applicable. The solutions to this issue can be divided
into 2 groups: public data-based and proxy model-based. The public
data-based approaches depend on a publicly accessible dataset to enable
knowledge sharing among clients. For example, in FHFL [16], clients
train their local models using private data and submit the prediction
logits of the public data to the central server. This server is responsible
for aggregating these logits and then broadcasting them back to the
clients. The clients then utilize these aggregated logits as ’teacher logits’
to distill knowledge from other clients to themselves, enhancing their own
models’ learning and performance. Considering that the ensembled logit
provides little insight into the underlying structure knowledge of other
clients, FedAD [42] combines local information at both the logit and
feature-levels to facilitate knowledge transfer. This approach ensures a
more comprehensive exchange of expertise, enhancing the overall learning
process.

Proxy model-based approaches require each client maintaining two mod-
els: a private model and a publicly shared model. The private models
can have heterogeneous architectures, while the shared models have
a uniform architecture. For example, ProxyFL [63] employs a proxy
model to facilitate efficient information exchange while accommodating
model heterogeneity. In addition, it implements deep mutual learning
to train the two models on the client side. Although this method is
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straightforward to implement, it introduces an extra training burden due
to the incorporation of the proxy model.

8.5.8  Multi-Modality

Multi-modality learning is an attractive area in deep learning. The ‘modality’
here indicates a specific type of data or source of information, including
visual images, language text, audio records, etc. Multi-modality learning
aims to effectively combine or fuse different sources of information in order
to acquire a more comprehensive understanding of given data and achieve
better performance on specific tasks that involve different types of source
data. However, research in applying multi-modality learning in medical FL
is limited. Typical multi-modality learning models assign one encoder for
each modality and apply one decoder that fuses the encoded embeddings
from different modalities, which will be used in downstream tasks. Most
existing works simply apply typical multi-modality learning methods in FL
architecture [14, 13, 122, 89, 111]. Few works focus on exploring and solving
multi-modality-specific challenges in medical FL scenario.

Existing works mainly consider such a challenge in multi-modality medical
FL, that different clients hold data of partial and different modalities. To
be specific, assuming that there is a global modality set, each client has a
dataset possessing a subset of modalities, and different clients hold different
subsets. The core challenge is the heterogeneity and domain shift caused by
the missing of modalities on each client when trying to train a federated model
based on the global modality set. Several works pay attention to solving the
challenge in such a setting with MRI data, a representative multi-modality
data source in medical imaging where different modalities focus on different
body elements and can provide complementary diagnosis information. For
example, Dai et al. [23] consider the scenario where the server has a dataset
that has all modalities while the data on clients only has a single and different
modality. Aiming to learn personalized models suitable for each client together
with a global model on the server while dealing with modality heterogeneity,
it assigns one encoder for each modality on both clients and server, which will
participate in parameter aggregation, and the server and each client maintain
a personalized decoder. In order to alleviate heterogeneity caused by missing
modalities, clients utilize an attention mechanism to calibrate local decoded
features with class-specific prototypes extracted from the fusion decoder on a
server that contains information on all modalities. On the other hand, Yan
et al. [148] view the challenge from a different perspective, which leverages
vertical datasets on all clients obtained from the same group of subjects to
alleviate domain shift caused by partial modality. To be specific, each client
possessing partial modalities has a horizontal dataset and a vertical dataset,
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whereas the vertical datasets on different clients have different modalities but
are collected from the same group of subjects. It first decouples modality-
specific and modality-invariant features on each client, and then introduces a
regularization term maximizing the similarity of modality-invariant features of
vertical samples among all clients in order to enhance consistency.
Additionally, as a special case, Borazjani et al. [11] focus on the hetero-
geneity of convergence speed for different modalities. Concentrating on cancer
stage classification tasks with mRNA sequences, histopathological images,
and textual clinical information data, it finds that the convergence speed for
training encoders of different modalities is different, which may hinder the
convergence of global training. It proposes a learning rate coefficient item
based on local training loss to adjust the learning rate for different modalities,
leading to a faster and more fluent training process in federated scheme.

4  Future Directions

4.1 Incorporation of gFL and pFL

As illustrated in the discussion of data heterogeneity challenges, most existing
works focus on either generalized or personalized federated learning settings.
However, in medical areas, both these two scenarios should be attached with
importance when applying FL in practice. For example, medical institutes
participating in FL training may have different computing capabilities and
various aspects of interest in the medical data, resulting in personalized models
that fulfill individual client requirements; it is also important to obtain a model
with enough generalization ability, enabling a model trained by a limited group
of institutes to facilitate medical diagnosis in a broader range of institutes.
Only limited existing works take such a scenario into consideration [145, 58,
157]. A valuable future research direction could be better formalization and
exploration of combining gFL and pFL in medical image analysis.

4.2 Extreme lack of labels scenarios

According to our summary of label deficiency challenges, existing works explor-
ing semi-supervised scenarios are based on either of the following two settings:
label deficiency within the client, where each client has a set of labeled data
samples and more unlabeled samples, and label deficiency across clients, where
some clients have fully labeled datasets while others have no labels. A more
extreme but practical scenario is a combination of these two settings, namely,
only a small subset of clients have a limited number of labeled samples, which
is closer to real-world applications due to the lack of expert labeling resources
in medical institutes. Further exploration in such extreme setting could help
FL better applied in realistic scenarios.
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4.8 Multi-modality FL

As mentioned earlier, multi-modality FL is an attractive research and ap-
plication topic, but existing relative works were limited to simply applying
multi-modality learning in the FL scheme, and few of them dived deeper
into exploring specific challenges in this area. Furthermore, these few works
mainly focus on MRI reconstruction tasks where different MRI modalities
are all vision data. Despite the developing trend of fusing completely diverse
modalities such as vision and language data [133], only one work [11] explored
specific challenges in combining such diverse modalities in medical imaging
FL scenario. Therefore, a promising direction of future research could be
finding more domain-specific challenges and exploring effective solutions in
multi-modality medical imaging FL tasks.

4.4 Ezxplainability

Due to the ‘black-box’ nature of deep learning models, model interpretability
and explainability have been the major concerns in deep learning applications.
Such a challenge is of rather great significance in medical areas, as the reliability
of medical diagnosis can directly affect the health and even life of patients, so
physicians may have a high demand for deep learning-aided diagnosis tools
to produce explainable and trustworthy results. Federated learning scenarios
bring additional challenges in explainability, as institutional heterogeneity may
bring difficulty for the federated model to achieve high interpretability on
specific clients, and the application of privacy-preserving techniques such as
differential privacy can reduce the transparency of the model. According to our
survey, there are currently few works about explainability in medical imaging
FL. Mu et al. [98] tried to introduce a causal reasoning learning technique to
make the model explainable. Siniosoglou et al. [120] and Ambesange et al. [6]
applied visualization techniques in order to interpret the learned knowledge of
the deep learning model. In order to avoid the ‘black-box’ nature of neural
network based deep learning models, Li et al. [78] applied Gradient Boosting
Decision Tree (GPDT) model in FL framework, utilizing the explainability of
decision tree models to achieve interpretability. A future research direction can
be exploring FL-specific challenges in medical image analysis areas, making
FL techniques more practical in real-world medical applications.

4.5 Incorporation with Large Models

Recently, large models have seen rapid development in research and applications.
These novel and powerful models can provide FL. with promising opportunities,
e.g., they have the potential to offer promising solutions to the challenges in
FL research in medical image analysis. Following are three possible directions
in incorporating large models with FL in medical image analysis:
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First, large vision foundation models, such as Segment Anything Model
(SAM) [67], could be attractive to address data heterogeneity challenge of FL in
medical image analysis. These models are pre-trained on massive and diverse
datasets and thus have strong generalization capability, which can capture
visual features with wider range and higher effectiveness. When applied to FL
scenarios, these models can make feature extraction more consistent and robust
across diverse datasets at different clients. Therefore, data heterogeneity across
clients is less concerned, and the model fine-tuned by the federated learning
process could generate more accurate and reliable outcomes.

Another exciting direction is to apply advanced Artificial Intelligence-
Generated Content (AIGC) models to address the data heterogeneity challenge
of FL in medical image analysis [114]. A major direction is to utilize image
generative models to produce high-fidelity synthetic medical images, as an
alternative tool in data-based methods in Section 3, which can significantly
alleviate data deficiency and heterogeneity concerns in medical applications.

Additionally, as large language models (LLMs) have been successfully
applied in various areas, especially those with strong multi-modal capability,
including GPT-40, Gemini, etc., specific medical tasks such as multi-modality-
based diagnosis and medical report generation can benefit from these models.
Specially, large vision-language models provide a magnetic solution to perform
medical image-to-report generation tasks in FL scenarios. When deployed at
different institutions and collaboratively fine-tuned in a federated learning
framework, such models could significantly improve the quality and consistency
of reports generated from medical images, while not violating privacy preserving
rules.

5 Conclusion

In this paper, we conduct a survey on the challenges and existing solutions
when applying federated learning techniques in medical image analysis. We
first provide a summary of the background of FL applications in medical image
analysis areas, including the formalization of common tasks and corresponding
evaluation metrics. We then present and explain a novel taxonomy of challenges,
which contains data heterogeneity, low label quality, attack and defense,
communication burden, and several underexplored challenges, where each
category is further divided according to the nature of the challenges. For
each challenge, we summarize existing solutions in an organized, categorical
manner, which systematically and intuitively demonstrates current research
insight on these challenges. Furthermore, we discuss some possible future
research directions in related fields. We expect that this survey could provide
researchers with intuitive and comprehensive understanding in related areas,
together with inspirations for future research.
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