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ABSTRACT
Recently, much research has been actively conducted on speech
emotion recognition (SER) using deep learning, which predicts
emotions conveyed by speech. Our study focused on a method of
recognizing emotions at each frame level. One challenge with this
approach is that emotion label sequences, which are used for train-
ing the frame-based SER, do not sufficiently account for phone-
mic characteristics. To overcome this limitation, we propose a
new frame-based SER methods using fine-grained emotion label
sequences that considers phoneme class attributes, such as vowels,
voiced consonants, unvoiced consonants, and other symbols. As a
result, we found that the proposed methods improve the utterance-
and frame-level performance compared with conventional meth-
ods.
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1 Introduction

Speech emotion recognition (SER) is the process of predicting the emotion
conveyed by speech. This technique can be applied to call center automation
[3], mental health analysis [11], and e-learning systems [19]. In particular, it
primarily deals with two types of emotion [36]. One is categorical emotion,
which is the class of emotions, including happiness and sadness [28]. The other
is dimensional emotion, including valence and arousal, which is expressed as
a score on an axis [30]. In this study, we investigate how to classify utterances
into categorical emotions.

Researchers have proposed many methods for improving the performance
of SER. Among them, deep learning-based methods have achieved significant
improvements. For instance, Satt et al. proposed a method of training con-
volutional neural networks (CNNs) and bidirectional long short-term memory
(BLSTM) by extracting features robust to background noise from utterances
divided into intervals of 3 [31]. Li et al. also proposed a method of training
networks combining CNNs, BLSTM, and self-attention by the multitask learn-
ing of emotion and gender classification [20]. In other methods, various input
features, model structures, and training strategies are used [6, 8, 26]. In recent
years, methods using pretrained self-supervised learning (SSL) models repre-
senting speech information have also been proposed. For instance, Pepino et
al. proposed a method of learning BLSTM using the embedded representation
obtained from pretrained SSL models [27]. They showed that their method
might be more effective for SER than methods using low-level descriptors and
spectrograms. Cai et al. also proposed a multitask learning method for auto-
matic speech recognition (ASR) and SER using pretrained SSL models, which
improved the performance of SER [5]. In many other methods, pretrained SSL
models, which are highly effective for improving SER performance [34, 23, 33,
40, 38], are used. The models trained by these methods are utterance-based
SER ones, which estimate one emotion category for the entire utterance.

One limitation of these methods is that they cannot estimate emotional
states that change in utterances. For example, emotional expressions in ut-
terances may change, such as from neutral to happy. Previous studies have
indicated the relationship between changes in acoustic features, such as pitch
and power, and those in emotions [32, 2]. Since acoustic features continu-
ously shift throughout utterances, it is considered that emotions also change
dynamically in a similar manner. To train a model that can recognize fine-
grained emotional expressions that change in utterances, it is necessary to use
correct emotions in smaller units than utterances. Therefore, in some previ-
ous reports, methods have been proposed to train a frame-based SER model
using emotion label sequences that consider different emotional expressions
for each frame. This method is one of the time-continuous SER approaches,
which can predict emotional states for each frame. A similar approach is to
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estimate dimensional emotions for each speech sample from the waveform [16].
The difference between these approaches is the length of the labeled section.
Although the estimation interval of the frame-level is longer than that of the
speech sample, this approach makes it easier to train the model because the
emotion labels become simpler. For instance, Fayek et al. proposed training
a frame-based SER model that considers silent frames within an utterance
[10]. In this method, sequences of emotion labels, including emotional and
silent labels, are used in training the model. Han et al. also proposed train-
ing a connectionist temporal classification (CTC) model of SER reflecting the
feature of voiced phonemes [13]. In their method, they use the emotion la-
bel sequences constructed under the condition that voiced phonemes indicate
emotional states and other symbols indicate non-emotional states.

A problem with conventional methods using frame-based SER is that they
do not consider the effects of acoustic differences such as vowels and conso-
nants on emotion representation. In the conventional method [13], emotion
label sequences are defined by assuming the emotion state in the case of voiced
phonemes and the non-emotional state in other cases. Therefore, the acoustic
differences in vowels, voiced and unvoiced consonants, as well as those in each
phoneme between emotions, are not considered. In addition, the possibility
that unvoiced phonemes and other symbols represent emotion states is not
considered. Many studies have been conducted on the relationship between
phonemes and emotions. For instance, Lee et. al. compared emotion recogniz-
ers for each phoneme class and investigated the effects of different phonemes
on the accuracy of SER [18]. They found that the accuracy of recognizing emo-
tions and the tendency to recognize them differed between phoneme classes.
Aryani et. al. analyzed the frequency of phonemes for each emotion [9]. Their
analysis suggested that the frequencies of phoneme classes differed depending
on the type of emotion, such as tender, aggressive, positive, negative, and
others. Yenigalla et. al. improved the utterance-based SER method by us-
ing phoneme embeddings and spectrograms [39]. Their results showed that
the information of phoneme level symbols, such as pronunciations and their
intervals, might be useful for utternace-based SER. Therefore, by reflecting
the differences in phoneme classes such as vowels, voiced consonants, unvoiced
consonants, and other symbols in an emotion label sequence, we considered
that it may be possible to train a frame-based SER model considering the
fine-grained differences among emotions.

We propose new frame-based SER methods considering fine-grained acous-
tic differences. In this paper, we introduce phoneme class attributes to emo-
tion label sequences and compare three sets of phoneme class attributes that
are suitable for the frame-based SER methods. These methods are expected to
consider phoneme-dependent acoustic diversity during the training of frame-
based SER models. One of the key points of this study is that, unlike previous
research [24], we evaluate the effectiveness of the proposed methods using mul-
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tiple pretrained models. In addition, another key aspect of this study is the
evaluation of the accuracy of frame-based SER models using utterances with
changes in emotions. This is the first time in the field of SER that the per-
formance of frame-level SER based on CTC has been evaluated using these
utterances. The results show that the frame-based SER models can recog-
nize emotions at the frame level and that the proposed methods are effective
for improving the performance of frame-based SER models. This paper pro-
ceeds as follows. In Section 2, we describe the conventional frame-based SER
methods, which considers only voiced phonemes. In Section 3, we present
the proposed methods for frame-based SER, which consider various phoneme
class attributes. In Section 4, we explain the setup for the experiment and
show the results. Finally, in Section 5, we present our conclusions and future
work.

2 SER Using Emotion Label Sequences

A frame-based SER model is trained using emotion label sequences. In a pre-
vious study [13], an emotion label sequence is constructed from an utterance-
level emotion label, in which the emotional state for voiced phonemes and the
non-emotional state for silent intervals and unvoiced phonemes are assumed.
The outline of training the frame-based SER model and predicting the emo-
tion is shown in Figure 1. Examples of an emotion label sequence and CTC
paths of the conventional method are highlighted in red, while those of the
proposed method are highlighted in blue in Figure 1. We manually gather
the transcription of utterances. In this paper, we will explain the conven-
tional and proposed methods using the transcription from IEMOCAP (the
interactive emotional dyadic motion capture) dataset as an example.

Before the training phase, we prepare the emotion label sequence. Figure 2
shows the method of converting the emotion label sequence. The section with
highlighted in red represents the conventional sequence, whereas that with
highlighted in blue represents the proposed sequence.

We convert the transcript corresponding to the input utterance into
phonemes on the basis of the CMU Pronouncing Dictionary.1 Among these
phonemes, vowels and voiced consonants are converted into emotion sequence
labels, whereas the rest are removed. The emotion label sequence consists
of as many emotion labels as the number of voiced phonemes. For example,
the utterance “YES, YES. [LAUGHTER]” (/jEs, jEs. [LAUGHTER]/) in the
emotion of ‘happiness’ (H) contains four voiced phonemes: two voiced conso-
nants (/j/) and two vowels (/E/). Hence, this transcript is converted into {H,
H, H, H}. Other phonemes are considered non-emotional states and are not
included in the emotion label sequence.

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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Emotion label sequence

Emotion label sequence

{H, H, H, H}Conv.

{H+vc, H+vw, H+uc, H+bs, 

H+vc, H+vw, H+uc, H+bs, H+ss}
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CTC paths
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H+bs, -, H+vc, H+vc, -, -, H+vw, 

H+vw, -, H+uc, -, -, H+bs, H+ss},...

Prop.

Figure 1: Outline of training the frame-based SER model and predicting the emotion. (In
the right panels, the red block is the ground truth of conventional method, and the blue
block is the ground truth of proposed method. ‘H’ is happiness, “bs” is basic symbol,“vw”
is vowel, “vc” is voiced consonant, “uc” is unvoiced consonant, and “ss” is special symbol. A
combination of emotion label and phoneme class attribute, represented by notations such as
“H+vw,” indicates one token of the emotion label sequences with phoneme class attribute.)

Grapheme-to-phoneme

Phoneme-to-emotion label sequence

Emotion label sequence

{H, H, H, H}Conv.
{H+vc, H+vw, H+uc, H+bs, 

H+vc, H+vw, H+uc, H+bs, H+ss}
Prop.

Phonemes: /jƐs, jƐs. [LAUGHTER]/

Transcript: “YES, YES. [LAUGHTER]”

Figure 2: How to convert the transcript into the emotion label sequence. (The red and blue
blocks have the same meaning as in Figure 1. Similarly, each symbol, such as ‘H,’ “vw,”
and “H+vw,” has the same meaning as in Figure 1.).

During the training of the model using this emotion label sequence, we can
utilize various network structures. For example, there are models that com-
bine BLSTM and various attention mechanisms [41] and models that combine
parallel CNNs, the squeeze-and-excitation network (SENet), and the dilated
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residential network (DRN) [42]. The model for frame-based SER is trained
on the basis of CTC, which is a framework for estimating paths (CTC paths)
containing blank symbols (-) and repeated symbols [12]. Note that a blank
symbol represents the non-emotional state. This method can estimate output
sequences even when the output length is smaller than the input length. Dur-
ing CTC-based training, given an input x = [x0, . . . , xT] of length T, we max-
imize the probability of obtaining an emotion label sequence y = [y0, . . . , yL]
of length L(≤ T). The probability p(y|x) is given in Equation 1, and the CTC
loss function Lctc is given in Equation 2. Let xt be the input of time t, πt the
emotion label of time t, π the CTC path for the emotion label sequence, and
Φ(y) the set of π. Moreover, let U be the set of training data.

p(y|x) =
∑

π∈Φ(y)

T∏
t=1

p(πt|xt) (1)

Lctc = −
∑

(x,y)∈U

log p(y|x) (2)

The number of classes estimated in each frame of the CTC path is the number
of emotions + 1 (blank symbol). In the prediction phase, an emotion label
sequence is obtained by gathering estimated symbols within the CTC path
by deleting blank symbols and merging repeated characters. Eventually, the
CTC path is regarded as a result of the frame-level prediction, whereas the
emotion with the highest frequency among the emotion labels in a sequence
is regarded as a result of the utterance-level prediction.

3 SER Using Emotion Label Sequences with Phoneme Class Attributes

We propose methods of training the frame-based SER model considering the
phoneme class attributes. In this study, we define five phoneme classes: basic
symbols (bs), vowels (vw), voiced consonants (vc), unvoiced consonants (uc),
and special symbols (ss). Basic symbols are mainly punctuation marks, such
as ‘?’, ‘!’, and ‘.’. Special symbols are unique information for each dataset,
such as ‘[BREATHING]’. Lee et al. have discussed that vowels have an im-
portant role in SER [18]. Aryani et al. have also suggested that voiced or
unvoiced consonants may express various emotions [9]. As for other symbols,
previous studies [40, 39] have shown that inputting embedded representations
of phonemes, including silent and special symbols, into models improves per-
formance. Therefore, we propose the methods that consider the attributes of
vowels, voiced and unvoiced consonants, and other symbols, and we expect to
improve the performance of the frame-based SER models. Any symbol not
falling under the above attributes is considered a non-emotional state. The
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blue highlight in Figure 1 shows examples of the emotion label sequence with
phoneme class attributes and CTC paths of the proposed method, whereas
that in Figure 2 shows the proposed sequence. A significant difference from
the conventional method is that the emotion label sequence explicitly con-
siders various types of attribute information of phonemes. For example, the
utterance “YES, YES. [LAUGHTER]” (/jEs, jEs. [LAUGHTER]/) in the emo-
tion of ‘happiness’ (H) has two base symbols (/,/, /./), two vowels (/E/), two
voiced consonants (/j/), two unvoiced consonants (/s/), and one special sym-
bol (/[LAUGHTER]/). Thus, this transcript is converted into {H+vc, H+vw,
H+uc, H+bs, H+vc, H+vw, H+uc, H+bs, H+ss}. Note that ‘emotion la-
bel+phoneme class attribute’ is an emotion label with the phoneme class at-
tribute. The number of classes estimated in each frame of the CTC path is the
number of emotions × the number of attributes + 1 (blank symbol). During
the training phase, the DNN model is trained using emotion label sequences
with the phoneme class attribute. During the prediction phase, the emotion
label sequence is obtained from the estimated CTC path. The CTC path is
considered the frame-level result, and the emotion with a high frequency of
appearance is considered the utterance-level result.

4 Experimental Setup

In this section, we describe the experimental setup. First, we compared the
utterance-level accuracies of the models trained by conventional and proposed
methods for emotion label sequence recognition. We also compared the results
with those reported in previous studies [13, 41, 42]. In addition, to investi-
gate whether the proposed method improved the frame-level performance, we
compared the results using the combined data of different emotion utterances.
The dataset, models, and metrics used in this experiment are as follows.

4.1 Dataset

We utilized the IEMOCAP database, which includes English emotional speech
[4]. It is composed of acted or improvised utterances during dialogues. This
dataset consists of five sessions, and each session has a dialogue between a man
and a woman. This dataset consists of 10,039 utterances, 5,255 of which are
acted and 4,784 are improvised dialogues. The utterances are categorized into
ten emotion labels: neutral, happiness, sadness, anger, surprise, fear, disgust,
frustration, excitement, and others. Each utterance is assigned to one of these
emotion labels on the basis of a majority vote by annotators.

In the utterance-level evaluation, we exclusively utilized improvised dia-
logues to avoid semantic interference [41, 42]. We developed and evaluated
the models to predict four emotion categories: anger, happiness, sadness, and
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neutral. In addition, we included the excitement utterances within the hap-
piness data. Consequently, the total number of utterances for each emotion
label amounted to 2,943, distributed as follows: anger (289), happiness (947),
sadness (608), and neutral (1,099). Table 1 presents the number of utterances
per session and per emotion in this dataset. The average duration of the utter-

Table 1: Number of utterances per emotion and per session.

Session Ang. Hap. Sad. Neu. Total
1 62 132 104 223 521
2 22 191 100 217 530
3 90 149 190 198 627
4 84 195 81 174 534
5 31 280 133 287 731

Total 289 947 608 1099 2943

ances utilized in the experiment was approximately 4.5 s. During the training
phase, utterances that were 15 s or shorter were only used, as in related works
[20, 1].

In the frame-level evaluation, we utilized the same training data used for
the utterance-level evaluation, and we created and used the evaluation data
in which emotion labels change within utterances. The procedure for creating
the evaluation data is shown in Figure 3. First, we selected one utterance

12 pairs of emotions

1st: neutral 2nd: anger

1st: sadness 2nd: neutral

..
.

Evaluation data

Figure 3: Outline of creating the evaluation data (blue: sadness, green: neutral).

from each of two different emotion categories. Both were longer than the
average utterance length of the dataset. Because there were four emotions
in this study, the number of permutation pairs was 12. Next, we calculated
the word alignment for each utterance by ctc-segmentation [17] and split the
utterances at the midpoint on the basis of the total number of words. This
process ensured that the utterances were not cut in the middle of a word.
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Finally, we combined the first half of the utterance from the first emotion
with the second half of the utterance from the second emotion in each pair,
and used 600 combined utterances in each fold.

We produced the phonemes for generating emotion label sequences with
a grapheme-to-phoneme (g2p) conversion toolkit.2 The mapping between the
phoneme class attribute and the symbols is shown Table 2. The dataset
contained the following tokens: 37,304 instances of bs, 40,474 instances of vw,
37,388 instances of vc, 21,791 instances of uc, and 133 instances of ss. Further-
more, the total number of voiced phonemes was 77,862. In this experiment,
we evaluated the proposed methods using three different sets of phoneme class
attributes to investigate their effectiveness. Table 3 illustrates the phoneme
class attributes considered in the conventional and proposed methods, along
with the number of predicted classes per frame in the CTC path. Conv. de-
fined the voiced phoneme that combines vowels and voiced consonants [13].
Prop. I distinguished between vowels and voiced consonants, Prop. II ex-
tended Prop. I with the distinction of unvoiced consonants, and Prop. III
further extended it with the incorporation of the distinction of basic symbols.
We compared them and attempted to clarify phoneme class attributes to be
considered during the training of the frame-based SER model. Special sym-
bols were distinguished in all methods because they depended on the dataset.
Note that we trained the model five times with different random seeds and
took the average of the results.

Table 2: Mapping between the phoneme class attribute and symbols.

Phoneme class Symbols
Basic symbols (bs) !, ?, ’, ,, -, ., >
Vowels (vw) AA, AE, AH, AO, AW, AY,

EH, ER, RY, IH, IY,
UH, UW, OW, OY

Voiced consonants (vc) B, D, DH, G, L, M, N, NG, JH,
R, V, W, Y, Z, ZH

Unvoiced consonants (uc) CH, F, HH, K, P, S, SH, T, TH
Special symbols (ss) [LAUGHTER], [LIPSMACK],

[GARBAGE], [BREATHING]

We evaluated the utterance-level and frame-level results for each method.
The evaluation scheme was ten folds cross-validation with no speaker overlap.
In each fold, the dataset was divided into eight speakers for the training data,
one speaker for the validation data, and one speaker for the test data. During
the utterance-level evaluation, we utilized the test data in each fold. During

2https://github.com/Kyubyong/g2p

https://github.com/Kyubyong/g2p
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Table 3: Numbers of classes in each method.

Phoneme class # of estimated classes
Conv. voiced 5 (4 emos. + 1 blk.)
Prop. I vw, vc, ss 13 (4 emos. × 3 atts. + 1 blk.)
Prop. II vw, vc, uc, ss 17 (4 emos. × 4 atts. + 1 blk.)
Prop. III bs, vw, vc, uc, ss 21 (4 emos. × 5 atts. + 1 blk.)

the frame-level evaluation, we combined utterances with different emotions to
artificially create test data with changes in emotions and used them in each
fold.

4.2 Models

For the model of frame-based SER, we utilized a pretrained model, wav2vec2.0
and HuBERT. Wav2vec2.0 is a self-supervised representation learning frame-
work [1]. In this framework, the model is trained by contrastive learning,
which estimates the quantized speech representation of masked sequences
with that of unmasked sequences as negative samples. Hubert is also a
self-supervised representation learning method [14]. In this framework, the
model is trained by predicting frame-level classes from speech. These classes
are defined on the basis of the results of clustering the frames using acous-
tic features. We utilized the pretrained models wav2vec2.03 and HuBERT4

provided by Hugging Face [37]. These were fine-tuned models of automatic
speech recognition, which were pretrained in speech representation learning
with Libri-Light [15] and Librispeech [25]. Their architecture consisted of
seven CNN layers and 24 Transformer layers. We trained the model that com-
bines one linear layer with either wav2vec2.0 or HuBERT. During the training
phase, we fixed the model parameters of the CNN layers and fine-tuned that
of the Transformer layers and the FC layer. The inputs of the models were
waveforms of speech, and the outputs were emotion sequences represented by
CTC paths. We set the number of epochs to 50, the batch size to 8, and the
learning rate to 0.0001 using RAdam [21] as the optimization method. During
the training phase, we applied gradient clipping with a threshold of 5.0. The
model parameters were updated by minimizing the CTC loss.

4.3 Metrics

The utterance-level-evaluated metrics were the weighted accuracy (WA) and
unweighted accuracy (UA). WA was the overall accuracy, and UA was the

3facebook/wav2vec2-large-960h-lv60
4facebook/hubert-large-ls960-ft
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average recall of each emotion. If no emotion was recognized, we classified
the input utterance as ’neutral.’ Higher WAs and UAs indicate higher model
performance. The frame-level-evaluated metric was the emotion match rate
(EMR). This score indicates the percentage of frames correctly predicted out
of all frames that were predicted to be in an emotional state. If the predicted
token was a blank symbol, we considered it a non-emotional state. Higher
EMRs indicate the higher frame-level recognition performance of the model.
We compared the WA, UA, and EMR of the proposed methods with those
of the conventional methods. Additionally, we performed tests to examine
the significant differences between the conventional and proposed methods.
For WA and UA, we set the null hypothesis that there was no significant
difference in results among the methods when the frequencies of positive and
negative differences in the number of recognition errors were equal. For EMR,
we established the null hypothesis that there was no significant difference
in results among the methods when the frequencies of positive and negative
differences in the EMR produced per speech were equal. On the basis of these
hypotheses, we performed a two-sided sign test.

5 Results

5.1 Utterance-level Evaluation

Table 4 shows WA and UA, the utterance-level results for each method. A
comparison between conventional and proposed methods shows that all the
proposed methods outperform the conventional method in improving the WA
and UA. Comparing proposed method I with the conventional method, WA
improved by 1.9% and UA by 1.6% with wav2vec2.0+FC, and WA improved
by 2.5% and UA by 2.8% with HuBERT+FC. By distinguishing between vow-
els and voiced consonants within voiced phonemes, the model could recognize
fine-grained emotions attributed to the differences in phoneme-level acous-
tic features. Comparing proposed method II with the conventional method,
WA improved by 2.2% and UA by 1.8% with wav2vec2.0+FC, and WA im-
proved by 2.6% and UA by 2.9% with HuBERT+FC. With unvoiced conso-
nants added to the distinguished phoneme class attributes, the model might
have recognized emotions related to phonemes characterized by variations
in breath speed and pitch rise during speech. Comparing proposed method
III with the conventional method, WA improved by 1.4% and UA by 1.2%
with wav2vec2.0+FC, and WA improved by 3.1% and UA by 3.3% with Hu-
BERT+FC. It might be possible for the model to recognize emotions related
to subtle changes in breath speed by considering basic symbols.

Comparing the three proposed methods, both method II with wav2vec2.0
+FC and method III with HuBERT +FC showed the highest performance.
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Table 4: Utterance-level results of each method.

Model wav2vec2.0+FC HuBERT+FC
WA (%) UA (%) WA (%) UA (%)

Conv. 73.3 72.7 71.3 69.4
Prop. I 75.2* 74.3* 73.8* 72.2*

Prop. II 75.5* 74.5* 73.9* 72.3*

Prop. III 74.7* 73.9* 74.4* 72.7*

* p < 0.05 for significant difference compared with Conv.

The observed performance differences are considered due to variations in
the pretraining methods of the SSL models used. The model parameters
of wav2vec2.0 were trained using contrastive learning, whereas those of Hu-
BERT were trained with frame-wise clustering results. Therefore, when we
utilized HuBERT pretrained with fine-grained frame-level classification, pro-
posed method III, which considers most phoneme class attributes, was consid-
ered to have achieved the highest WA and UA among the proposed methods.
On the other hand, when we utilized wav2vec2.0 pretrained by contrastive
learning between masked and unmasked frames, the effect of considering the
basic symbols was not clear. These results are considered due to whether
the self-teaching labels clearly included information about the basic symbols
during pretraining. From the above results, we found that the most effective
proposed method varies depending on the SSL models used.

Comparing the results among the SSL models used for training, WA
and UA when were higher using wav2vec2.0+FC than those when using Hu-
BERT+FC. Because wav2vec2.0 was trained on the differences between simi-
lar and dissimilar frames using contrastive learning and enhanced the ability
to identify differences between frame-level information, it is considered suit-
able for the proposed methods.

Table 5 shows the WA and UA of the proposed methods as well as those
in previous studies. The performance of the proposed methods is comparable
to or higher than that in previous studies. In particular, proposed method
II with wav2vec2.0+FC improves WA by 2.4% and UA by 8.2% compared
with a conventional method in a previous study [42]. This result shows that
a fine-tuned SSL model effectively improves the utterance-level performance
of a frame-based SER model.
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Table 5: Comparison between the utterance-level accuracies of proposed methods and those
of conventional methods.

Conventional methods WA (%) UA (%)
BLSTM [13] 64.2 65.7
BLSTM+Component Attention [41] 69.0 67.0
PCNSE+SADRN [42] 73.1 66.3
Proposed methods
HuBERT+FC (prop. III) [Ours] 74.4 72.7
wav2vec2.0+FC (prop. II) [Ours] 75.5 74.5

5.2 Frame-level Evaluation

Table 6 shows the EMRs for the conventional and proposed methods.

Table 6: Frame-level results of each method.

Model Match Rate (%)
wav2vec2.0+FC HuBERT+FC

Conv. 46.6 44.1
Prop. I 47.6* 45.1*

Prop. II 48.8* 46.9*

Prop. III 49.0* 47.0*

* p < 0.05 for significant difference compared with Conv.

There was a significant difference between the EMR of each proposed
method and that of the conventional method at p < 0.05. A comparison
between conventional and proposed methods showed that the performance
of all proposed methods was higher than that of the conventional method.
This result indicated that incorporating phoneme class attributes into emotion
label sequences effectively improved the frame-level performance of the frame-
based SER model.

Comparing the three proposed methods, we found that Prop. III was
the most effective in improving the EMR. The EMR of proposed method III
was improved by 2.4% with wav2vec2.0+FC and by 2.9% with HuBERT+FC.
These results suggest that a more detailed consideration of phoneme class
attributes might improve the frame-level performance.

Comparing the results of each SSL model used for training, the EMR of
wav2vec2.0+FC was higher than that of HuBERT+FC. As stated previously,
because wav2vec2.0 was trained to distinguish frame-level differences, it was
considered suitable for frame-based SER.
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Figures 4 and 5 show the average EMR for each emotion pair in the
evaluation data of the frame-based SER model using wav2vec2.0+FC and
HuBERT+FC, respectively. Each axis label represents the ground truth of
emotions, with the row labels indicating emotions for the first half of the
evaluation data and the column labels indicating emotions for the second half
of the evaluation data. From the results shown in the figures, the proposed
methods outperform the conventional method in all permutations of emotions.
In particular, for the evaluation data including “neutral,” the results indicate
that increasing the number of phoneme class attributes generally leads to the
improvement in EMR. On the other hand, for the evaluation data of permuta-
tions where the first emotion is “anger” and the second emotion is “sadness,”
the EMR is consistently low regardless of the method or model used. It may
be easier to estimate emotions in the permutations including "neutral" than
in those of distinct emotion classes, such as anger, happiness, and sadness. In
addition, the EMRs when the first emotion is anger and the second emotion
is sadness are higher than those when the order was reversed. This shows
that the difficulty of recognition may change depending on the order in which
emotions are expressed. Overall, the proposed methods improve the EMR
compared with the conventional method, indicating their effectiveness in im-
proving the performance of the frame-based SER models.
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Figure 4: Average EMR for each emotion pair in the evaluation data (wav2vec2.0+FC; Blue
means lower values, and yellow means higher values).

43.0 34.8 47.0

41.4 36.9 49.9

40.541.3 49.5

48.447.0 45.3

A
n
g
.

H
ap

.
S

ad
.

N
eu

.
1
st

 e
m

o
ti

o
n

2nd emotion
Ang. Hap. Sad. Neu.

(a) Conv.

49.1 37.6 46.6

44.8 40.7 50.2

46.945.8 49.5

51.547.5 45.9

A
n
g
.

H
ap

.
S

ad
.

N
eu

.
1
st

 e
m

o
ti

o
n

2nd emotion
Ang. Hap. Sad. Neu.

(b) Prop. I

48.8 38.7 48.2

46.7 42.4 51.8

47.249.9 51.6

52.050.8 48.5

A
n
g
.

H
ap

.
S

ad
.

N
eu

.
1
st

 e
m

o
ti

o
n

2nd emotion
Ang. Hap. Sad. Neu.

(c) Prop. II

48.6 38.1 49.4

46.7 42.8 52.2

46.650.3 51.5

52.551.8 49.3

A
n
g
.

H
ap

.
S

ad
.

N
eu

.
1
st

 e
m

o
ti

o
n

2nd emotion
Ang. Hap. Sad. Neu.

(d) Prop. III

Figure 5: Average EMR for each emotion pair in the evaluation data (Hubert+FC; Blue
means lower values, and yellow means higher values).
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Figures 6 illustrate examples of the output from models trained by each
method for wav2vec2+FC, which had high frame-level evaluation results over-
all. For the evaluation, we used the utterance which emotion changes from
“neutral” to “happiness.” Figure 6a illustrate the mel spectrogram of the eval-
uation utterance, and Figures 6b through 6e illustrate the log-likelihood of the
model trained by each method. In addition, the blue dotted line in Figure 6a
and the orange dotted line in Figures 6b through 6e illustrate the emotion
changing point in the correct emotion label sequence. Therefore, the emotion
before the dotted line is “neutral” and the emotion after the dotted line is
“happiness.”

Comparing Figures 6b through 6e shows that in each case, the model pre-
dicted the emotion label sequence in the spoken interval and blank symbols
in the unspoken interval. These results suggested that models might have
been trained to predict emotions by focusing on spoken interval. Also, as the
number of phoneme class attributes increases, the class with the highest log-
likelihood changed before and after the dotted line. In particular, Figure 6e
illustrates that the emotions class with high log-likelihood changed from “neu-
tral” to “happiness” on both sides of the dotted line. Therefore, it can be said
that the fine-grained and accurate emotion recognition became more possible
than the conventional method by considering the acoustic difference of each
phoneme.

6 Conclusion

In this study, we proposed the training methods for frame-based SER models
using emotion label sequences with phoneme class attributes, which were not
considered in previous studies, and compared them with conventional methods.
As a result, we confirmed that the proposed methods improve the accuracy of
frame-based SER at both the utterance and frame levels. Proposed method
II could improve WA by 2.4% and UA by 8.2% compared with the conven-
tional method used in a previous study. In addition, proposed method III with
wav2vec2.0+FC could improve EMR by 2.4% compared with the conventional
method. We also found that considering vowels, voiced consonants, unvoiced
consonants, and special symbols enabled models to recognize the fine-grained
emotion changes within the utterance. The frame-based SER model trained
by the proposed method is effective for recognizing emotions that change dur-
ing utterances. The following are the tasks to be addressed in the future.
First, we will experiment with other datasets such as MSP-Potcast [22] and
BIIC-Podcast [35] to confirm the effectiveness of the proposed methods. Since
it has been suggested that the performance of g2p affects the performance of
automatic speech recognition and speech synthesis [29, 7], we also need to
investigate the effect of g2p in frame-level SER. Furthermore, we will investi-
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Figure 6: Examples of predictions from models trained by conventional and proposed meth-
ods. (The blue dotted line and orange dotted line illustrate the emotion changing points. In
Figure 6a, black means lower values, and yellow means higher values. In Figure 6b through
6e, blue means lower values, and yellow means higher values.)
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gate how the duration of each phoneme class attribute and other units, such
as syllables, affects frame-level SER. Finally, we will conduct a subjective
evaluation of the frame-level SER to determine whether the emotion sequence
and waveform are properly aligned.
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