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ABSTRACT
Voice-based biometric systems are vulnerable to spoofing attacks,
where attackers can deceive the systems with synthetic or replayed
voice samples. To address this vulnerability, we introduce the
InaSpoof-v1 dataset, which is a comprehensive benchmark for In-
donesian language spoofing detection. We evaluate the state-of-
the-art countermeasure models on this dataset, highlighting the
challenges posed by the diversity of the Indonesian language and
the impacts of demographic factors. Our experimental results
demonstrate the effectiveness of the end-to-end AASIST model for
synthesized speech attack countermeasures and residual networks
(ResNet) for replay attack detection. To improve future systems,
we emphasize the importance of considering demographic factors
and addressing the challenges posed by real-world scenarios.

Keywords: Spoof countermeasure, Indonesian language, speech synthesis, re-
play attack

1 Introduction

Voice-based biometric systems have gained popularity in recent years because
of their convenience and ease of use. However, these systems are vulnerable
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to spoofing attacks, where malicious actors attempt to deceive the systems by
presenting artificial or synthetic voice samples [13]. Robust spoofing detection
techniques or countermeasures are essential for mitigating these threats [14].

Voice-based spoofing attacks can be categorized into two main types: di-
rect and indirect attacks. Direct attacks, which are also known as physical
access attacks, involve presenting spoofed audio directly to the microphone
of the target system. Indirect attacks, or logical access attacks, manipulate
the internal processes of the system, such as its feature extraction or decision-
making process, to bypass security measures. Spoofed speech samples can
be generated through various techniques, including speech synthesis, voice
conversion (VC), and recorded speech playback [42].

The development of reliable detection techniques has become a critical
research area for addressing the growing concern related to audio deepfakes
and spoofs. The ASVspoof challenge series, which spanned from 2015–2024
[45, 12, 42, 30, 11], has played a pivotal role in driving spoof detection ad-
vancements by progressively addressing various challenges. These challenges
have attracted significant attention from researchers worldwide, leading to the
development of numerous countermeasure techniques. However, a major re-
maining challenge is the generalization gap between controlled and real-world
scenarios. Models that perform well in controlled environments often struggle
to generalize to real-world conditions [34]. Additionally, the language bias
exhibited by deepfake audio data, predominantly English data, limits the ap-
plicability of detection techniques to cases involving non-English languages.

Indonesia, which is a nation with over 700 living languages, boasts the
second-highest linguistic diversity globally, accounting for almost 10% of the
world’s languages [27]. This linguistic richness, particularly the diverse di-
alects and unique phonetic characteristics of Indonesian [1], might present
specific challenges for spoofing detection. While previous research has fo-
cused primarily on English-language spoofing detection, robust countermea-
sures are needed for other languages, including Indonesians. The development
of robust Indonesian-language antispoofing systems can contribute to the over-
all improvement of automatic speaker verification (ASV) systems and their
resilience against spoofing attacks.

This paper contributes to the advancement of Indonesian-language spoof-
ing detection in the following ways.

• Curating a reliable dataset: We introduce the InaSpoof-v1 dataset, which
is a comprehensive benchmark for evaluating Indonesian-language spoofing
detection systems.

• Developing and evaluating Indonesian antispoofing models: We de-
velop and evaluate a variety of antispoofing models, including traditional ma-
chine learning techniques and deep learning models.
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• Analyzing demographic factors: We investigate the impacts of different
demographic factors, such as gender and dialect, on the performance of spoof-
ing detection systems.

• Simulating real-world attacks: We simulate real-world spoofing attacks
using physical devices to evaluate the performance of countermeasure models
under realistic conditions.

By addressing these objectives, this research contributes to the advance-
ment of Indonesian-language spoofing detection. It provides valuable insights,
serves as a resource for developing low-resource language datasets, and offers
guidance for creating effective countermeasures with limited computational
resources.

2 Related Works

Spoofing attacks can occur at different stages of the ASV process, including
at the microphone and transmission levels [43]. These attacks may involve
techniques such as voice replay, speech synthesis, and VC. To address this
issue, researchers have explored various countermeasures, including advanced
feature extraction and machine learning algorithms [20].

The initial efforts to address spoofing attacks in ASV scenarios began
with the Interspeech 2013 special session on spoofing and antispoofing (SAS),
which focused on speech synthesis and VC attacks [44]. Building on this initial
work, the ASVspoof challenge series emerged as a significant driver for research
and development in this area. These challenges, which spanned from 2015–
2024, have provided standardized datasets and evaluation metrics, enabling
researchers to develop and compare various countermeasure techniques.

Early ASVspoof challenges focused primarily on synthetic speech and VC
attacks, often under controlled conditions [45, 12]. However, as deep learning-
based speech synthesis techniques such as generative adversarial networks
(GANs) and WaveNet have advanced, more sophisticated spoofing attacks
have emerged. The ASVspoof 2019 challenge introduced a new metric, the
tandem decision cost function (t-DCF), which provides a more comprehen-
sive evaluation metric that considers both countermeasure detection accuracy
and system decision costs [42]. The ASVspoof 2021 challenge further pushed
boundaries by incorporating deepfake speech detection [30]. While significant
progress has been made in logical and deepfake attack detection scenarios,
physical access attacks remain challenging to detect due to the variability of
real-world environments [47].

The latest ASVspoof 5 challenge further expanded the scope of spoofing
detection by incorporating a larger and more diverse dataset that included
crowdsourced data and adversarial attacks [11]. It also introduced new met-
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rics for evaluating both standalone countermeasures and integrated ASVs. De-
spite the challenge complexities, a significant number of participants success-
fully developed systems that surpassed the performance of baseline models.
For example, contemporary approaches frequently leverage state-of-the-art
self-supervised learning (SSL) models like wav2vec 2.0 [6], WavLM [9], and
HuBERT [17], which have become dominant in feature extraction. These SSL
models outperform traditional hand-crafted features, such as Mel-frequency
cepstral coefficients (MFCC), by capturing richer latent representations [41],
[37], [46]. However, the challenge also highlighted the importance of perform-
ing score calibration for practical deployment purposes [41].

In addition to the ASVspoof challenge series, the Audio Deepfake Detection
Challenge (ADD) series has emerged as a significant platform for advancing
research in the audio deepfake detection field. ADD 2022 focused on tasks
such as low-quality and partially fake audio detection. While this challenge led
to progress, it had limitations, including a focus on binary classification [48].
To address these limitations, ADD 2023 introduced more complex tasks, such
as manipulated segment localization and source identification, encouraging
the development of more sophisticated detection techniques [49].

Several voice-based antispoofing datasets have been released to train and
evaluate models, primarily focusing on the English and Chinese languages
(e.g., the ASVspoof and ADD challenges). While these datasets have signif-
icantly advanced the field, a notable gap exists regarding the availability of
datasets for other languages. For instance, the limited availability of high-
quality synthetic speech methods for lower-resource languages hinders the
development of robust antispoofing systems. As an example, the ThaiSpoof
dataset, while a valuable contribution, is still in its early stages and lacks
diverse spoofing attacks [15].

Indonesian, which is a language with significant diversity and unique pho-
netic characteristics, presents specific challenges for spoofing detection. To
address this gap, we conduct a study to develop a comprehensive Indonesian-
language antispoofing dataset. Recent findings have suggested that improv-
ing the quality and diversity of datasets is crucial for mitigating overfitting
and ensuring robust model performance [4]. By creating a robust Indonesian-
language dataset, we aim to facilitate the development of effective antispoofing
systems for Indonesian and potentially other low-resource languages.

3 InaSpoof Dataset

Figure 1 shows the experimental pipeline of this study, which starts with data
collection and curation. Data curation plays a pivotal role in the development
of effective language technologies, especially for languages such as Indonesian
with unique linguistic characteristics. Accurate and representative datasets
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Figure 1: Experimental pipeline of InaSAS

Table 1: A brief summary of the InaSpoof-v1 dataset.

# UtterancesSubset # Speakers Bona fide Spoofed
Train 55 2,360 41,292
Dev 90 2,002 34,699
Test 132 1,501 35,818

are essential for training machine learning models that can understand and
process the nuances of Indonesian language. Carefully performing data cura-
tion involves tasks such as data collection, cleaning, annotation, and quality
control. By ensuring the reliability and consistency of the curated data, re-
searchers can build more robust and accurate spoofing detection models.

In this study, we carefully curated Indonesian speech recordings to con-
struct our dataset, namely, the InaSpoof version 1 (InaSpoof-v1) dataset. This
dataset was collected from three sources: CommonVoice, Librivox, and Prosa.
Bona fide data were carefully selected from those three sources, ensuring di-
verse ranges of speakers and recording conditions. To obtain spoofing data,
we employed various synthesis techniques, including speech vocoders, text-to-
speech (TTS) models, and VC algorithms. Table 1 shows a summary of the
InaSpoof-v1 dataset.

3.1 Bona Fide Data

After performing data collection, we conducted data cleaning and reannota-
tion, followed by partitioning the data into training, development, and test-
ing sets. The curated dataset adheres to the following criteria: (1) speech
utterance durations between 3 and 8 seconds, (2) correct language usage, (3)
exclusion of offensive or inappropriate words, and (4) adherence to standard
Indonesian dialects.
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To ensure a robust evaluation, we employed a stratified data splitting ap-
proach based on speaker IDs and recording conditions. This strategy helped
maintain balanced speaker characteristic and recording environment distribu-
tions across the subsets. The test set is entirely independent, with none of
its speakers present in the training data. The development set includes both
overlapping and nonoverlapping speakers derived from the training data, al-
lowing for a more comprehensive evaluation of the generalization capabilities
of the tested model. To maintain sufficient training data for each speaker, we
required at least five utterances per speaker in the training set. This approach
helped prevent overfitting and ensured that the model could effectively learn
from a diverse range of speaker variations.

3.1.1 Common Voice Dataset

Common Voice1 is a crowdsourced dataset that aims to make voice recognition
technology more accessible and inclusive. It consists of millions of short audio
clips, each containing spoken sentences, in over 60 languages. Volunteers
contribute to recording clips and reviewing others’ work, helping to construct
a diverse and high-quality dataset for training speech recognition systems.
This open-source initiative contributes to democratizing voice technology by
offering researchers and developers free access to data.

The Common Voice dataset for the Indonesian language, Version 16.1 (cv-
corpus-16.1-2023-12-06-id), comprises approximately 57,614 utterances, total-
ing approximately 1.5 GB of data. The dataset includes labels, such as client
IDs, paths, sentences (transcripts), upvotes, downvotes, and locales (IDs). Ad-
ditionally, it includes incomplete labels such as ages, genders, accents, variants,
and segments.

As the first step of the selection process, we analyzed the training, devel-
opment, and testing subsets. We excluded the data that were not within the
duration range that we had set. Since the original sampling frequency of this
dataset was 32 kHz, we normalized it to 16 kHz. Next, we checked the word er-
ror rate (WER) by using Whisper Indonesia2 (a fine-tuned OpenAI/Whisper-
Medium model for version 11.0 of Indonesian CommonVoice, magic data,
TITML, and the Google fleurs dataset). We selected only samples with WERs
that were less than 5%.

After completing the initial preprocessing steps, we obtained a dataset con-
sisting of 3055 training samples, 780 development samples, and 705 test sam-
ples. We named this subset CommonVoice-v0. Despite our selection efforts,
the data still exhibited imbalance and included unknown labels. Additionally,
many speakers had only one utterance, particularly in the test set. Owing to

1https://commonvoice.mozilla.org/en
2https://huggingface.co/cahya/whisper-medium-id

https://commonvoice.mozilla.org/en
https://huggingface.co/cahya/whisper-medium-id
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various factors, including the speaker distribution of each subset, this dataset
might not have been ideal for conducting a cross-dataset evaluation [4].

To improve the quality of the dataset, we implemented additional process-
ing steps on CommonVoice-v0. This included rebalancing the sample distri-
bution across the training, development, and test sets and prioritizing more
speakers in the training and development data. We removed outliers, includ-
ing utterances derived from single speakers with more than 50 utterances and
those with fewer than three occurrences. Additionally, speech segments ex-
ceeding eight seconds were excluded. The result was named the CommonVoice-
v1 dataset. Table 2 summarizes the data distributions of CommonVoice-v0
and CommonVoice-v1.

Table 2: Distribution of the Common Voice dataset.

Version Subset # Utterances # Speakers Total duration (h)

v0
Train 3,074 4 5.55
Dev 784 32 1.35
Test 705 179 1.20

v1
Train 350 10 0.59
Dev 330 49 0.55
Test 438 110 0.71

3.1.2 Librivox Indonesia Dataset

The Librivox Indonesia3 dataset, which was built from Librivox audiobooks,
offers short snippets of Indonesian-language recordings. We specifically fo-
cused on the Indonesian languages contained within the Librivox collection.
The original audiobooks varied greatly in length, but the speech clips included
in this dataset were much shorter, ranging from just a few seconds to a maxi-
mum of 20 seconds each. The original sampling rate of this dataset was 44.1
kHz with stereo signals.

This dataset was built using multilingual forced alignment software. This
software is versatile and works with various languages, including those with
limited resources such as Acehnese, Balinese, and Minangkabau. Currently,
the dataset comprises 8 hours of recordings across seven regional Indone-
sian languages: Acehnese, Balinese, Bugisnese, Indonesian, Minangkabau, Ja-
vanese, and Sundanese.

In this phase, we focused on the standard Indonesian language by using two
audiobooks: “Mengelilingi Dunia dalam 80 Hari” (MD80H) and “Universal
Declaration of Human Rights” (UDHR). Each audiobook was divided into
training and test sets. Compared with the 15 samples of UDHR, MD80H
has a more extensive test set with 588 samples. Similarly, the training set

3https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia

https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia
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for MD80H is significantly more extensive at 5,514 samples, whereas UDHR
offers only 121 samples. Although these audiobooks are distinct, the same
speaker narrated some utterances in both MD80H and UDHR.

The dataset exhibited a significant degree of imbalance, particularly in the
number of samples per speaker ID, and some utterances were too short or too
long. To address this issue, we rebalanced the sample distributions across the
training, development, and test sets and removed outliers with more than 50
utterances per speaker. Table 3 summarizes the information of this dataset
before (v0) and after conducting processing (v1).

Table 3: Distribution of the Librivox Indonesia dataset.

Version Subset # Utterances # Speakers Total duration (h)

v0

MD80H (Train) 5,514 9 6.10
MD80H (Test) 588 9 0.65
UDHR (Train) 121 1 0.20
UDHR (Test) 15 1 0.03

v1
Train 1,250 6 1.40
Dev 1,092 8 1.22
Test 403 4 0.46

3.1.3 Prosa Dataset

The Prosa dataset provides a valuable resource for training speech processing
models in Indonesian. These data were collected in the Prosa.ai4 environment.
This dataset, which was originally developed for training an Indonesian auto-
matic speech recognition (ASR) system, consists of speech recordings captured
in a controlled studio environment. The recordings feature clear audio due
to the controlled setting and include content from formal meetings and news
highlights.

Table 4 shows the distribution of the original recorded data (v0). Each sub-
set encompasses 50 speakers with a balanced gender distribution (25 females
and 25 males). Some speakers involved in the read and spontaneous sessions
were identical, but not all of them. Each speaker contributed 20 utterances to
each subset. While the utilized language was consistently Bahasa Indonesia,
the dataset captures the diversity of Indonesian dialects by including record-
ings from eight major ethnicities: Javanese, Sundanese, Minang, Bataknese,
Malay, Balinese, Sulawesi, and Papuan. This focus on dialectal variations
makes the Prosa dataset particularly useful for tasks such as speaker identi-
fication or speech emotion recognition, where the background of the speaker
may be relevant.

To establish a distinct test set for developing speech antispoofing systems,
we carefully selected 18 speakers that were not represented in the training

4https://prosa.ai/

https://prosa.ai/
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Table 4: Distribution of the Prosa dataset.

Version Subset # Utterances # Speakers Total duration (h)

v0 Read 1,000 50 1.43
Spontan 1,000 50 2.33

v1
Train 760 39 1.40
Dev 580 33 1.11
Test 660 18 1.24

Female

45.5%

Male

54.5%

<40

80.0%

≥40

20.0%

Javanese

47%

Balinese

3%

Sundanese23%

Minangkabau

3%

Bataknese

17%

Malay

5%

Sulawesian

2%

Figure 2: Demographic distribution of the InaSpoof-v1 dataset. Note that approximately
half of the dataset lacks gender, age, or race information.

data. These speakers were evenly distributed across different recording ses-
sions, ensuring a balanced evaluation. Table 4 summarizes the distribution of
the Prosa dataset after completing the processing steps (v1). Furthermore,
the demographic information of InaSpoof-v1 is outlined in Figure 2.

3.2 Spoof Data

Automatic speaker verification (ASV) systems leverage voice characteristics
to identify authorized users. However, they are vulnerable to spoofing at-
tacks [42]. In logical access attacks, attackers impersonate legitimate users
with techniques such as TTS synthesis or VC. These synthesized or converted
voices can trick the target ASV system into granting access to unauthorized
individuals. Spoofing technology can even be so advanced that it can fool
humans; these scenarios are sometimes referred to as voice cloning or voice
deepfakes [49].

To date, research on ASV spoofing and deepfake countermeasures for In-
donesian languages is scarce. Strong speech synthesis tools are essential for
developing effective countermeasures. This study explored methods that could
be used to generate high-quality spoofing data for the Indonesian language.
We categorized five spoofing attacks utilizing the state-of-the-art multilingual
TTS model (specifically, the massive multilingual speech (MMS) model [35]),
VC (particularly FreeVC [29]), WORLD (particularly with the CheapTrick al-
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gorithm) [33], and a collection of data from several proprietary TTS systems.
Table 5 summarizes the generated spoofing data, including their distribution,
based on their source datasets.

Table 5: A summary of the distributions of the bona fide and spoof data contained in
InaSpoof-v1.

SpoofedSubset Bona fide A001 A002 A003 A004 A005 A006 A007 A008
Train 2360 3744 17060 11920 2360 2,184 2360 760 2360
Dev 2002 3113 13960 10740 2002 900 2002 580 2002
Test 1501 3420 15420 11740 1381 585 1501 660 1501

3.2.1 MMS (A001)

TTS technology is evolving, moving beyond controlled environments and gen-
erating a wider variety of speech patterns; its ability to handle multiple lan-
guages is a key factor [8]. However, a major hurdle preventing the expansion
of TTS to more languages is the limited amount of available training data, es-
pecially for those with fewer resources. One approach for addressing this data
shortage involves the use of byte encoding to unify how text is represented
and tested in English, Spanish, and Chinese [28]. Other studies have explored
different ways to represent input text.

Recently, a significant advancement was achieved when a multilingual
model developed by Facebook, namely, MMS [35], was created. This model
can handle 1,406 languages and outperformed the existing solutions such as
Whisper on a benchmark test with significantly less training data. The MMS
TTS model is available here.5

To create our spoofing dataset, we leveraged the ability of the MMS model
to generate speech in multiple languages. This approach was particularly
advantageous because MMS supports several Indonesian accents. For the
initial version of our dataset, we generated spoofed speech in three major
Indonesian accents: Indonesian (ind), Javanese (jav), and Bataknese (bbc).
The transcripts used for spoofed data generation purposes were derived from
partial text transcriptions that were present in each real source dataset. We
also generated approximately 100 sentences that are commonly spoken in daily
life, each of which was approximately five seconds long. A current limitation
of the MMS model is its restriction to generating speech from a single male
speaker. The resulting spoofed speech signals are denoted as A001.

5https://huggingface.co/facebook/mms-tts

https://huggingface.co/facebook/mms-tts
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3.2.2 FreeVC (A002 and A003)

VC transfers a speaker identity, a prosody, and an emotion from a source to a
target while preserving the content of the original voice. Typical VC systems
employ separate models to convert acoustic features and generate waveforms
from those features. However, these models are trained on different data
(predicted vs. real speech), leading to a mismatch that reduces the quality
of the final voice. ViTS [22], which is a one-stage model for both TTS and
VC tasks, addresses this issue by connecting the conversion and waveform
generation stages through a unique structure. This reduces the mismatch
rate and improves the quality of the output. However, ViTS requires a text
input and is limited to converting between predefined speakers.

We utilized FreeVC,6 which is a text-free, one-shot VC system. It builds
upon the ViTS architecture but eliminates the need for text annotations by
learning to separate content information. FreeVC leverages WavLM [9] to
extract speaker-independent features directly from waveforms. A bottleneck
extractor then isolates the content information contained within these features.
Additionally, spectrogram-resize (SR) data augmentation strengthens the abil-
ity of the constructed model to disentangle content by distorting speaker in-
formation while preserving content. To achieve one-shot conversion, a speaker
encoder extracts speaker characteristics.

We evaluated two model variations: FreeVC, which uses a pretrained
speaker encoder (A002), and FreeVC-s, which uses a nontrained speaker en-
coder (A003). The spoofed data were generated using the output of the MMS
model, which incorporated speaker embeddings derived from approximately
100 randomly selected speakers within each subset of the bona fide dataset.
This is why the total numbers of spoofed utterances obtained from A002 and
A003 are much greater than that acquired from A001, which could only gen-
erate voices from one target speaker.

3.2.3 WORLD (A004)

WORLD7 [33] represents a significant advancement in vocoder-based speech
synthesis, offering a balance between high-quality outputs and real-time per-
formance. Its modular design and efficient algorithms make it suitable for
a wide range of speech technology applications. The synthesis process in
WORLD involves the following steps: (1) generating source excitation based
on F0 and aperiodicity information, (2) applying spectral envelope filtering
to shape the excitation signal, and (3) producing the final speech waveform
through an overlap-add synthesis process.

6https://github.com/OlaWod/FreeVC
7https://github.com/mmorise/World

https://github.com/OlaWod/FreeVC
https://github.com/mmorise/World
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To generate spoofed data, we modified the spectral envelope using Cheap-
Trick [32]. CheapTrick is an accurate spectral envelope estimation algorithm
based on a pitch-synchronous analysis. CheapTrick employs F0-based pro-
cessing techniques, including adaptive windowing, spectral smoothing, and
spectral recovery in the quefrency domain. We altered the pitch information
by randomly increasing or decreasing it by 4–6 semitones.

3.2.4 Proprietary TTS systems (A005)

We leveraged several proprietary TTS systems beyond the state-of-the-art
models to enrich the spoofed data with diverse synthesis styles. Owing to a
lack of access to internal system details, including specific algorithms, training
data, and architectures, a detailed, system-by-system analysis was infeasible.
Consequently, we initially grouped these systems under a single “unknown at-
tack” label (A005) to reflect this inherent uncertainty. The proprietary TTS
systems included those developed by Azure,8 Google,9 Prosa.ai,10 Eleven-
labs,11 Murf,12 TTSMaker,13 Narakeet,14 and Play.HT15.

We focused on generating Indonesian speech signals that were relevant
to the banking transaction domain with various text contents. The gener-
ated audio consisted of extended utterances, averaging 30 seconds in length.
These longer recordings were then segmented using Audacity16 by following
segmentation criteria that were consistent with the bona fide data described
in Subsection 3.1.

3.2.5 Hifi-GAN (A006)

HiFi-GAN is a neural vocoder that is renowned for its ability to efficiently
generate high-fidelity speech, making it a compelling choice for spoofed data
generation in speech synthesis and VC research [24]. Its GAN architecture,
comprising a generator and two discriminators (multiscale and multiperiod dis-
criminators), allows it to learn complex mappings between mel-spectrogram
inputs and raw waveforms. The key features that contribute to its perfor-
mance include multiple receptive field fusion modules within the generator,
enabling the model to capture diverse audio patterns, and a multiperiod dis-

8https://azure.microsoft.com/en-us/products/ai-services/ai-speech
9https://cloud.google.com/text-to-speech/docs/voice-types

10https://tts.prosa.ai/
11https://elevenlabs.io/text-to-speech
12https://murf.ai/
13https://ttsmaker.com/
14https://www.narakeet.com/languages/
15https://play.ht/text-to-speech/
16https://www.audacityteam.org/

https://azure.microsoft.com/en-us/products/ai-services/ai-speech
https://cloud.google.com/text-to-speech/docs/voice-types
https://tts.prosa.ai/
https://elevenlabs.io/text-to-speech
https://murf.ai/
https://ttsmaker.com/
https://www.narakeet.com/languages/
https://play.ht/text-to-speech/
https://www.audacityteam.org/
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criminator that was specifically designed to model and reproduce the crucial
periodicities inherent in speech.

We selected HiFi-GAN because of its excellent balance between speech
quality and generation speed. Its ability to synthesize high-fidelity audio
is crucial for creating convincing spoofing attacks, which are essential for
robustly training and evaluating speech antispoofing systems. Consistent with
the process used for the A001 system, spoofing attack transcripts were derived
from the partial text transcriptions provided with each real source dataset.
Half of these generated utterances underwent randomized speed perturbations,
with their durations varying by 10− 20%.

3.2.6 Bark (A007)

Bark,17 which is a transformer-based TTS model developed by Suno AI, was
employed to generate spoofed speech because of its capacity to create highly re-
alistic and diverse audio. Bark involves a similar approach to that of VALL-E
[40]. The Bark architecture comprises four interconnected models: a semantic
text model, a coarse acoustics model, a fine acoustics model, and an EnCodec
decoder [10]. The semantic text model processes tokenized text, generating
semantic tokens that capture the meaning of the text. These tokens are then
input into the coarse acoustics model, which predicts the first two audio code-
books that are essential for EnCodec. The fine acoustics model, which is
a noncausal autoencoder transformer, subsequently predicts the remaining
codebooks on the basis of the previously generated codebooks. Finally, the
EnCodec model synthesizes an audio waveform using the predicted codebooks.
Crucially, the first three models can be conditioned on speaker embeddings,
enabling the generation of speech with specific voice characteristics.

The speaker conditioning capabilities of Bark, combined with its ability
to generate high-quality and diverse speech, made it a valuable tool for cre-
ating realistic spoofing attacks in our speech antispoofing research. As Bark
does not yet support Indonesian, we utilized speaker conditioning by map-
ping Indonesian speaker identities to six proxy speakers (three per gender)
provided by Suno AI. To minimize the distortion caused by noisy speech data
(such as those found in Common Voice and LibriVox), we extracted Hubert
features exclusively from the Prosa dataset, which was recorded in a clean
environment. While the remaining components of the model were trained on
English data, we anticipated that this approach could provide insights into
the effectiveness of English-based pretrained models for Indonesian-language
spoofing detection.

17https://github.com/suno-ai/bark

https://github.com/suno-ai/bark
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3.2.7 Spectral Filtering (A008)

A008 employs a transfer function-based VC system, which is similar to those
used in the ASVspoof 2019 dataset generation process (A06 and A19) [42].
This system operates by analyzing the input voice signal using a source-filter
model and then replacing the filters of the input signal with those of the
target speaker. The modified filters are then used with the original residual
signal to resynthesize the spoofed speech via a standard overlap-add technique.
Because we directly used bona fide speech as our input, the text content
remained unchanged.

4 Countermeasures for Spoofing Attacks

Spoofing detection is a critical technology in the fight against voice authenti-
cation fraud. It aims to distinguish between genuine speech derived from a
human speaker (bona fide speech) and imitated/synthesized speech (spoofed
speech). This is particularly important for systems that rely on voice biomet-
rics, such as voice banking mechanisms or voice assistants.

Spoofing countermeasures typically consist of two primary components:
frontend feature extraction and backend classification modules. Backend
spoofing detection techniques analyze the speech characteristics extracted by
the front end to identify inconsistencies or artifacts that are indicative of ma-
nipulation. These inconsistencies can arise from various spoofing methods,
such as TTS or VC. More recently developed approaches utilize end-to-end
systems that directly process raw speech to discriminate between bona fide
and spoofed signals. One state-of-the-art end-to-end method is AASIST [18].
The following sections discuss frontend features, classifiers, and the end-to-end
AASIST model employed for Indonesian spoofing detection.

4.1 Front-end Features

We extracted four features that are commonly used in speech antispoofing tech-
niques: Mel-frequency cepstral coefficients (MFCCs) [36], constant-Q cepstral
coefficients (CQCCs) [38], linear-frequency cepstral coefficients (LFCCs) [36],
and spectrograms obtained from constant-Q transformations (CQT spectro-
grams) [50]. Figure 3 visualizes the features we used in this study.

4.1.1 MFCCs

MFCCs represent a powerful feature extraction technique that is widely used
in speech and audio processing tasks. An MFCC offers a compressed represen-
tation of the spectral envelope of a sound signal, emphasizing the frequencies
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Figure 3: Frontend features utilized for our spoofing attack countermeasures.

that are perceived most distinctly by the human auditory system. This em-
phasis on pitch perception aligns well with the task of spoofing detection,
where subtle variations in how genuine and spoofed voices distribute energy
across different frequencies can be crucial for differentiating between them.
By analyzing the extracted MFCC features, spoofing detection systems can
effectively distinguish between bona fide speech and spoof speech.

4.1.2 CQCCs

The CQT [7] was reported to have high spoofing detection potential in speech
analysis scenarios. Known for its effectiveness in various audio tasks, the CQT
offers a high-resolution analysis process that is similar to that of wavelets
but avoids the computational drawbacks of traditional wavelet techniques.
CQCCs were proposed by combining the CQT with cepstral analysis. Since
applying cepstral analysis directly to the CQT results in mismatched scales,
Todisco et al. introduced a linearization step that allows for feature extraction
to be properly performed by using the discrete cosine transform (DCT) [38].
This approach has the potential to identify subtle inconsistencies in spoofed
speech that simpler methods might miss.

4.1.3 LFCCs

LFCCs offer an alternative approach to MFCCs for conducting feature ex-
traction in speech processing tasks, including spoofing detection. An LFCC
represents the spectral envelope of a sound signal on a linear frequency scale.
This linearity can be advantageous in specific scenarios, particularly when the
applied spoofing technique relies on manipulating specific frequency bands.
For example, some VC methods might alter specific high-frequency regions
of the target speech signal. By analyzing the corresponding LFCC, spoofing
detection models can potentially identify these targeted manipulations in the
frequency domain, even if they might be less noticeable at the mel-frequency
scale used by MFCCs. While they may potentially be less aligned with human
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auditory perception, LFCCs offer valuable complementary information to that
of MFCCs and can be particularly useful when the nature of the employed
spoofing techniques is not well defined.

4.1.4 CQT Spectrograms

The CQT offers a distinct advantage over the short-term Fourier transform
(STFT) by providing a constant Q factor across the frequency spectrum. This
leads to superior temporal resolutions at higher frequencies and better fre-
quency resolutions at lower frequencies. Previous studies have highlighted
the efficacy of the CQT in applications such as sound source separation and
acoustic scene classification. Prior research has shown the potential of a CQT-
based spectrogram for use in discriminating between spoofed and bona fide
voices on the ASVspoof 2019 dataset, outperforming CQCCs [50].

4.1.5 Raw Speech

Using raw speech signals directly as features instead of traditional handcrafted
features offers enhanced flexibility and improved performance across speech
processing tasks, including speech spoof detection [19]. Modern deep learning
architectures enable automatic extraction of complex, task-specific represen-
tations directly from raw waveforms, bypassing manual feature engineering
limitations. Recent advancements demonstrate that raw waveform-based mod-
els achieve state-of-the-art results in multiple domains: speaker verification
systems using raw inputs now achieve equal error rates below 1% on bench-
mark datasets, while end-to-end architectures show superior noise robustness
in automatic speech recognition compared to conventional MFCC-based ap-
proaches [23].

4.1.6 SSL-based Features

Self-Supervised Learning (SSL) has revolutionized speech spoofing detec-
tion, overcoming limitations inherent in traditional handcrafted features like
MFCCs. SSL models, such as wav2vec 2.0 [3] and XLS-R [5] learn hierarchi-
cal representations directly from raw audio waveforms. These representations
capture both spectral and temporal characteristics, which are critical to dis-
tinguishing between bona fide and spoofed speech. This paradigm shift facil-
itates the development of end-to-end systems, bypassing the need for manual
feature engineering and achieving state-of-the-art performance. Previous re-
search suggested that SSL-based features exhibit robust generalization across
a wide range of spoofing attack types, including artifacts introduced by TTS
and VC techniques [37]. However, a significant challenge remains: SSL models
often require considerable computational resources.
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4.2 Backend Classifiers

Once the frontend features have been extracted, a backend classifier is em-
ployed to discriminate between the bona fide and spoofed speech signals. Var-
ious machine learning algorithms can be used for this task, each of which
possesses its own strengths and weaknesses. Common choices include support
vector machines (SVMs), Gaussian mixture models (GMMs), and deep neu-
ral networks (DNNs). In this study, we developed five classification models,
including an SVM, a GMM, a light gradient boosting machine (LightGBM),
a light convolutional neural network (LCNN), a residual network (ResNet),
and an AASIST model.

4.2.1 SVMs

An SVM aims to find a hyperplane that optimally separates data points be-
longing to different classes; in this case, these classes bona fide and spoofed
speech signals. The SVM algorithm works by mapping the input data (fea-
tures extracted from speech signals) to a high-dimensional feature space and
then finding the hyperplane with the maximum margin between the two
classes. This margin maximization scheme helps improve the generalization
performance of the SVM and mitigate overfitting. Several studies have demon-
strated the effectiveness of SVMs in ASV-based spoofing detection tasks [36,
20, 31].

4.2.2 GMMs

GMMs form another popular technique for ASV-based spoofing detection sce-
narios. Numerous studies have validated their effectiveness, establishing them
as common baseline models for this task [36, 42, 30, 31]. A GMM models the
probability density function of a given dataset as a mixture of Gaussian dis-
tributions. By training separate GMMs for bona fide and spoofed speech
signals, it is possible to classify new samples on the basis of their likelihood
of belonging to either class. GMMs are particularly effective at modeling
complex distributions that may not be well represented by a single Gaussian
distribution. They can also capture the variability exhibited by speech sig-
nals, making them suitable for handling different speaker characteristics and
recording conditions.

4.2.3 LightGBM

Compared with traditional gradient boosting algorithms, a LightGBM, which
is a gradient boosting framework, introduces novel techniques such as histo-
gram-based gradient boosting and exclusive feature bundling, significantly
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reducing the required training time and memory usage demands [21]. These
advantages make LightGBMs well suited for large-scale machine learning tasks.
In the context of spoofed voice detection, a LightGBM can effectively model
the complex relationships between features extracted from speech signals, en-
abling accurate classification. The ability of a LightGBM to handle large
datasets and its fast training speed make it a promising choice for real-time
voice spoofed detection applications. Despite their advantages, LightGBMs
have been relatively unexplored as backend classifiers in most existing spoofed
voice detection research. The effectiveness of a LightGBM for this task was
investigated in this study.

4.2.4 LCNN

Convolutional neural networks (CNNs), which are known for their ability to
recognize local patterns in data with minimal preprocessing steps, are com-
monly employed as DNN architectures for speech antispoofing [31]. The
LCNN model has gained popularity in recent years because of its ability to
achieve high performance while minimizing the incurred computational costs
[26]. The LCNN model was initially proposed for replay attack detection [25].
In the ASVspoof 2019 challenge, it was enhanced with an angular margin-
based softmax (A-softmax) activation function, which constrained the learned
features to a unit hypersphere, improving the ability to discrimine between
genuine and spoofed signals. This approach achieved impressive results, with
equal error rates (EERs) of 1.86% and 0.54% in the LA and PA scenarios,
respectively [26]. Given its promising performance, we adopted a CQT spec-
trogram as the frontend feature and the LCNN model as the backend classifier.
The LCNN architecture follows the model derived from ASVspoof 2021 [30].

4.2.5 ResNet

A ResNet [16], which is a type of CNN, has been successfully applied to
various tasks, including speech recognition and image classification. Its in-
novative design incorporates residual connections, enabling the network to
learn residual functions and train deeper models without encountering the
vanishing gradient problem. In the context of ASV-based spoofing detection,
ResNets have demonstrated their ability to effectively extract discriminative
features from speech signals, capturing complex patterns and relationships.
ResNets have outperformed traditional machine learning methods and other
DNN architectures in many ASV-based spoofing detection benchmarks. We
adopted the ResNet architecture proposed in the ASVspoof 2019 challenge for
our experiments [2].
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4.2.6 AASIST

The AASIST model [18], which stands for audio antispoofing via integrated
spectro-temporal graph attention networks, was designed to efficiently detect
diverse spoofing attacks, eliminating the need for computationally intensive
ensemble systems. AASIST processes raw waveform inputs, which are then
encoded using a RawNet2-based encoder. It constructs and fuses spectral and
temporal graphs into a unified spectro-temporal graph, integrating frequency-
and time-related information. A key component is its novel heterogeneous
stacking graph attention layer, which captures artifacts across various tempo-
ral and spectral intervals by using a specialized attention mechanism and a
stack node. This architecture, which incorporates a novel graph maximization
operation and a readout scheme, enabled AASIST to achieve a 20% relative
improvement over the state-of-the-art models in ASVspoof 2019. To enhance
performance, we integrated SSL-based features, leveraging their ability to
capture robust, high-level representations from raw speech waveforms. Fur-
thermore, we evaluated a lightweight variant, AASIST-L, on the InaSpoof-v1
dataset to assess its efficiency and effectiveness.

5 Experiments

This section describes the spoofing detection experiments conducted in this
study. We first outline the hyperparameter tuning process. Next, we discuss
the evaluation metrics used to assess the performance of the tested models.
Owing to the novelty of the employed datasets for spoofing detection, we
conducted a thorough analysis of each dataset individually and in combination
with other datasets.

5.1 Hyperparameter Settings

Hyperparameters significantly influence the performance of machine learning
models. While most of the hyperparameters contained in the tested feature
extraction and machine learning models were set to their default values as
used in the corresponding references, we explored alternative settings. Table
6 summarizes the feature extraction parameters, including MFCCs, LFCCs,
CQCCs, and CQT spectrograms. For SSL-based features, we incorporated the
wav2vec 2.0 XLS-R pre-trained model [5] with 300 million parameters.18 Table
7 presents the classifier parameters used in our experiments, including those
of the SVM, the GMM, the LightGBM, the LCNN, ResNet, and AASIST.

18https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec/xlsr

https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec/xlsr
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Table 6: Feature extraction parameters. An asterisk (*) indicates that the default value
used in the corresponding reference was employed.

FeatureParameters MFCC19 LFCC20 CQCC21 CQT spectrogram22

Sampling frequency 16 kHz 16 kHz 16 kHz 16 kHz
Frame length 30 ms 20 ms * *
Frame overlap 20 ms 10 ms * *
# Filters 20 20 * *
Pre-emphasis coefficient 0.97 0.97 0.97 0.97
Window function Hamming Hamming Hann Hann
# Coefficients 13 20 20 -
Lag of the delta function 3 3 3 -
# Bins per octave - - 96 *
# Uniform samples in the first octave - - 20 *
Maximum length - - - 200

Table 7: Machine learning model parameters. Values not listed in the table were set to
their default values.

ClassifierParameters SVM GMM LightGBM LCNN ResNet AASIST
Model SVC23 GMM24 LGBM25 LCNN26 ResNet3427 AASIST, AASIST-L28

Kernel function Poly - - - - -
# Mixtures - 2 - - - -
Alpha - 1 - - - -
# Epochs - - - 20 20 20
Batch size - - - 128 128 4
Learning rate - - - 0.0001 0.0001 0.0001
Early stopping patience - - - 5 5 -
Optimizer - - - Adam Adam Adam

Loss function - - - Sparse categorical
cross-entropy loss

Binary
cross-entropy loss

Categorical
cross-entropy loss

5.2 Evaluation Metrics

Our evaluation focused on a standalone spoofing detection scenario, similar
to the deepfake task in ASVspoof 2021 [30], without incorporating automatic
speaker verification. To evaluate the tested spoofing countermeasures, we
utilized four metrics:

(i) Area under the curve (AUC)
The AUC is a commonly used metric for evaluating binary classification mod-
els. It measures the ability of a model to discriminate between positive and

19https://www.mathworks.com/help/audio/ref/mfcc.html
20https://github.com/smileslab/Comparative-Analysis-Voice-Spoofing
21https://github.com/asvspoof-challenge/2021/tree/main/LA/Baseline-CQCC-GMM/

matlab/CQCC
22https://librosa.org/doc/main/generated/librosa.cqt.html
23https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
24https://github.com/jiwidi/gmm-classifier
25https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
26https://github.com/asvspoof-challenge/2021/tree/main/LA/Baseline-LFCC-LCNN
27https://github.com/nesl/asvspoof2019
28https://github.com/clovaai/aasist

https://www.mathworks.com/help/audio/ref/mfcc.html
https://github.com/smileslab/Comparative-Analysis-Voice-Spoofing
https://github.com/asvspoof-challenge/2021/tree/main/LA/Baseline-CQCC-GMM/matlab/CQCC
https://github.com/asvspoof-challenge/2021/tree/main/LA/Baseline-CQCC-GMM/matlab/CQCC
https://librosa.org/doc/main/generated/librosa.cqt.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://github.com/jiwidi/gmm-classifier
https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
https://github.com/asvspoof-challenge/2021/tree/main/LA/Baseline-LFCC-LCNN
https://github.com/nesl/asvspoof2019
https://github.com/clovaai/aasist
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negative instances. A receiver operating characteristic (ROC) curves plot
the true-positive rate against the false-positive rate at different classification
thresholds. The AUC represents the area under the ROC curve. A higher
AUC indicates better overall classification performance, as the tested model
can effectively distinguish between positive and negative instances across var-
ious classification thresholds.

(ii) Average precision (AP)
AP is a valuable metric for evaluating the performance of spoofing detection
systems. It provides a measure of the ability of the tested model to retrieve
relevant spoofed utterances while minimizing the number of false alarms. The
AP is calculated by averaging the precision values attained at various recall
levels. A higher AP value indicates that the associated model can effectively
identify spoofed utterances with high precision, even at low recall levels. This
is crucial in real-world applications where minimizing the number of false
alarms is a priority. By using AP as an evaluation metric, researchers can
assess the overall effectiveness of their spoofing detection systems and identify
areas for improvement.

(iii) Minimum detection cost function (minDCF)
The minDCF was the primary metric used in Track 1 of the ASVspoof 5
challenge for evaluating spoofing detection systems [11]. It is a normalized
detection cost function that accounts for the costs of false rejections and false
alarms, as well as the prior probability of a spoofing attack. The minDCF is
calculated by minimizing the normalized detection cost function (DCF’) over
the detection threshold (τCM ). DCF’ includes the false rejection rate, false-
alarm rate, and cost ratio (β), the latter of which reflects the relative costs of
false rejections and false alarms. The minDCF was compared with the actual
detection cost function (actDCF) to assess the performance of the developed
system under real-world conditions.

(iv) Equal error rate (EER)
The EER represents the point at which the false acceptance rate (FAR) and
false rejection rate (FRR) are equal. In other words, the EER indicates the
rate at which the tested model misclassifies both genuine and spoofed ut-
terances equally. A lower EER indicates better overall performance, as the
associated model can effectively discriminate between the two classes while
minimizing the induced errors.

Considering the focus of this work on low-resource-language datasets, we
acknowledge that training times might be of interest to some readers. We also
report the average training times required by the different models to provide
a more comprehensive picture of their efficiency.

5.3 Comparative Preliminary Analysis: InaSpoof-v0 and -v1

To evaluate the quality of the original dataset (the v0 version), we conducted
preliminary experiments via nondeep learning methods: a LightGBM, an
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SVM, and a GMM. These models were selected to reduce the required com-
putational time and focus on the underlying data characteristics.

The results, as summarized in Table 8, indicate a high likelihood of over-
fitting. The models achieved exceptional performance on each dataset, with
metrics such as their AUC and AP values approaching 1. Additionally, the
minDCF and EER were also near 0. Previous research conducted using the
Prosa and CommonVoice datasets reported poor cross-set evaluation perfor-
mance [4]. This suggests that the distributions of these datasets may be
imbalanced or that the performed task was overly simplistic, leading to the
models easily learning the training set patterns without generalizing well to
unseen data.

Table 8: Results of a performance comparison between InaSpoof-v0 and -v1. The compari-
son was conducted using a consistent set of spoofing attacks (A001-A004). Arrow directions
indicate superior performance: ↑ denotes that higher values are better, ↓ signifies that lower
values are better.

AUC (↑) AP (↑) minDCF (↓) EER (%) (↓)Feature Classifier v0 v1 v0 v1 v0 v1 v0 v1
LightGBM 0.9763 0.7681 0.9453 0.5310 0.0053 0.1374 0.3000 6.0212

SVM 0.7323 0.6182 0.4605 0.2711 0.8028 0.9010 53.5100 76.3271MFCC
GMM 0.9595 0.8472 0.7427 0.5297 0.1497 0.5654 7.7600 28.8746

LightGBM 0.9870 0.8766 0.9727 0.7315 0.0040 0.0685 0.1800 3.4011
SVM 0.8397 0.6290 0.6847 0.2953 0.6093 0.8097 32.0600 74.1938CQCC
GMM 0.9814 0.8863 0.7573 0.6250 0.0655 0.4225 3.5200 21.6942

LightGBM 0.9795 0.9039 0.9571 0.7967 0.0076 0.0481 0.3800 2.0749
SVM 0.7038 0.6008 0.4109 0.2459 0.7211 0.9198 59.2200 79.8290LFCC
GMM 0.9915 0.9266 0.6985 0.7741 0.0245 0.2752 1.2025 14.2662

To address the overfitting issues observed in the v0 dataset, we imple-
mented a refined data partitioning strategy for InaSpoof-v1. This comparison
allowed us to assess the increased difficulty of the newer dataset. We evalu-
ated the performance of the countermeasure models as standalone deepfake
detection systems on each source dataset. Our findings confirm that InaSpoof-
v1 presents a significantly greater challenge than v0 does. Table 8 illustrates
this increased difficulty, as all the metrics decreased despite the inclusion of
similar attack types.

Notably, SVM-based classifiers frequently misclassified the evaluation sam-
ples as spoofs on InaSpoof-v1, resulting in AUC scores near 0.6, AP values
below 0.3, minDCF scores approaching 1, and EERs exceeding 70%. In gen-
eral, the performance of the SVM on InaSpoof-v1 was substantially worse
than that on InaSpoof-v0, where some evaluation samples were still correctly
classified. Consequently, we excluded the SVM from further analyses because
of its consistently poor performance. Conversely, we observed a clear per-
formance advantage for the LightGBM on InaSpoof-v0, where it consistently
achieved the highest scores.
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5.4 Results Obtained on the InaSpoof-v1 Dataset

This analysis was aimed at investigating the effectiveness of the existing
countermeasure models in terms of detecting Indonesian-language spoofing
attacks, particularly when faced with the increased difficulty of the InaSpoof-
v1 dataset. To achieve this goal, we conducted several experiments.

• First, we combined all the source datasets to create a more diverse
and challenging dataset. Our initial evaluation aimed to assess the per-
formance of the existing countermeasures on the InaSpoof-v1 dataset,
specifically analyzing the attack types that rendered the system most
vulnerable.

• Second, we conducted a demographic analysis of the spoofing detection
performance of the tested methods, focusing on factors such as gender
and dialect.

• Third, we performed a model generalization evaluation on private data.
We trained and developed models on publicly available datasets and
tested them on private, unseen data.

• Finally, we simulated real-world spoofing attacks using a subset of the
InaSpoof-v1 dataset to evaluate the effectiveness of the model in terms
of handling replay attacks. This experiment provided valuable insights
into the performance of the models in a more realistic scenario.

5.4.1 Overall Evaluation

To comprehensively evaluate the robustness of different countermeasures
against the InaSpoof-v1 dataset, we conducted an overall performance assess-
ment by combining all the source datasets, creating a diverse and challenging
evaluation environment. Our initial objective was to determine the effective-
ness of the existing antispoofing techniques and identify the attack types that
posed the greatest vulnerabilities. This evaluation encompassed wide ranges
of features and classifiers, with the performance of the models assessed using
standard metrics: the AUC, AP, minDCF, and EER. The detailed results are
presented in Table 9.

This comprehensive evaluation demonstrated that the AASIST-based
methods achieved the highest performance across most metrics, exhibiting
superior AUC, AP, and minDCF scores. The combination of SSL-based fea-
tures with the AASIST model yielded exceptional results, achieving an EER
of less than 1% minDCF approaching 0. However, it is crucial to acknowledge
that the use of pre-trained SSL-based features, which leverage information
external to the training data, introduces a potential privacy concerns [39],
preventing a direct, equitable comparison with other methods.
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Table 9: Overall evaluation results obtained on InaSpoof-v1 (attacks detailed in Table 5).
The top-performing countermeasure model utilizing features solely from the training dataset
is indicated in black, while the top-performing model incorporating SSL-based features is
indicated in blue.

Feature Classifier AUC (↑) AP (↑) minDCF (↓) EER (%) (↓)
LightGBM 0.6949 0.3761 0.1851 7.4622MFCC GMM 0.8385 0.1394 0.4292 20.5158
LightGBM 0.8250 0.6291 0.1159 4.4514CQCC GMM 0.8149 0.2036 0.6310 28.9803
LightGBM 0.8354 0.6413 0.1164 4.4111LFCC GMM 0.8460 0.2731 0.5329 24.9840
LightGBM 0.6815 0.3467 0.2097 8.4463

LCNN 0.8512 0.6059 0.1891 6.5922CQT
ResNet 0.8209 0.6054 0.2367 8.4463
AASIST 0.9924 0.8703 0.1061 4.2051Raw speech AASIST-L 0.9928 0.9100 0.1052 4.1925

SSL AASIST 0.9994 0.9888 0.0244 0.8658

When utilizing raw speech as front-end input, AASIST-L, despite its re-
duced parameter count compared to AASIST, exhibited slightly improved
performance in the overall InaSpoof-v1 evaluation. Nevertheless, this differ-
ence was not statistically significant (p > 0.005). Furthermore, LightGBM
consistently achieved low EER values (below 5%) when simple features such
as CQCCs and LFCCs were used, significantly outperforming the GMM-based
approach.

Although the LightGBM generally yielded low EER values, its perfor-
mance in terms of the AUC and AP metrics was considerably lower than
that of the AASIST-based methods. This suggests that while the LightGBM
excelled at balancing false positives and false negatives at a specific operating
point (as reflected by the EER), it struggled to maintain high performance
across the entire range of decision thresholds. This indicates a potential lim-
itation in its ability to effectively discriminate between genuine and spoofed
samples at varying confidence levels, particularly when compared with the
more robust feature learning capabilities of AASIST.

Experiments conducted using CQT spectrograms with the LightGBM and
CNN-based models (LCNN and ResNet) produced EER values within the
range of 6–9%, highlighting the effectiveness of these feature-classifier com-
binations. This comprehensive evaluation provided a strong baseline for un-
derstanding the performance of various countermeasures on the challenging
InaSpoof-v1 dataset.

Figure 4 presents the attack-specific performance of the top-performing
methods identified in Table 9: CQT-LCNN, RawSpeech-AASIST, RawSpeech-
AASIST-L, and SSL-AASIST. Each method displayed unique performance
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Figure 4: Accuracies achieved by the top 4 spoofing detection methods on the InaSpoof-
v1 dataset divided by attack type. Methods: CQT-LCNN, RawSpeech-AASIST, and
RawSpeech-AASIST-L.

patterns across the various attack types. To ensure a fair comparison, we
analyze these results considering the use of features derived solely from the
available training dataset versus those incorporating pre-trained SSL models.

Firstly, our experimental results suggest that CQT-LCNN struggled with
vocoder-based attacks, particularly A006 (HiFi-GAN; accuracy of 69%) and
A004 (CheapTrick; accuracy of 81%). However, it performed relatively well
on the proprietary TTS-generated speech (A005; accuracy of 81%), outper-
forming the RawSpeech-AASIST-based methods in this category. Generally,
CQT-LCNN achieved good accuracy (≥ 85%) on the remaining attacks.

When employing raw speech waveforms as front-end features, both AA-
SIST and AASIST-L demonstrated similar performance patterns in their re-
spective radar plots. Although they achieved superior overall evaluation re-
sults in Table 9, both methods struggled to accurately detect the unknown
proprietary TTS attack (A005; accuracy < 50%) and vocoder-based attacks
(A004 and A006). Notably, AASIST-L exhibited a 15% higher accuracy than
AASIST for A004, but a 6% lower accuracy for A008. This discrepancy may be
attributed to the disproportionately large number of spoofed utterances from
attacks A001 to A003, compared to the limited data available for A004 to
A008, despite the inclusion of more speaker embeddings. Consequently, the
models struggled to recognize spoofed signals from these underrepresented
attacks. The higher overall accuracy of AASIST models compared to LCNN
model is likely due to the effective detection of bona fide speech signals, which,
while fewer in number, are more easily distinguished.

Leveraging pre-trained SSL models, the AASIST architecture exhibited
exceptional performance, achieving accuracies exceeding 95% for all attack
types. This superior detection capability can be attributed to the inherent
strengths of SSL representations. These models, trained on vast amounts of
unlabeled audio data, learn hierarchical features that effectively encode both
spectral and temporal information. Consequently, AASIST, when fed with
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these powerful SSL features, is able to effectively distinguish between genuine
and spoofed audio, even for highly challenging attack types.

In summary, CQT-LCNN and RawSpeech with AASIST-based models
struggled with specific attack types, notably unknown TTS and vocoder-based
attacks. Subsequently, utilizing pre-trained SSL models yielded exceptional
performance, achieving detection error rates below 5% across all attack types.

Figure 5 illustrates the training and inference times required to build spoof-
ing countermeasure models on the InaSpoof-v1 dataset using an RTX 2080
SUPER GPU. As depicted, the LightGBM exhibited the shortest training
time, whereas the AASIST-based methods demonstrated the fastest inference
times among those of the other methods. Although employing CQT spectro-
grams increased the dimensionality of the feature space, the corresponding
training time increment induced for the LightGBM was relatively small, high-
lighting its efficiency. The LCNN generally required longer training times
than ResNet did, but its inference time was slightly shorter. SSL-AASIST
presented the highest computational demands, incurring significant training
and inference costs. This is attributed to the inherent complexity of pro-
cessing high-dimensional SSL features and the computational intensity of the
graph-based operations within the AASIST model, highlighting the resource
implications of employing SSL-driven architectures.
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Figure 5: (Top) Training time (in seconds) required for each method on the InaSpoof-v1
dataset. (Bottom) Inference time (in seconds) required by each method for predicting the
evaluation subset. The prefix ‘Raw-’ indicates the use of raw speech waveform features as
input.
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For applications demanding minimal inference latency, AASIST with raw
speech waveform features emerged as the optimal choice, delivering high per-
formance in distinguishing between bona fide and spoofed signals. Conversely,
the LightGBM, despite its rapid training procedure, struggled to accurately
identify bona fide signals that were not encountered during training. We ob-
served that the presence of unseen speakers in the evaluation set led to a
significant number of misclassifications, with real signals often being incor-
rectly identified as spoofs, resulting in an overall accuracy of approximately
0.67.

5.4.2 Analyzing the Influence of Demographics on Spoofing Detection Performance

A comprehensive evaluation of speech spoofing detection systems necessitates
an understanding of the influence of demographic factors. Due to the inclu-
sion of external resources in SSL-based features and the resulting near-perfect
detection performance, analyzing demographic factors becomes challenging.
Consequently, this section investigates the effects of gender and dialect varia-
tions on the performance of AASIST-L and CQT-LCNN, which exhibited the
highest overall performance when utilizing only the training dataset features.

Figure 6 provides a detailed gender-specific analysis of the spoofing detec-
tion performance achieved on the InaSpoof-v1 dataset. Notably, AASIST-L
demonstrated consistent performance across both male and female speakers,
as reflected in its comparable minDCF and EER metrics. Conversely, CQT-
LCNN revealed a significant performance discrepancy, with its minDCF and
EER values approximately doubling for female speakers relative to those pro-
duced for male speakers. This suggests that CQT-LCNN encounters greater
difficulty in terms of accurately identifying spoofed female speech. The high
proportion of samples with unknown gender labels, particularly within the
CommonVoice subset, likely contributed to an observed detection error in-
crease.

Figure 7 examines the impact of the speaker age on the spoofing detection
performance achieved within InaSpoof-v1. Both AASIST-L and CQT-LCNN
exhibited declines in their spoofing detection accuracies for speakers aged 40
years and above. Although AASIST-L showed a relatively minor performance
degradation relative to the results obtained for younger speakers, CQT-LCNN
displayed a more significant divergence, as characterized by a 6% increase in
its EER for the older age group.

Figure 8 provides an analysis of the spoofing detection performance
achieved across various dialectal groups. Overall, AASIST-L and CQT-LCNN
demonstrated consistent performance patterns across the major dialects: Ja-
vanese, Bataknese, and Unknown. However, the Melayu, Sulawesi, and Mi-
nang dialects, which are characterized by smaller sample sizes and the ab-
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Figure 6: Analysis of the performance achieved across different genders. Abbreviation: Unk
(Unknown).
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Figure 7: Analysis of the performance achieved across different ages. Abbreviation: Unk
(Unknown).

sence of spoofed data in attacks A001, A002, and A003, exhibited a diver-
gence in performance. Specifically, AASIST-L achieved near-perfect detec-
tion performance (with an EER approaching 0%), whereas the performance of
CQT-LCNN varied, with an error rate ranging from 0–3%. Importantly, the
MMS-generated dataset encompasses only the primary Indonesian dialects:
standard Indonesian, Javanese, and Bataknese. The observed performance
trends appear to have been influenced by the sample distribution. The Un-
known dialect category, representing the largest sample size, presented the
most significant challenge for accurately conducting spoofing detection. Simi-
larly, the Javanese dialect, which was the second-most-populous category, also
demonstrated increased prediction difficulty. These findings indicate that de-
mographic imbalances lead to increased difficulty in detecting spoofing in
dialects with higher attack variation compared to those with limited sample
sizes.
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Figure 8: Analysis of the performance achieved across different races/dialects. The bona
fide data included various Indonesian dialects, while the spoofed data primarily consisted
of standard Indonesian with some Javanese and Bataknese accents. Abbreviations: Jav
(Javanese), Btk (Bataknese), Mly (Malay/Betawi), Slw (Sulawesian), Mng (Minangkabau),
Ind (Indonesian).

A detailed analysis of the bona fide and spoofed detection results produced
by CQT-LCNN across different language groups reveals notable variations.
For the bona fide data, which included diverse Indonesian dialects (Javanese,
Bataknese, Malay, Sulawesian, and Minangkabau), the model performance
exhibited significant disparities. Specifically, Bataknese, Malay, and Minangk-
abau were more accurately classified as bona fide data, whereas Sulawesian
and Javanese presented greater classification challenges. Bataknese, Malay,
and Minangkabau share linguistic similarities that are rooted in Austrone-
sian languages, along with geographical and cultural connections. Conversely,
Javanese and Sulawesian, despite also being Austronesian, display distinct
linguistic and cultural characteristics. These phonetic and phonological fea-
ture variations likely contributed to the different performances attained by
the model across various dialects.

5.4.3 Model Generalization Evaluation Conducted on a Private Dataset

We evaluated the generalizability of the tested models to unseen private data
through an open-set evaluation, and the results are detailed in Table 10. The
models were trained and developed on the publicly available CommonVoice
and LibriVox datasets and subsequently evaluated on the Prosa dataset. Over-
all, the CQT-LCNN method demonstrated robust performance in terms of
handling diverse speech synthesis attacks, achieving significantly lower min-
imum DCF and EER scores than the other methods did. The CQT-LCNN
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Table 10: The results of the model generalization evaluation. The training and develop-
ment sets were drawn from publicly available datasets (CommonVoice and Librivox), while
the testing set was sourced from the Prosa dataset. The top-performing countermeasure
model utilizing features solely from the training dataset is indicated in black, while the
top-performing model incorporating SSL-based features is indicated in blue.

Feature Classifier AUC (↑) AP (↑) minDCF (↓) EER (%) (↓)
LightGBM 0.5319 0.0654 0.5476 24.2181MFCC GMM 0.7163 0.0976 0.8128 29.4269
LightGBM 0.5159 0.0668 0.5326 19.6964CQCC GMM 0.5021 0.0505 1.0000 98.9375
LightGBM 0.5287 0.0856 0.5354 21.6657LFCC GMM 0.7521 0.1276 0.6820 28.9260
LightGBM 0.5006 0.0502 0.5246 28.9075

LCNN 0.7840 0.4488 0.3466 12.5744CQT
ResNet 0.6052 0.1617 0.6621 24.2581
AASIST 0.8149 0.2036 0.6310 28.9803Raw speech AASIST-L 0.7269 0.1199 0.8213 32.8780

SSL AASIST 0.9984 0.9756 0.0346 1.6657

method yielded the best scores for all the metrics, but its AUC values re-
mained approximately 0.78, which were slightly lower than those of AASIST,
suggesting limited discriminative capabilities in this open-set scenario. The
LightGBM and GMM methods exhibited near-zero AP values, indicating a
complete failure to generalize.

The generalization performance of the CNN-based methods revealed that
the LCNN surpassed ResNet. The LCNN achieved an approximately 32% re-
duction in the minDCF and a 12% decrease in the EER, which was consistent
with the overall evaluation findings presented in Table 9. However, the model
generalization evaluation on private dataset yielded a contrasting result for the
AASIST models using raw speech features (RawSpeech-AASIST). RawSpeech-
AASIST consistently outperformed RawSpeech-AASIST-L across all evalu-
ated metrics, demonstrating an approximate 0.2 improvement in minDCF
and a 4% reduction in EER. This indicates that increased model capacity is
essential for achieving robust performance on unseen data. The incorporation
of SSL-based features yielded robust performance, even on unseen private
data. While the generalization evaluation exhibited lower performance com-
pared to the overall evaluation on known datasets presented in Table 9, the
EER remained notably low, consistently below 5%.

Figure 9 presents the results of the model generalization evaluation, broken
down by attack type. As anticipated, significant increases in the numbers
of misclassifications were observed in this open-set scenario. CQT-LCNN
exhibited the poorest performance on attack A006, achieving an accuracy
of only approximately 50%. This method also struggled with attack A007,
yielding an accuracy of just 51%. Attack A005 produced an accuracy of
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Figure 9: Accuracies achieved by the representative countermeasures in the model gen-
eralization evaluation, divided by attack type. Methods: CQT-LCNN, CQT-ResNet,
RawSpeech-AASIST, and SSL-AASIST.

approximately 75%. It reached near-perfect accuracy (approaching 100%) on
attacks A001, A002, and A008, whereas its accuracy was approximately 85%
on bona fide data and attack A004. The performance of CQT-ResNet was
worse than that of CQT-LCNN for almost all attack types except A006.

Building upon the attack-specific generalization results presented in Figure
9, we observed notable performance variations among the different methods.
Although the AASIST models share a similar architecture, they exhibited
distinct vulnerabilities to various attack types depending on the input fea-
tures used. Both models effectively distinguished bona fide samples and at-
tacks A001, A002, A003, and A008. However, the RawSpeech-AASIST model
struggled with attacks A005 and A007, achieving accuracies below 50%, while
the SSL-AASIST model achieved accuracies around 92%. Finally, the per-
formance of RawSpeech-AASIST for vocoder-based attacks A004 and A006
remained consistently low, whereas the SSL-AASIST model achieved approx-
imately 88% accuracy.

In conclusion, SSL-AASIST emerged as the optimal choice for robustly
performing spoofing detection in open-set scenarios, where models must effec-
tively generalize to unseen data and challenging recording environments.

5.5 Toward Actual Spoofing Through Replay Attack Simulation

5.5.1 Replay Attack Simulation

To simulate real-world spoofing attacks, we employed a straightforward ap-
proach involving the use of a smartphone, a laptop, an IC recorder, and two
condenser microphones. This setup mimicked the potential vulnerabilities
exhibited by ASV systems, where malicious actors could exploit playback de-
vices to bypass security measures. By capturing audio samples from legitimate
users and replaying them through the smartphone, laptop, IC recorder, and
condenser microphones, we aimed to generate spoofed audio that could de-
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ceive an ASV system. This approach allowed us to assess the effectiveness of
our countermeasure models in terms of detecting and mitigating such attacks.

The simulation was conducted in two environments to mimic realistic con-
ditions for replay attacks while maintaining controlled setups. The first envi-
ronment was a personal apartment room with untreated acoustics and moder-
ate ambient noise control, where the level of sound pressure of the background
noise in the room was measured around 34 dB due to natural household sounds
and mild noise control. Standard furniture created natural sound reflections
and mild diffusion, and blankets were used to minimize the amount of rever-
beration. The second environment was a home recording room with better
sound isolation and quieter surroundings. The sound pressure level of the
background noise in the room was around 28 dB, offering a more controlled
acoustic space for the replay attack data, incorporating a laptop and an IC
recorder as recording devices.

Figure 10 shows the simplified process of our replay attack simulation.
Table 11 lists the specifications of the devices used in the simulation. Initially,
two condenser microphones were connected to a soundcard using XLR cables.
The soundcard was then connected to a laptop via a soundcard cable. On the
laptop, GarageBand was configured to receive two inputs: channel 1 for the
attack microphone (AT2035) and channel 2 for the ASV system microphone
(Ashley Studio Voice). The audio levels were adjusted to balance both inputs.
The smartphone and laptop voice note applications were activated to prepare
the microphones of both devices for recording. After the initial setup, the IC
recorder and microphones were positioned 30 centimeters from the speaker.
After this simulation, we obtained a replay attack dataset. All audio files
were standardized by converting them to mono and 16-bit PCM. Table 12
summarizes the spoofing data generated from the replay attack simulation,
including its distribution on the basis ofthe source datasets.

Table 11: Specifications of the devices employed in the replay attack simulation.

Device Information
Condenser microphone (ASV) Ashley Studio Voice Cardioid Condenser Microphone

Condenser microphone (Attacker) AT2035 Cardioid Condenser Microphone
IC recorder Sony ICD-UX71 Digital Voice Recorder

Laptop MacBook Air (Mid-2013) built-in microphone with digital work-
station audio software (GarageBand) installed

Smartphone iPhone 8+ (built-in microphone)
Speaker Bose Color Soundlink

Soundcard Steinberg UR28M USB 2.0 Audio Interface
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Figure 10: Replay attack simulation process.

Table 12: Distributions of the bona fide and spoofed samples contained in the replay attack
dataset. Notes: HP = handphone microphone, Condenser = condenser microphone, IC =
IC recorder, and Laptop = laptop microphone.

Source Bona fide Spoofed
HP Condenser IC Laptop

CommonVoice 4,540 4,540 4,540 4,540 4,540
Prosa 2,000 2,000 2,000 2,000 2,000

5.5.2 Spoofing Countermeasures for Replay Attacks

We subsequently developed spoofing countermeasures for replay attack detec-
tion. The dataset was partitioned into training, development, and test sets at
a 60:20:20 ratio and stratified by the speaker labels to maintain balance. Table
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13 presents the results of the replay attack countermeasures. Across all clas-
sifiers, CQT spectrograms proved to be the most effective features. Notably,
the LightGBM, LCNN, and ResNet models achieved minimal DCF values
approaching zero and EER values below 5%, which significantly contrasted
with the results observed in the speech synthesis countermeasure experiment
(Subsection 5.4).

Table 13: Results of a simulated physical attack scenario where was is played back from a
smartphone, an IC recorder, a laptop, and condenser microphones. The dataset used in this
experiment was a balanced subset of CommonVoice and Prosa, matching the distribution of
the bona fide data contained in InaSpoof-v1. Both playback types had equal representation.
The best-performing methods are indicated in blue.

Feature Classifier AUC (↑) AP (↑) minDCF (↓) EER (%) (↓)
LightGBM 0.9207 0.8489 0.1331 5.5012MFCC GMM 0.9218 0.7620 0.2501 10.4217
LightGBM 0.9061 0.8089 0.1506 6.0542CQCC GMM 0.7632 0.6287 0.8998 47.3596
LightGBM 0.9301 0.8723 0.1296 4.9799LFCC GMM 0.8050 0.6942 0.7411 39.0061
LightGBM 0.9415 0.9006 0.0976 3.3841

LCNN 0.9456 0.9001 0.0430 1.8478CQT
ResNet 0.9882 0.9492 0.0204 1.1443
AASIST 0.9442 0.8584 0.3534 13.2528Raw speech AASIST-L 0.9332 0.8300 0.3927 14.3166

Regarding the performance of the tested classifiers, our evaluation demon-
strated that the CQT-based models consistently outperformed those trained
on MFCC, CQCC, and LFCC features. As shown in Table 13, the ResNet
classifier achieved the highest AUC (0.9882) and AP (0.9492) values, along
with the lowest minDCF (0.0204) and EER (1.1443%). These results indi-
cate that, in our evaluation, the CNN-based classifiers, particularly ResNet,
effectively differentiated replayed speech from bona fide speech. The LCNN
model also exhibited comparable performance, reinforcing the efficacy of CNN-
based methods for serving as replay attack countermeasures. Additionally, the
LightGBM, while performing adequately, presented higher minDCF and EER
values than the CNN-based methods did, suggesting limitations in terms of
handling complex replay variations. The GMM-based classifiers, especially
those with CQCC and LFCC features, performed significantly worse, indicat-
ing their ineffectiveness against these variations.

Surprisingly, the AASIST-based methods exhibited notably decreased ef-
fectiveness when applied to our replay attack scenario. This finding was par-
ticularly significant, as AASIST typically demonstrated strong performance in
other spoofing detection tasks. Our hypothesis is that the architecture of AA-
SIST, while highly effective for logical access attacks, struggles to discern the
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subtle environmental variations introduced by replay mechanisms, even when
the underlying voice characteristics remain similar. Importantly, AASIST was
originally designed and optimized for logical access spoofing, specifically tar-
geting the ASVspoof 2019 dataset [18]. Therefore, its limitations in terms of
handling the unique challenges posed by replay attacks were not entirely unex-
pected but rather highlight the importance of considering the specific nature
of the given spoofing attack when selecting and designing countermeasures.

We then investigated the impacts of replay device variations on the de-
tection accuracies of the models, and the results are presented in Figure 11.
Consistent with our observations in the synthesized speech experiments, the
LightGBM demonstrated weakness in terms of detecting bona fide speech, par-
ticularly when encountering speakers that were unseen during training. Con-
versely, the CNN-based methods (CQT-LCNN and CQT-ResNet) exhibited
remarkably robust performance, maintaining near-perfect accuracy (approxi-
mately 100%) across all playback sources, with minimal device-specific vari-
ations. Notably, the AASIST-based methods exhibited performance declines
when presented with replays recorded using higher-quality devices, specifi-
cally laptop and condenser microphones, where their accuracies decreased to
approximately 80− 85%.

Figure 11: Accuracies achieved by the representative methods on the replay attack datasets
produced by different recording devices. Methods: LFCC-LightGBM, CQT-LCNN, CQT-
ResNet, and AASIST.

Finally, we evaluated the performance of the tested replay attack counter-
measures under a cross-corpus setting. Given the composition of our dataset,
which includes CommonVoice and Prosa, we conducted two experimental sce-
narios: training on CommonVoice and evaluating the models on Prosa, and
vice versa. Table 14 presents the performance achieved by the representative
countermeasures–CQT-LightGBM, CQT-LCNN, CQT-ResNet, and AASIST.
These results highlight the significant challenge faced by countermeasures in
terms of distinguishing between bona fide speech and replayed speech across
different corpora.
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Table 14: Cross-corpus evaluation results obtained on replay attack datasets.

Train-Eval Dataset Countermeasure AUC (↑) AP (↑) minDCF (↓) EER (%) (↓)
CQT-LightGBM 0.5717 0.3473 0.5678 20.0000

CQT-LCNN 0.5117 0.2559 0.6200 25.9948
CQT-ResNet 0.6721 0.4208 0.4331 20.0000CommonVoice-Prosa

AASIST 0.6606 0.3949 0.8882 39.8385
CQT-LightGBM 0.7191 0.3124 0.3709 13.8830

CQT-LCNN 0.6952 0.2908 0.3275 16.1702
CQT-ResNet 0.7383 0.3234 0.3626 21.7021Prosa-CommonVoice

AASIST 0.7911 0.5248 0.6722 29.2199

Furthermore, the countermeasures trained on Prosa consistently outper-
formed those trained on CommonVoice, with the best countermeasure exhibit-
ing a minimum DCF gap exceeding 0.1, despite Prosa having significantly
fewer samples. This underscores the critical importance of high-quality data,
and this finding is likely attributable to the studio-recorded nature of the
Prosa dataset. In contrast, the CommonVoice dataset exhibits greater di-
versity but lacks controlled recording conditions, encompassing transcription,
noise, and recording device variations.

While this setup provided a valuable initial step for understanding the
challenges related to spoofing attacks, importantly, real-world scenarios may
involve more sophisticated techniques and devices. Future research should
explore more advanced spoofing methods and develop robust countermeasures
to address these evolving threats.

6 Limitations and Challenges

While this study provides valuable insights into the challenges and potential
solutions related to the development of Indonesian speech antispoofing sys-
tems, several limitations and areas for future work are identified.

1. Language Coverage: The current study focused solely on the Indonesian
language, albeit encompassing major dialects. Expanding the research to
other languages would provide a more comprehensive understanding of the
challenges involved in cross-lingual spoofing detection.

2. Integration with ASV Systems: The conducted experiments have yet to
integrate spoofing detection fully with ASV systems. To simulate real-world
scenarios, future research should explore the impacts of spoofing attacks on
the overall performance of ASV systems and develop strategies to mitigate
these threats.

3. Limited Spoofing Attack Diversity: The study primarily considered five
types of spoofing attacks. Real-world attacks can be more diverse and sophis-
ticated, involving advanced techniques and various playback devices. Future
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research should investigate a wider range of spoofing attacks, including those
that exploit vulnerabilities in specific ASV systems.

4. Controlled Recording Environments: The audio data used in this study
were collected in relatively controlled environments. Real-world scenarios of-
ten involve noisy and adverse acoustic conditions. Future research should
explore the robustness of countermeasure models under noisy and reverberant
conditions.

5. Limited Exploration of Different Features and Classifiers: This study
employed limited sets of features and classifiers. A more comprehensive explo-
ration of various feature engineering techniques and advanced machine learn-
ing models could improve the performance of spoofing detection systems. Ad-
ditionally, hyperparameter tuning can further optimize the performance of
these models.

We acknowledge the limitations of this study and recognize the importance
of the identified areas for future work. By addressing these, we will contribute
to the development of more robust and effective spoof detection systems for the
Indonesian language and beyond. In particular, a comprehensive theoretical
analysis, which was not feasible within the current scope, presents a significant
opportunity for future research.

7 Conclusion and Future Work

This paper provides a comprehensive analysis of the challenges and opportuni-
ties related to Indonesian-language spoofing detection. Our findings highlight
the significant challenge posed by the InaSpoof-v1 dataset. The increased
diversity and complexity of spoofing attacks necessitate the development of
robust and adaptive countermeasures.

While traditional machine learning methods such as the LightGBM proved
effective in controlled environments (with known attacks, speakers, and envi-
ronments), CNN-based and end-to-end approaches, notably ResNet and AA-
SIST, demonstrated significantly superior performance in complex, real-world
scenarios. Furthermore, the integration of SSL features, which learn robust
representations from large amounts of unlabeled data, significantly enhances
the performance of these end-to-end models, particularly in unseen and chal-
lenging conditions. Specifically, ResNet excelled as a replay attack counter-
measure, whereas AASIST proved most effective against synthesized speech
attacks in terms of overall performance.

Additionally, our demographic analysis revealed that the performance of
the models varied across different dialects, with some dialects being more
susceptible to spoofing attacks. These findings underscore the importance of
considering demographic factors when developing effective spoofing detection
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systems. To advance the field of spoofing detection, future research should
prioritize the areas outlined in Section 6. By addressing these limitations, we
can significantly increase the security of voice-based authentication systems
and safeguard against a wide range of spoofing attacks.
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