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ABSTRACT
Proximal splitting-based convex optimization is a promising ap-
proach to linear inverse problems because we can use some prior
knowledge of the unknown variables explicitly. An understanding
of the behavior of the optimization algorithms would be important
for the tuning of the parameters and the development of new al-
gorithms. In this paper, we first analyze the asymptotic property
of the proximity operator for the squared loss function, which ap-
pears in the update equations of some proximal splitting methods
for linear inverse problems. Our analysis shows that the output
of the proximity operator can be characterized with a scalar ran-
dom variable in the large system limit. Moreover, we apply the
asymptotic result to the prediction of optimization algorithms for
compressed sensing. Simulation results demonstrate that the MSE
performance of the Douglas-Rachford algorithm can be well pre-
dicted in compressed sensing with the ℓ1 optimization. We also
examine the behavior of the prediction for the case with noncon-
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vex smoothly clipped absolute deviation (SCAD) and minimax
concave penalty (MCP) regularization.

Keywords: Linear inverse problems, convex optimization, proximity operator,
Douglas-Rachford algorithm, asymptotic analysis

1 Introduction

Linear inverse problems, i.e., the reconstruction of an unknown vector from its
linear measurements, often appear in the field of signal processing. The linear
inverse problem is called underdetermined when the number of measurements
is less than that of elements of the unknown vector. In such underdetermined
problems, we often use some information about the unknown vector to obtain
a good reconstruction result. In compressed sensing [8, 7, 16, 9], for example,
the unknown sparse vector can be effectively reconstructed by leveraging its
sparsity. Another example of the underdetermined problems is the overloaded
signal detection in wireless communications [33, 23, 24], where we can use the
discreteness of the unknown vector.

A common approach to underdetermined linear inverse problems is to solve
an optimization problem using some regularizer based on the prior knowl-
edge of the unknown vector. In compressed sensing, one of the most widely
used optimization problems is the ℓ1 optimization. The objective function
includes the ℓ1 regularization term to promote sparsity. Even though the
objective function is not differentiable because of the ℓ1 norm, some proxi-
mal splitting methods can solve the problem with reasonable computational
complexity. Examples of such methods include the iterative soft thresholding
algorithm (ISTA) [15, 14, 21] and the fast ISTA (FISTA) [5]. Alternating
direction method of multipliers (ADMM) [22, 6] and the Douglas-Rachford
algorithm [28, 19, 13] can both be used to solve the ℓ1 optimization prob-
lem. Despite the requirement of matrix inversion for linear inverse problems,
ADMM and the Douglas-Rachford algorithm exhibit faster convergence than
some gradient-based methods, such as ISTA, in certain cases [11, 12].

The asymptotic error performance of several optimization-based ap-
proaches for linear inverse problems has been analyzed by using some tech-
niques [18, 3, 17]. Especially, the convex Gaussian min-max theorem
(CGMT) [36, 35] enables us to obtain the asymptotic error in a precise man-
ner for the optimizer of various optimization problems. For instance, the
asymptotic mean-square-error (MSE) of various regularized estimators has
been analyzed in [2, 35]. In [37, 27], the symbol error rate has also been
analyzed for the reconstruction of discrete-valued vectors.
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The above analyses have focused on the performance of the optimizer,
whereas the application of CGMT for the performance prediction of opti-
mization algorithms has been considered in [26]. In [26], we have proposed
a prediction method for the error performance of the tentative estimate at
each iteration of ADMM. Such performance prediction could be utilized to
understand the behavior of the algorithm, tune the parameter, and develop
a new algorithm. For optimization algorithms other than ADMM, however,
such asymptotic performance prediction has not been discussed for linear in-
verse problems in the literature. Expanding the prediction method to other
optimization algorithms would be important for the development of new algo-
rithms and the understanding of the behavior of the algorithms.

In this paper, we investigate the asymptotic behavior of algorithms using
the proximity operator of the squared loss function. As the target optimization
problem, we consider the objective function with the squared loss function
and a separable regularizer. Since the proximity operator of the squared loss
function is not element-wise, we investigate its asymptotic property via the
CGMT framework. Our main finding is that the optimization problem in the
definition of the proximity operator can be analyzed by using CGMT for the
squared loss function. Specifically, we show that the output of the proximity
operator for the squared loss function can be regarded as a scalar random
variable in the large system limit.

By using the analytical result, we also propose a prediction method for
the evolution of the asymptotic MSE in proximal splitting methods composed
of the proximity operator of the squared loss function and a separable reg-
ularizer. As an representative example of such algorithms, we here consider
the Douglas-Rachford algorithm in this paper. While the derivation of the
proposed method is partly non-rigorous, their simulation results for the ℓ1 op-
timization demonstrate their potential as a foundation for more rigorous dis-
cussion in future work. These findings would contribute to the broader under-
standing of optimization algorithms in high-dimensional settings. Moreover,
we also investigate the behavior for the case with nonconvex regularization
in the simulation, though only the convex optimization is considered in [26].
The effectiveness of the performance prediction across various scenarios high-
lights its potential to extend to other optimization algorithms, including those
involving nonconvex cases.

We use the following notations in this paper. The transpose and the
identity matrix are denoted by (·)⊤ and I, respectively. The ℓ1 norm and the
ℓ2 norm for a vector u = [u1 · · · uN ]

⊤ ∈ RN are defined as ∥u∥1 =
∑N

n=1 |un|

and ∥u∥2 =
√∑N

n=1 u
2
n, respectively. We denote the sign function by sign(·).

For a lower semicontinuous function ϕ : RN → R ∪ {+∞}, the proximity
operator is defined as proxϕ(u) = arg mins∈RN

{
ϕ(s) + 1

2 ∥s− u∥22
}

. We
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denote the Gaussian distribution with mean µ and variance σ2 by N (µ, σ2).
If random variables {Θn} (n = 1, 2, . . . ) with index n converge in probability
to Θ, we use the notation Θn

P−→ Θ as n → ∞ or plimn→∞ Θn = Θ.

2 Optimization for Linear Inverse Problems

2.1 Linear Inverse Problems

In this paper, we discuss the linear inverse problem, which means the recon-
struction of a vector x ∈ RN from its measurement y ∈ RM given by

y = Ax+ v. (1)

The measurement matrix A ∈ RM×N is assumed to be known and v ∈ RM

denotes a noise vector. We mainly focus on the underdetermined case where
the measurement ratio ∆ := M/N is less than 1 and the solution is not
unique even in the noiseless case. A common approach in this situation is
the utilization of the structure of x. In compressed sensing, for example,
the unknown vector is assumed to be sparse, i.e., the vector has many zero
elements. In some applications in wireless communications, the unknown
vector has other structures such as boundedness and discreteness [34, 30, 1,
25].

2.2 Optimization-Based Approach

Mathematical optimization is a useful method for underdetermined linear in-
verse problems. In this approach, we can design the objective function of the
problem to make the most of the structure of the unknown vector x. As a
simple example, we discuss the following optimization problem

minimize
s∈RN

{L(s) + fλ(s)} (2)

in this paper. We refer to L(s) = 1
2 ∥y −As∥22 as the squared loss function.

The function fλ(·) : RN → R ∪ {+∞} is a regularizer that can incorporate
prior knowledge of the unknown vector x. The parameter λ determines the
balance between two terms in the objective function.

In the sparse vector reconstruction, for example, the ℓ1 regularization by
fλ(s) = λ ∥s∥1 (λ > 0) is widely used as a convex regularizer. The elastic
net [40] given by fλ(s) = λ1 ∥s∥1+

λ2

2 ∥s∥22, where λ1, λ2 (> 0) are the param-
eters, is also a popular convex regularizer. Other than these convex regulariz-
ers, various nonconvex regularizers have been proposed for the sparse vector
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reconstruction [38]. For example, the smoothly clipped absolute deviation
(SCAD) [20] regularizer is given by fλ(s) =

∑N
n=1 f̃λ(sn), where

f̃λ(s) =



λ |s| (|s| ≤ λ)

2aλ |s| − s2 − λ2

2(a− 1)
(λ < |s| ≤ aλ)

(a+ 1)λ2

2
(|s| > aλ)

(3)

and a (> 1) is the parameter. For the minimax concave penalty (MCP) [39]
regularizer, the function f̃λ(s) is given by

f̃λ(s) =


λ |s| − s2

2b
(|s| ≤ bλ)

bλ2

2
(|s| > bλ)

, (4)

where b (> 0) is the parameter.
Various optimization algorithms have been proposed for the optimization

problem in (2). For example, the Douglas-Rachford algorithm [28, 19, 13]
solves the optimization problem in (2) by using the proximity operators of
L(·) and fλ(·). The update equations of the algorithm with the iteration
index k (= 0, 1, 2, . . . ) can be written as

s(k+1) = proxγL

(
z(k)

)
, (5)

z(k+1) = z(k) + ρk

(
proxγfλ

(
2s(k+1) − z(k)

)
− s(k+1)

)
, (6)

where γ (> 0) and ρk ∈ [ε, 2 − ε] (ε ∈ (0, 1)) are the parameters in the
algorithm. By definition, we can obtain the proximity operator of the function
L(·) as

proxγL (z) = arg min
s∈RN

{
1

2
∥y −As∥22 +

1

2γ
∥s− z∥22

}
(7)

=

(
A⊤A+

1

γ
I

)−1(
A⊤y +

1

γ
z

)
, (8)

where z ∈ RN and γ > 0. The proximity operator of fλ(·) can also be com-
puted efficiently for various regularizers. When fλ(s) = λ ∥s∥1, for example,
the proximity operator of the function fλ(·) can be written as[

proxγfλ(r)
]
n
= sign(rn)max(|rn| − γλ, 0), (9)
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where rn and
[
proxγfλ(r)

]
n

are the n-th element of r and proxγfλ(r), respec-
tively. For the elastic net regularizer fλ(s) = λ1 ∥s∥1+

λ2

2 ∥s∥22, the proximity
operator can be computed as[

proxγfλ(r)
]
n
=

sign(rn)max(|rn| − γλ1, 0)

1 + γλ2
. (10)

As for the SCAD regularizer in (3), the proximity operator is given by[
proxγfλ(r)

]
n

=


sign(rn)max(|rn| − γλ, 0) (|rn| ≤ (1 + γ)λ)

(a− 1)rn − sign(rn)aγλ

a− 1− γ
((1 + γ)λ < |rn| ≤ aλ)

rn (|rn| > aλ)

. (11)

for a > 1+ γ. Similarly, the proximity operator of the MCP regularizer in (4)
can be computed as[

proxγfλ(r)
]
n

=


0 (|rn| ≤ γλ)

b

b− γ
(rn − sign(rn)γλ) (γλ < |rn| ≤ bλ)

rn (|rn| > bλ)

(12)

for b > γ. By computing (5) and (6) iteratively, we can obtain a sequence{
s(k)

}
k=1,2,...

converging to the solution of the optimization problem in (2)
when the regularizer is convex. When the regularizer is nonconvex, the con-
vergence of the sequence is not necessarily guaranteed.

3 Main Results

3.1 Asymptotics of Proximity Operator for Squared Loss

We firstly analyze the output of the proximity operator proxγL(·) in (8). In
our analysis, we assume the large system limit M,N → ∞ (M/N = ∆),
where the sequence of problems with {x,A,v} indexed by N is considered
as in several high-dimensional analyses [35]. We also assume the following
conditions as in [26].

Assumption 3.1. The elements of the vector x ∈ RN are independent and
identically distributed (i.i.d.). The distribution pX of x is known and has
some finite mean and variance. The measurement matrix A ∈ RM×N has
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i.i.d. random variables with N (0, 1/N). The noise vector v ∈ RM has i.i.d.
random variables with N (0, σ2

v).

Remark 3.1. We assume that each element of the measurement matrix A
follows a Gaussian distribution in Assumption 3.1. This is because we require
the Gaussian assumption in the analysis with CGMT [35]. Nonetheless, the
universality of random matrices discussed in [4, 32, 31] implies that the ana-
lytical result still holds for some other distributions. In [35, Section VIII-F],
for example, it is expected that the analysis via CGMT holds for i.i.d. sub-
Gaussian matrix. Computer simulations in [35, 26] show that the empirical
performance is well predicted even when the measurement matrix is composed
of i.i.d. Bernoulli distribution with p = 0.5.

Under Assumption 3.1, we can obtain the following result on the asymp-
totic behavior of the proximity operator proxγL(·).

Proposition 3.1. It is assumed that x, A, and v satisfy the conditions in
Assumption 3.1. We then consider the output of the proximity operator given
by

ŝ = proxγL (z) , (13)

where z has i.i.d. elements with a distribution pZ(z) and is assumed to be
independent of A. Here, we assume that the optimization problem

min
α>0

max
β≥0

{
αβ

√
∆

2
+

βσ2
v
√
∆

2α
− 1

2
β2 + E [J(α, β;Z)]

}
(14)

has a unique optimizer (α∗, β∗)1. In (14),

J(α, β;Z) =
β
√
∆

2α

(
Ŝ(α, β;Z)−X

)2
− βH

(
Ŝ(α, β;Z)−X

)
+

1

2γ

(
Ŝ(α, β;Z)− Z

)2
, (15)

Ŝ(α, β;Z) =
1

β
√
∆

α
+

1

γ

(
β
√
∆

α

(
X +

α√
∆
H

)
+

1

γ
Z

)
, (16)

X ∼ pX , H ∼ N (0, 1), and Z ∼ pZ . The expectation E [·] in (14) is calculated
over all random variables X, H, and Z. Then, the following statements hold:

1The uniqueness of the solution can be established under certain conditions (e.g., the
boundedness of the set of minimizers). However, in the general case, completely removing
this assumption proves to be challenging. For further details, please refer to [35, Remark
19].



8 Hayakawa

1. The asymptotic MSE of ŝ in (13) can be written as

plim
M,N→∞

1

N
∥ŝ− x∥22 = (α∗)

2 − σ2
v. (17)

2. Let µŝ denote the empirical distribution of ŝ = [ŝ1 · · · ŝN ]
⊤ ∈ RN

that corresponds to the cumulative distribution function (CDF) given by
Pŝ(s) =

1
N

∑N
n=1 I (ŝn < s), where I (ŝn < s) = 1 if ŝn < s and otherwise

I (ŝn < s) = 0. Then, the distribution µŝ converges weakly in probability
to the distribution µS of S = Ŝ (α∗, β∗;Z), i.e.,

∫
gdµŝ

P−→
∫
gdµS holds

for any continuous compactly supported function g(·) : R → R.

Sketch of proof. By definition in (13), ŝ is characterized as the solution of the
optimization problem in (7). Similarly to the discussion in [27, Remark IV.1],
we can prove (17) by using the standard method with CGMT [35]. Moreover,
the second statement of Proposition 3.1 is proven in the procedure of [27,
Theorem III.2]. Hence, we do not include the details of the rigorous proof.
For the overview of the derivation of (14), see Appendix A.1.

The first statement in Proposition 3.1 means that the asymptotic MSE for
the output of the proximity operator can be predicted by solving the scalar
optimization problem in (14). The second one implies that the distribution
of the elements of the vector ŝ can be characterized by the random variable
S = Ŝ (α∗, β∗;Z). We can thus consider Ŝ (α∗, β∗;Z) in (16) as a decoupled
version of the proximity operator in (13) intuitively. For a similar discussion,
see [26, Fig. 1].

The optimization of α and β in (14) can be performed by using searching
methods like the golden section search [29]. Since it is difficult to compute
the expectation in (14) exactly in general, we need to approximate it with the
average of many realizations of X, H, and Z.

3.2 Application to Performance Prediction of Optimization Algorithm

Although the proximity operator itself is not a valid reconstruction method
in general, we believe that the result in Proposition 3.1 is not only of theoret-
ical interest but also serves as a foundation for understanding and designing
optimization algorithms in linear inverse problems. By using Proposition 3.1,
for example, we can derive an error prediction method for the estimate s(k)

in some optimization algorithm. To obtain the prediction method, we make
an additional assumption that the regularizer fλ(·) is convex and separable
as follows.

Assumption 3.2. The function fλ(·) : RN → R ∪ {+∞} is separable and
can be written as fλ(s) =

∑N
n=1 f̃λ(sn) with a convex function f̃λ(·) : R →



Asymptotics of Proximity Operator for Squared Loss 9

R∪{+∞}. We sometimes use the notation fλ(·) for the corresponding function
f̃λ(·) with the slight abuse of notation.

Remark 3.2. For the separable regularizer fλ(·) in Assumption 3.2, the prox-
imity operator proxγfλ(·) : R

N → RN becomes an element-wise function. In
other words, the n-th element of the output of the proximity operator is the
function of the n-th element of the input only.

To predict the performance of an algorithm by using Proposition 3.1, it is
necessary that the update equations except for proxγL(·) are element-wise. As
a representative example of such algorithms, we derive the conjecture below
for Douglas-Rachford algorithm in (5) and (6). Note that the derivation of
the conjecture is partly non-rigorous as [26, Claim III.1].

Conjecture 3.1. Suppose that Assumptions 3.1 and 3.2 hold. We define the
stochastic process

Sk+1 = Ŝ (α∗
k, β

∗
k ;Zk) (18)

Zk+1 = Zk + ρk
(
proxγfλ (2Sk+1 − Zk)− Sk+1

)
(19)

with the index k. We here assume that the optimization problem

min
α>0

max
β≥0

{
αβ

√
∆

2
+

βσ2
v
√
∆

2α
− 1

2
β2 + E [J(α, β;Zk)]

}
(20)

has a unique optimizer (α∗
k, β

∗
k). Then, we have the following conjecture:

1. The asymptotic MSE of s(k+1) in (5) can be written as

plim
M,N→∞

1

N

∥∥∥s(k+1) − x
∥∥∥2
2
= (α∗

k)
2 − σ2

v. (21)

2. The empirical distribution of s(k+1) converges weakly in probability to
the distribution of Sk+1.

Outline of derivation. Since z(k) in (5) and (6) is not independent of A,
Proposition 3.1 cannot be used to (5) directly. We thus take the same pro-
cedure as the approach in [26, Claim III.1], where an unproven extension of
CGMT has been assumed for the performance prediction of iterative algo-
rithms. Under the assumption, when the element of z(k) can be regarded as
the random variable Zk, the distribution of the element of s(k+1) in (5) can
be described by the distribution of the random variable Sk+1 in (18) as in
Proposition 3.1. As for (6), the update of z(k) can be decoupled into (19) be-
cause the update is element-wise under Assumption 3.2. Since the procedure
of the derivation is the same as [26, Claim III.1], the detailed explanation for
the derivation is omitted.
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Conjecture 3.1 implies that the evolution of the asymptotic MSE in the
Douglas-Rachford algorithm can be predicted by solving the optimization
problem in (20) and computing (21) for each k. The updates of Sk and
Zk in (18) and (19) can be seen as a simplified version of the update of s(k)
and z(k) in (5) and (6), respectively.

From the result in Conjecture 3.1, we can tune the parameters in the
Douglas-Rachford algorithm for fast convergence. Since the relation between
the parameters and the MSE is complicated, it is difficult to obtain the ex-
plicit expression of the optimal parameters. However, the result enables us to
predict the error performance of the algorithm numerically and to select the
parameter that achieves fast convergence in the asymptotic regime, without
the empirical reconstruction.
Remark 3.3. As discussed in [19], the Douglas-Rachford algorithm is closely
related to ADMM analyzed in [26]. In fact, the update equations of ADMM
can be regarded as the Douglas-Rachford algorithm for the dual problem of
the original optimization problem. However, the relaxation parameters ρk are
included in the Douglas-Rachford algorithm considered in this paper, whereas
the corresponding parameters are not considered in the analysis of [26]. These
parameters provide additional flexibility in tuning the algorithm for faster
convergence. Furthermore, since we have expressed Proposition 3.1 as the
result for the proximity operator for the squared loss function, our results have
the potential to be extended to other optimization algorithms that utilize the
proximity operator.

4 Simulation Results

In this section, we demonstrate the validity of our approach via computer
simulations. The distribution of an unknown vector x is assumed to be the
Bernoulli-Gaussian distribution given by

pX(x) = p0δ0(x) + (1− p0)pH(x). (22)

Here, δ0(·) is the Dirac delta function, pH(·) is the probability density function
corresponding to N (0, 1), and p0 ∈ (0, 1) represents the probability of 0. The
unknown vector x is sparse when p0 is large. For the simulations, we assume
that the measurement matrix A and the noise vector v satisfy the conditions
in Assumption 3.1 unless otherwise stated. For the optimization of α and β
in (14) and (20), the golden section search is used.

4.1 MSE of Output of Proximity Operator for Squared Loss

We demonstrate a simulation result for the first statement of Proposition 3.1.
In Figure 1, the empirical MSE of ŝ = proxγL(z) in (13) is compared with
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Figure 1: MSE of output of proximity operator for squared loss (N = 1000, p0 = 0.95,
σ2
v = 0.001, γ = 10).

the corresponding theoretical prediction (α∗)
2−σ2

v in (17). In the simulation,
we set N = 1000, p0 = 0.95, σ2

v = 0.001, and γ = 10. In the figure, ‘empirical’
denotes the empirical MSE of ŝ and ‘theoretical’ denotes the corresponding
asymptotic value (α∗)

2 − σ2
v. For the computation of the empirical MSE,

we first make the realizations of x, A, and v to compute y from (1). We
then create each element of z from the i.i.d. standard Gaussian distribution.
Using these realizations, we compute the MSE of ŝ from (8) and (13). The
empirical performance in the figure is obtained by averaging the MSE for 100
independent realizations. For the theoretical prediction, we solve the scalar
optimization problem in (14) to obtain α∗. Note that we approximate the
expectation in the optimization problem with 100, 000 realizations of X ∼
pX , H ∼ N (0, 1) and Z ∼ N (0, 1). From Figure 1, we observe that the
empirical performance and its theoretical prediction agree well with each other
for various measurement ratios ∆.

4.2 Distribution of Output of Proximity Operator for Squared Loss

We then examine the second statement of Proposition 3.1. In Figure 2, we
compare the probability density of the elements of ŝ = proxγL(z) with the
theoretical result. In the simulation, we set N = 1000, ∆ = 0.6, p0 = 0.95,
σ2
v = 0.01, and γ = 10. The empirical ŝ = proxγL(z) and the realizations

of the corresponding random variable S = Ŝ (α∗, β∗;Z) is obtained in the



12 Hayakawa

−3 −2 −1 0 1 2 3
0.0

0.2

0.4

0.6

0.8

1.0

1.2

p
ro

b
ab

ili
ty

d
en

si
ty

z ∼ N (0, I) (empirical)

ŝ = proxγL(z) (empirical)

Z ∼ N (0, 1) (theoretical)

S = Ŝ(α∗, β∗;Z) (theoretical)

Figure 2: Comparison of probability density for ŝ and S (N = 1000, ∆ = 0.6, p0 = 0.95,
σ2
v = 0.01, γ = 10).

same way as the first experiment. The empirical histogram is obtained from
the result of 100 independent trials. From Figure 2, we can see that the
empirical distribution of ŝ agrees well with the distribution of S obtained by
Proposition 3.1.

4.3 Performance Prediction of Douglas-Rachford Algorithm with Convex
Regularization

Next, we investigate the validity of Conjecture 3.1. For the reconstruction
of the sparse vector following (22), we first consider the ℓ1 optimization with
fλ(s) = λ ∥s∥1, i.e.,

minimize
s∈RN

{
1

2
∥y −As∥22 + λ ∥s∥1

}
, (23)

which is a widely used convex optimization problem in compressed sensing and
satisfies Assumption 3.2. For the ℓ1 regularization, the proximity operator is
given by (9).

We compare the empirical MSE performance of the Douglas-Rachford al-
gorithm for (23) and its prediction obtained from Conjecture 3.1. In Figure
3, we show the MSE performance versus the number of iterations in the al-
gorithm, where ∆ = 0.7, p0 = 0.9, and σ2

v = 0.001. The parameters of the
Douglas-Rachford algorithm are set as γ = 10 and ρk = 1. The initial values



Asymptotics of Proximity Operator for Squared Loss 13

0 5 10 15 20
number of iterations

10−3

10−2

10−1

100

M
S

E
empirical (N = 50)

empirical (N = 100)

empirical (N = 500)

empirical (N = 1000)

prediction

asymptotic MSE of optimizer

Figure 3: MSE performance of Douglas-Rachford algorithm for ℓ1 optimization (∆ = 0.7,
p0 = 0.9, σ2

v = 0.001, γ = 10, ρk = 1).

of s(k) and z(k) are given by s(0) = z(0) = 0. In Figure 3, ‘empirical’ refers
to the empirical MSE performance of the Douglas-Rachford algorithm in (5)
and (6). The MSE curve is the average of the performance for 500 indepen-
dent realizations of the reconstruction problem. Also, ‘prediction’ represents
the predicted MSE obtained by Conjecture 3.1. To calculate the prediction,
we compute (α∗

k, β
∗
k) and 100, 000 realizations of (Sk, Zk) for k = 0, 1, . . .

from (18) and (19), following the similar way to [26]. Here, the expectation
in (20) is approximated by using the realizations of (Sk, Zk). In Figure 3, we
also show the asymptotic MSE of the optimizer of (23) as ‘asymptotic MSE of
optimizer,’ which is derived by using the standard CGMT approach [35]. The
value of the parameter λ in (23) is selected to minimize the asymptotic MSE
of the optimizer. Figure 3 shows that the empirical performance is close to the
prediction when N is sufficiently large. We can also see that they approach
the asymptotic MSE of the optimizer after sufficient iterations. To be precise,
however, we can observe a slight difference between the prediction and the
empirical performance. This is partly because we evaluate the empirical per-
formance for finite N , while we assume M,N → ∞ to obtain the asymptotic
prediction. Another possible reason is that we approximate (α∗

k, β
∗
k) by using

many realizations of (Sk, Zk) in the prediction.
We also investigate the performance of the Douglas-Rachford algorithm

with the elastic net regularization in Figure 4. In the simulation, we set
∆ = 0.7, p0 = 0.9, σ2

v = 0.0001, λ1 = λ2 = 0.01, γ = 10, and ρk = 1. As in
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Figure 4: MSE performance of Douglas-Rachford algorithm with elastic net regularization
(∆ = 0.7, p0 = 0.9, σ2

v = 0.0001, λ1 = λ2 = 0.01, γ = 1, ρk = 1).

the case with the ℓ1 regularization, the empirical performance is well predicted
by the prediction when N is sufficiently large.

Figure 5 shows the MSE performance of the Douglas-Rachford algorithm
with the ℓ1 regularization for the Bernoulli measurement matrix. In the eval-
uation of the empirical performance, the element of the measurement matrix
A ∈ RM×N is generated from the i.i.d. distribution given by Pr(am,n =

1/
√
N) = Pr(am,n = −1/

√
N) = 0.5, where am,n denotes the (m,n) element

of A. For other parameters, we set the same values as in Figure 3. From
Figure 5, we can see that the empirical performance is well predicted by the
prediction even for the Bernoulli measurement matrix, though the Gaussian
measurement matrix is assumed in derivation of the prediction.

Figure 6 shows the MSE performance of the Douglas-Rachford algorithm
with the ℓ1 regularization for different values of ρk. In the figure, the param-
eters are N = 1000, ∆ = 0.7, p0 = 0.9, σ2

v = 0.001, and γ = 5.0. From
the figure, we observe that the empirical performance is well predicted for
every different values of ρk. We can also see that the convergence speed is
significantly influenced by the value of ρk.

We then show the MSE performance of the Douglas-Rachford algorithm
with the ℓ1 regularization for different parameters γ in Figure 7. In the figure,
we have N = 500, ∆ = 0.7, p0 = 0.9, σ2

v = 0.001, and ρk = 1. From the
figure, we can observe that the performance is improved as the iteration index
k increases. The figure also implies that the value of γ significantly affects
the performance of the algorithm. Since the empirical performance is well
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Figure 5: MSE performance of Douglas-Rachford algorithm for ℓ1 optimization (Bernoulli
measurement matrix, ∆ = 0.7, p0 = 0.9, σ2

v = 0.001, γ = 10, ρk = 1).
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Figure 6: MSE performance of Douglas-Rachford algorithm for ℓ1 optimization (N = 1000,
∆ = 0.7, p0 = 0.9, σ2

v = 0.001, γ = 5.0).

predicted for all γ, we can tune the parameter by using the prediction. The
figure shows that we should choose γ between 10 and 15 in this case.
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Figure 7: MSE performance of Douglas-Rachford algorithm for ℓ1 optimization versus γ
(N = 500, ∆ = 0.7, p0 = 0.9, σ2

v = 0.001, ρk = 1).

We also investigate the performance of the Douglas-Rachford algorithm
with the ℓ1 regularization for different values of σ2

v in Figure 8. In the figure,
we set N = 500, ∆ = 0.7, p0 = 0.9, γ = 10, and ρk = 1. From Figure 8, we
can see that the empirical performance is well predicted for different values
of σ2

v. The figure also implies that the performance is improved as the value
of σ2

v decreases, though the required number of iterations for the convergence
increases.

4.4 Performance Prediction of Douglas-Rachford Algorithm with Non-
convex Regularization

Finally, we evaluate the performance for nonconvex sparse regularization. Fig-
ure 9 shows the MSE performance of the Douglas-Rachford algorithm with
SCAD regularization in (3), where ∆ = 0.7, p0 = 0.9, σ2

v = 0.001, λ = 0.1,
γ = 1, ρk = 1, and a = 4. The empirical performance and the prediction are
obtained in the same way as Figure 3. From Figure 9, we observe that the
empirical MSE and its prediction converge to almost the same value in this
case. In the middle of iterations, however, the behavior of the prediction is
different from Figure 3, and the empirical performance when N = 500, 1000
is better than the prediction. One of the possible reasons is the nonconvexity
of the SCAD regularizer, and further investigation is necessary for a clear
understanding. To obtain more precise results, we might need to taking the
nonconvexity into account in the analysis.
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Figure 8: MSE performance of Douglas-Rachford algorithm for ℓ1 optimization versus σ̂2
v

(N = 500,∆ = 0.7, p0 = 0.9, γ = 10, ρk = 1).
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Figure 9: MSE performance of Douglas-Rachford algorithm with nonconvex SCAD regular-
ization (∆ = 0.7, p0 = 0.9, σ2

v = 0.001, λ = 0.1, γ = 1, ρk = 1, a = 4).

We also investigate the performance of the Douglas-Rachford algorithm
with SCAD regularization for a larger noise variance σ2

v = 0.01 in Figure 10,
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Figure 10: MSE performance of Douglas-Rachford algorithm with SCAD regularization
(∆ = 0.7, p0 = 0.9, σ2

v = 0.01, λ = 0.2, γ = 1, ρk = 1, a = 4).

where ∆ = 0.7, p0 = 0.9, λ = 0.2, γ = 1, ρk = 1, and a = 4. From the figure,
we can see that the empirical performance is well predicted in this case. The
difference in behavior compared to Figure 9 is probably influenced by the
value of σ2

v and other parameters, presenting an intriguing avenue for future
research.

Figure 11 shows the performance of the Douglas-Rachford algorithm with
the nonconvex MCP regularization. In the simulation, we set ∆ = 0.7, p0 =
0.9, σ2

v = 0.001, λ = 0.1, γ = 1, ρk = 1, and b = 4. As in Figure 9, the
empirical performance when N = 500, 1000 is better than the prediction in
the middle of iterations. These results suggest that the nonconvexity of the
MCP regularizer also affects the behavior of the prediction.

Figure 12 shows the MSE at the 50-th iteration versus the regularization
parameter λ, where ∆ = 0.7, p0 = 0.9, σ2

v = 0.001, γ = 1, and ρk = 1.
In the simulation, we use the SCAD regularization with a = 4. From the
figure, we can see that the prediction is close to the empirical performance for
λ ≥ 0.08, whereas the prediction is worse for smaller values of λ. Even in this
case, however, we can tune a reasonable value of λ ≈ 0.07 on the basis of the
prediction, without the empirical reconstruction.
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Figure 11: MSE performance of Douglas-Rachford algorithm with nonconvex MCP regular-
ization (∆ = 0.7, p0 = 0.9, σ2

v = 0.001, λ = 0.1, γ = 1, ρk = 1, b = 4).
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Figure 12: MSE performance of Douglas-Rachford algorithm with nonconvex SCAD regu-
larization versus λ (∆ = 0.7, p0 = 0.9, σ2

v = 0.001, γ = 1, ρk = 1, a = 4, k = 50).
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5 Conclusion

In this paper, we have analyzed the asymptotic behavior of the proximity
operator for the squared loss function in linear inverse problems. We have
also shown that the result in Proposition 3.1 can be used for the asymptotic
performance prediction of some optimization algorithms for large-scale linear
inverse problems. Simulation results show that the empirical distribution of
the output of the proximity operator agrees well with the theoretical predic-
tion by Proposition 3.1. Moreover, the empirical MSE performance of the
Douglas-Rachford algorithm can be well predicted in large-scale compressed
sensing via the ℓ1 optimization. For the nonconvex SCAD regularization and
MCP regularization, the prediction is also valid to some extent, although the
behavior is slightly different from the convex case. These results suggest that
the proposed prediction method can be a foundation of the rigorous analysis
of optimization algorithms for large-scale linear inverse problems.

Future work includes the rigorous analysis of the prediction by Conjec-
ture 3.1 and the further investigation of interesting behavior for the case with
nonconvex regularization. One of possible directions is to extend or modify
the approach in [10], though independent measurement matrices at each itera-
tion of the algorithm is assumed in their analysis. Extensions of our approach
beyond Assumptions 3.1 and 3.2 would also be an important research direc-
tion. Applications of our results to optimization algorithms other than the
Douglas-Rachford algorithm would also be an interesting topic.

A Appendix

A.1 Derivation of (14)

We provide an overview of the derivation of the optimization problem in (14)
from (7). Since the procedure is almost the same as the CGMT-based analy-
ses [35, 27, 26], the rigorous discussion is omitted in some parts.

We first define e = s − x. The problem in (7) can be rewritten as the
optimization problem for e, i.e.,

min
e∈RN

1

N

{
1

2
∥Ae− v∥22 +

1

2γ
∥e+ x− z∥22

}
. (24)

Note that we have normalized the objective function by N . From the property

1

2
∥Ae− v∥22 = max

u∈RM

{√
Nu⊤ (Ae− v)− N

2
∥u∥22

}
, (25)
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we can obtain the optimization problem

min
e∈RN

max
u∈RM

{
1

N
u⊤
(√

NA
)
e− 1√

N
v⊤u

− 1

2
∥u∥22 +

1

N

1

2γ
∥e+ x− z∥22

}
. (26)

CGMT [35] enables us to analyze the optimization problem

min
e∈RN

max
u∈RM

{
1

N

(
∥e∥2 g

⊤u− ∥u∥2 h
⊤e
)
− 1√

N
v⊤u

− 1

2
∥u∥22 +

1

N

1

2γ
∥e+ x− z∥22

}
(27)

instead of (26), where the elements of g ∈ RM and h ∈ RN are i.i.d. random
variables with N (0, 1). Considering that both g and v are Gaussian, each ele-
ment ∥e∥2√

N
g−v is also Gaussian with N

(
0,

∥e∥2
2

N + σ2
v

)
. We can thus simplify(

∥e∥2√
N
g − v

)⊤
u as

√
∥e∥2

2

N + σ2
vg

⊤u, where we use the notation g to represent
a vector with the elements following N (0, 1). Hence, we can rewrite (27) as

min
e∈RN

max
u∈RM

{
1√
N

√
∥e∥22
N

+ σ2
vg

⊤u− 1

N
∥u∥2 h

⊤e

− 1

2
∥u∥22 +

1

N

1

2γ
∥e+ x− z∥22

}
. (28)

If we define β = ∥u∥2, the maximum value of g⊤u in the first term of (28)
can be written as β ∥g∥2. Moreover, we use√

∥e∥22
N

+ σ2
v = min

α>0

(
α

2
+

∥e∥2
2

N + σ2
v

2α

)
(29)

and rewrite the square root term in (28) to obtain

min
e∈RN

max
β≥0

min
α>0

{
αβ

2

∥g∥2√
N

+
1

N

β

2α

∥g∥2√
N

∥e∥22 +
βσ2

v
2α

∥g∥2√
N

− β

N
h⊤e− 1

2
β2 +

1

N

1

2γ
∥e+ x− z∥22

}
. (30)
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We can further rewrite (30) as

min
α>0

max
β≥0

{
αβ

2

∥g∥2√
N

+
βσ2

v
2α

∥g∥2√
N

− 1

2
β2

+ min
e∈RN

1

N

N∑
n=1

Jn(en, α, β)

}
, (31)

where (·)n represents the n-th element of the corresponding bold vector and

Jn(en, α, β) =
β

2α

∥g∥2√
N

e2n − βhnen +
1

2γ
(en + xn − zn)

2
. (32)

The minimum value of Jn(en, α, β) over en is given by Jn(ŝn(α, β)−xn, α, β),
where

ŝn(α, β)

=
1

β

α

∥g∥2√
N

+
1

γ

(
β

α

∥g∥2√
N

(
xn +

√
N

∥g∥2
αhn

)
+

1

γ
zn

)
. (33)

Hence, we can rewrite the optimization problem (31) as

min
α>0

max
β≥0

{
αβ

2

∥g∥2√
N

+
βσ2

v
2α

∥g∥2√
N

− 1

2
β2

+
1

N

N∑
n=1

Jn (ŝn(α, β)− xn, α, β)

}
. (34)

We can show that the objective function of the optimization problem in (34)
converges pointwise to (14) as M,N → ∞. Jn(ŝn(α, β)−xn, α, β) and ŝn(α, β)
correspond to (15) and (16), respectively.

Intuitively, from the definition of α in (29), the optimal value of α corre-

sponds to
√

∥e∥2
2

N + σ2
v, which finally results in (17). For the precise discussion,

see [35, 27].
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