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ABSTRACT
The paper considers the design of frequency diverse array (FDA)
for co-located multi-input multi-output (MIMO) radar employing
a joint grid-free direction of arrival (DOA) and range estimation
method, and proposes a design approach using a nested array as
the physical antenna array. Specifically, an inner uniform linear
subarray of the nested array is employed for the transmitting array,
while the entire nested array serves as the receiving array. More-
over, a grid-free method using atomic norm minimization (ANM)
is employed to realize joint DOA and range estimation, making full
use of the extended virtual array aperture by the nested array. One
of key features of the proposed nested FDA MIMO radar is that
it enables fine-tuning of the balance between the DOA and range
estimation performance by adjusting the level of the nested array.
The numerical results validate the effectiveness of the proposed
approach, highlighting the feasibility of controlling the balance be-
tween the DOA and range estimation performance by adjusting
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the level of the nested array. Moreover, the proposed nested FDA
MIMO radar outperforms the FDA MIMO radar with a uniform
linear array (ULA) in terms of both DOA and range estimation
performance for the appropriate choice of the level.

Keywords: Frequency diverse array, nested array, atomic norm minimization,
MIMO radar

1 Introduction

Frequency diverse array (FDA) for multi-input multi-output (MIMO) radar
[1, 18], which can achieve joint direction of arrival (DOA) and range estima-
tion, has received much attention in recent years. Several subspace based
algorithms for the FDA MIMO radar have been proposed, such as the mul-
tiple signal classification (MUSIC) based algorithm [26], the parallel factor
analysis (PARAFAC) based algorithm [31], and the estimation of signal pa-
rameters via rotational invariance techniques (ESPRIT) based algorithm [27].
Moreover, a sparse array has been introduced into the FDA MIMO radar in
[5] to extend the aperture of the array. However, those algorithms generally
require a large number of snapshots to accurately estimate the correlation
matrix of the received signal, and thus a large estimation delay, which might
not be acceptable in some applications.

In order to reduce the required number of snapshots, a compressed sens-
ing (CS) [4, 20] based approach has been introduced to the problem of joint
DOA and range estimation with the FDA MIMO radar, as in the case of
the conventional DOA estimation problem. For example, a sparse learning-
based target parameter estimation method is proposed in [9], where a hybrid
algorithm is designed to adaptively select the best algorithm based on the
number of snapshots and targets, which can achieve estimation performance
close to the CramerRao lower bound (CRLB) in various scenarios. Graph sig-
nal processing (GSP) has been introduced into FDA-MIMO radar in [23], and
a joint DOA and range estimation algorithm based on graph Fourier trans-
form (GFT) is proposed. In the method, the graph model of the signal is
first constructed by the adjacency matrix, then GFT is performed to extract
the target information, and finally the DOA and range estimates of the target
are obtained through spectrum peak search. In general, CS based methods
require small number of snapshots, but the array structure of the methods is
commonly limited to the uniform linear array (ULA), and they suffer from
the grid mismatch problem due to the bias between the predefined discrete
sampling grid and the actual signal parameter, which degrades the estimation
performance.
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A grid-free CS based algorithm using two dimensional (2D) atomic norm
minimization (ANM) [19] has been proposed to overcome the grid mismatch
problem in the conventional CS approach. Based on the signal model of the
FDA MIMO radar, the 2D ANM problem is established by using vectorization
of the received signal, and the ANM problem is transformed into a semidefinite
programming (SDP) problem, which can be solved efficiently using the accel-
erated proximal gradient (APG) method. Moreover, the idea of the sparse
array has been introduced in [25] to reduce the computational complexity of
the method in [19] with a negligible performance degradation, assuming that
a common physical antenna array is used for both the transmission and the
reception (i.e., co-located MIMO radar). In the method, the ULA is employed
as the physical array, and the entire ULA is used as the transmitting array,
while the sparse array, which is composed by thinning out some elements of
the ULA, is utilized as the receiving array. In addition, ANM has been ap-
plied for the FDA radar using a coprime array in [15] for joint DOA and range
estimation, where the transmitting antenna is restricted to be a single element
antenna, which might degrade the estimation performance. To the best of our
knowledge, however, no CS based FDA MIMO radar, which can employ the
sparse array as the physical array, has been proposed in the literature.

Recently, data-driven deep learning approaches have obtained growing in-
terest in various fields, including radar signal processing. For example, dou-
ble deep Q-network (DDQN) [32, 6] and deep deterministic policy gradient
(DDPG) [24] have shown promising performance in radar applications. More-
over, recent works have applied deep reinforcement learning (DRL) to optimize
wireless systems under practical hardware constraints. For example, a DRL-
based precoding framework for multi-RIS-aided multiuser downlink systems
with practical phase shift models has been proposed in [2], where a DDPG
algorithm jointly optimizes transmitter precoding and RIS phase shifts to
maximize spectral efficiency. However, they typically require large amounts
of training data and offline training, which can be impractical in real-time
applications or time-varying environments.

In this paper, we consider introducing a sparse array as the physical ar-
ray of the co-located FDA MIMO radar using the 2D ANM. Unlike the FDA
MIMO radar in [25], where the idea of a sparse array is used to reduce com-
putational complexity, the purpose of this study is to improve the estimation
performance of the method in [19] taking advantage of the extended virtual
array aperture. As the configuration of the physical sparse array, we propose
to employ a nested array [16], since its inner subarray has a ULA structure,
which enables us to solve the 2D ANM problem by taking advantage of Van-
dermonde decomposition of the multilevel Toeplitz matrix [30]. Meanwhile,
the entire nested array is used as the receiving array to achieve better DOA
estimation performance. The proposed nested FDA MIMO radar can control
the balance between DOA and range estimation performance by selecting the
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level of the nested array. This is because it can change the number of inner
ULA elements and the virtual array aperture, which govern the range esti-
mation performance and the DOA estimation performance, respectively. The
numerical results demonstrate the validity of the proposed approach and the
feasibility of controlling the balance between DOA and range estimation per-
formance by adjusting the level of the nested array. Moreover, the proposed
nested FDA MIMO radar with 1-level nested array can significantly outper-
form the CS based state-of-the-art methods using the ULA, especially in DOA
estimation performance, given the appropriate choice of parameters.

The main contributions of the paper can be summarized as follows:

• The sparse array is employed as the physical array in FDA MIMO radar
based on CS for the first time to extend the array aperture, while re-
quiring a small number of snapshots.

• The level of the nested array is introduced as a tunable parameter to
optimize the trade-off between the DOA and range estimation perfor-
mance, which allows adaptation to different application requirements.

• The proposed nested FDA MIMO radar significantly outperforms the
CS based state-of-the-art methods, especially in DOA estimation per-
formance.

In the rest of paper, N and C denote sets of all natural numbers and
complex numbers, respectively. We use lower-case bold characters to denote
column vectors and upper-case bold characters for matrices. 1M and 0M are
all-one and all-zero vectors of size M × 1, respectively. (·)T and (·)H are the
transpose and conjugate transpose of a matrix or vector, respectively. (·)−1

and (·)† denote inverse and pseudo-inverse of a matrix, respectively. ⊕, ⊗
, and ⊙ represent Hadamard product, Kronecker product, and Khatri-Rao
product, respectively. tr(·) and ∥ · ∥F denote the trace and Frobenius norm,
respectively. For a matrix A, diagk(A) denotes a column vector obtained by
extracting the k-th diagonal elements of A. E[·] denotes the mathematical
expectation operator.

2 System Model

We consider an FDA for co-located MIMO radar as depicted in Figure 1, where
N physical antenna elements are arranged in a linear array. The location set
of the antenna elements is defined as

Φ = {ϕ0d, ϕ1d, . . . , ϕN−1d}, (1)
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Figure 1: An example of FDA for co-located MIMO radar.

where ϕn ∈ N (n = 0, 1, . . . , N−1) and d denotes unit spacing between antenna
elements. Without loss of generality, we assume the 0-th antenna element is
located at the origin, and set ϕ0 = 0. We use subarrays of this physical array
having M (≤ N) and P (≤ N) elements for the transmitting array and the
receiving array, respectively. In Figure 1, examples of the transmitting and
the receiving arrays, which are composed by selecting some antenna elements
from the physical array, are also depicted with red and blue colors.

The location sets of transmitting array and the receiving array are defined
as

Φt = {α0d, α1d, . . . , αM−1d} ⊆ Φ, (2)
Φr = {β0d, β1d, . . . , βP−1d} ⊆ Φ, (3)

respectively, where αmd is the location of the m-th transmitting antenna, βpd
is that of the p-th receiving antenna, and we assume α0 = β0. Since we
employ FDA with uniform frequency shift, the carrier frequency at the m-th
transmitting antenna is given by

fm = f0 + αm∆f, (m = 0, 1, . . . ,M − 1), (4)

where f0 denotes the carrier frequency at the 0-th transmitting antenna and
∆f(≪ f0) is the frequency shift corresponding to the unit antenna spacing d.
To avoid the ambiguity in the DOA estimation, d is set to be the half of the
smallest wavelength among the transmitted signals as

d =
c

2(f0 + αM−1∆f)
, (5)

where c is the speed of light.
Based on (4), the transmitted signal by the m-th transmitting antenna

element is given as

xm(t) = ϕm(t)ej2π(f0+αm∆f)t, (6)
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where ϕm(t) is the orthogonal baseband waveform with duration of T from
the m-th transmitting antenna, which has properties of [3]

∫ T

0

ϕm1
(t)ϕ∗

m2
(t− τ)dt =


0 (m1 ̸= m2)

0 (m1 = m2, τ ̸= 0)

1 (m1 = m2, τ = 0)

. (7)

Note that, in practice, this condition is difficult to achieve perfectly due to
hardware limitations such as finite chip length, imperfect synchronization, and
hardware nonlinearity. This may lead to partial loss of orthogonality, resulting
in a slight degradation of estimation performance. If the non-ideal waveform
orthogonality becomes a serious limiting factor in implementation, time divi-
sion multiplexing (TDM) signaling can alternatively be used to ensure strict
orthogonality by assigning separate time slots to different transmitting anten-
nas.

Assume that there are K targets in the far field from the FDA with DOA
and range pairs of (θk, rk) , (k = 0, 1, · · · ,K − 1) with respect to the 0-th
transmitting and receiving antenna. The reference time delay of the k-th
target is defined as the time delay from the 0-th transmitting antenna to the
0-th receiving antenna, namely τ0,0,k = 2rk/c. Thus, the relative time delay
of the signal from the m-th transmitting antenna and p-th receiving antenna
with respect to the reference time delay can be expressed as

τm,p,k = τ0,0,k −
(
αmd sin θk

c
+

βpd sin θk
c

)
(8)

due to the far field assumption.
If we focus only on the k-th target and ignore the additive noise for a while,

the corresponding received signal at the p-th receiving antenna is given by

xp,k(t) =

M−1∑
m=0

xm,p,k(t)

=

M−1∑
m=0

ϕm(t− τm,p,k)e
j2π(f0+αm∆f)(t−τm,p,k), (9)

where xm,p,k(t) is the received signal corresponding to the k-th target at the p-
th receiving antenna originally from the m-th transmitting antenna. At the p-
th receiving antenna, in order to extract the signal from the m-th transmitting
antenna, we perform down-conversion corresponding to the carrier frequency
and frequency shift, which results in

ŷm,p,k(t) = e−j2π(f0+αm∆f)txp,k(t).
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Then, we perform matched filtering given by

ȳm,p,k(τ) =

∫ T

0

ϕ∗
m (t− τ) ŷm,p,k(t)dt

≈
M−1∑
m′=0

e−j2π(f0+αm′∆f)τm′,p,kej2π(αm′−αm)∆fT
2

·
∫ T

0

ϕ∗
m (t− τ)ϕm′(t− τm′,p,k)dt.

The detailed derivation can be found in Appendix A.1. Based on the orthog-
onality property of the baseband waveform ϕm(t) in (7), the output of the
matched filter is developed as

ȳm,p,k(τ) = e−j2π(f0+αm∆f)τm,p,k

∫ T

0

ϕ∗
m (t− τ)ϕm(t− τm,p,k)dt

=

{
e−j2π(f0+αm∆f)τm,p,k (τ = τm,p,k)

0 (τ ̸= τm,p,k)
.

It can be found that, if and only if τ = τm,p,k is satisfied, the matched filter
output has non-zero output expressed as

ym,p,k = ȳm,p,k(τm,p,k)

= e−j2πf0
2rk
c ej2π(f0+αm∆f)

αmd sin θk
c ej2π(f0+αm∆f)

βpd sin θk
c

· e−j2παm∆f
2rk
c . (10)

Because we assume ∆f ≪ f0, we have

ej2π(f0+αm∆f)
αmd sin θk

c ≈ ej2πf0
αmd sin θk

c

ej2π(f0+αm∆f)
βpd sin θk

c ≈ ej2πf0
βpd sin θk

c .

Besides, if we define ξk = e−j2πf0
2rk
c depending only on the target, the re-

ceived signal after matched filtering can be rewritten as

ym,p,k = ξke
−j4π

αm∆frk
c ej2πf0

αmd sin θk
c ej2πf0

βpd sin θk
c . (11)

Since we have P receiving antennas and M matched filter outputs for each
receiving antenna, the received signal corresponding to the k-th target can be
written in a matrix form as

Yk =


y0,0,k y0,1,k · · · y0,P−1,k

y1,0,k y1,1,k · · · y1,P−1,k

...
...

. . .
...

yM−1,0,k yM−1,1,k · · · yM−1,P−1,k

 . (12)
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Moreover, defining vectors as

bt(θk) =
[
ej2πα0d sin(θk)/λ, · · · , ej2παM−1d sin(θk)/λ

]T
,

ct(rk) =
[
e−j4πα0∆frk/c, · · · , e−j4παM−1∆frk/c

]T
,

ar(θk) =
[
ej2πβ0d sin(θk)/λ, · · · , ej2πβP−1d sin(θk)/λ

]T
,

where λ = c/f0 denotes the wavelength of the signal corresponding to f0, the
received signal matrix can be rewritten as

Yk = ξk [bt (θk)⊕ ct (rk)]a
T
r (θk) ∈ CM×P . (13)

So far, we have considered the received signal model only for the k-th
target ignoring noise, but actual received signal will be the superposition of
the signals from K targets with additive noise. Also, we usually use multiple
snapshots for DOA and range estimation, while (13) can be considered as a
single snapshot for the k-th target. Thus, the actual sampled received signal
model of the l-th snapshot (l = 0, 1, · · · , L − 1) including additive noise is
written as

Y(l) =

K−1∑
k=0

ξk(l) [bt (θk)⊕ ct (rk)]a
T
r (θk) +N(l), (14)

where N(l) ∈ CM×P is a white circular complex Gaussian noise matrix in the
l-th snapshot. Using the properties of

vec(abT ) = b⊗ a, (15)

where vec(·) denotes the vectorization operator, and

(A⊕C)⊗ (B⊕D) = (A⊗B)⊕ (C⊗D), (16)

the vectorized received signal y(l) = vec(Y(l)) can be rewritten as [25]

y(l) = vec(Y(l))

=

K−1∑
k=0

ξk(l)ar (θk)⊗ (bt (θk)⊕ ct (rk)) + n(l)

=

K−1∑
k=0

ξk(l) (ar (θk)⊕ 1P )⊗ (bt (θk)⊕ ct (rk)) + n(l)

=

K−1∑
k=0

ξk(l) [1P ⊗ ct (rk)]⊙ [ar (θk)⊗ bt (θk)] + n(l)
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=

K−1∑
k=0

ξk(l) diag
{
[1P ⊗ ct (rk)] [ar (θk)⊗ bt (θk)]

T
}
+ n(l)

=

K−1∑
k=0

ξk(l) diag
{
1P ⊗

[
ct (rk) [ar (θk)⊗ bt (θk)]

T
]}

+ n(l)

= diag

(
K−1∑
k=0

ξk(l)1P ⊗
[
ct (rk) (ar (θk)⊗ bt (θk))

T
])

+ n(l), (17)

where

n(l) = vec(N(l)). (18)

Note that the conventional FDA MIMO radar in [19] has employed a ULA
for the physical array, and the entire ULA is used both for the transmitting
and the receiving arrays, hence Φ = Φt = Φr holds. On the other hand,
in [25], a ULA is also employed for the physical array and the entire ULA
is used for the transmitting array, but a sparse array, which is composed
by the subarray of the ULA, is used for the receiving array to reduce the
computational complexity. Thus, Φ = Φt ⊇ Φr holds in this case.

3 Proposed Design of Nested FDA for MIMO Radar

Here, we consider to introduce the sparse array into the physical array of the
FDA MIMO radar to improve the estimation performance. Since the selection
of the sparse array configuration will have large impact on the performance,
an appropriate choice of the sparse array for the FDA MIMO radar will be
required.

Our method is based on [19] and we also utilize the 2D ANM based joint
DOA and range estimation approach. As we’ll see in Section 5, the trans-
mitting array is required to have the ULA structure in order to solve the
2D ANM problem by reducing it to SDP problem taking advantage of Van-
dermonde decomposition of multilevel Toeplitz matrix. This means that the
physical sparse array for the FDA MIMO radar should have ULA structure
in its subarray. Thus, we have employed nested array [16] for the physical
sparse array, as it has an inner ULA as a subarray.

The location set Φ of the nested array is defined with location sets of two
uniform linear subarrays

Φ1 = {k1d, 0 ≤ k1 ≤ M − 1, k1 ∈ N}, (19)
Φ2 = {(Mk2 − 1)d, 2 ≤ k2 ≤ N −M + 1, k2 ∈ N}, (20)
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as Φ = Φ1 ∪Φ2. In the proposed approach, we use the inner ULA defined by
(19) as the transmitting array, namely, Φt = Φ1. On the other hand, we use
whole nested array as the receiving array, that is Φr = Φ. Figure 2 illustrates
the structure of the proposed nested FDA for the co-located MIMO radar.

Receiving Array

0 1    ⋯  𝑀 − 1

Transmitting Array

Physical
Array

⋯𝑀

𝑀𝑑𝑑

𝑁 −2 𝑁 − 1

(M elements ULA)

(N elements nested array)

𝑀𝑑

Figure 2: Proposed nested FDA for co-located MIMO radar.

In the received signal model of (17), DOA information is included in
ar(θk)⊗ bt(θk), whose virtual array aperture A is given by

A = NM −M2 + 2M − 2. (21)

Therefore, the DOA estimation performance could be improved by the design
to maximize the aperture. On the other hand, in (17), ct (rk) contains the
range information, whose dimension is equal to the number of transmitting
antenna elements M . Thus, from a viewpoint of the range estimation per-
formance, better estimation results could be expected with larger M . This
means that both the virtual array aperture A and the number of transmitting
antenna elements M should be taken into consideration in the design of the
proposed nested FDA for the MIMO radar.

We have noticed that the level of the nested array, which is defined as
F = N −M , can be used to control the aperture and the number of elements
of the transmitting array, because, for given N , a selection of the level F
uniquely determines A and M . Table 1 shows examples of the pairs of A and
M for ULA FDA [19] and different levels of the nested FDA with the number
of physical elements N = 6, 8, and 10, respectively. From the table, we can see
that the maximum virtual array aperture A is not necessarily achieved with
the largest number of transmitting antenna elements M . Thus, the level of
the proposed nested FDA should be determined by the compromise between
DOA and range estimation performance.
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Table 1: Examples of virtual array aperture A and number of transmitting antenna elements
M of ULA FDA [19] and proposed nested FDA.

Array Structure N = 6 N = 8 N = 10
ULA FDA A=10, M=6 A=14, M=8 A=18, M=10

1-level
nested FDA A=13, M=5 A=19, M=7 A=25, M=9

2-level
nested FDA A=14, M=4 A=22, M=6 A=30, M=8

3-level
nested FDA A=13, M=3 A=23, M=5 A=33, M=7

4 DOA-range Decoupling for Proposed Nested FDA MIMO Radar

In order to avoid the ambiguity in the estimation, the received signal model
with decoupled DOA and range information will be discussed here.

If we divide the received signal vector y(l) into N subvectors of size M ×1
as

y(l) = [yT
0 (l), · · · ,yT

N−1(l)]
T , (22)

the n-th subvector can be written as

yn(l) = diag

(
K−1∑
k=0

ξk(l)ct (rk) b
T
t (θk) a

n
r (θk)

)
+ nn(l), (23)

where anr (θk) denotes the n-th element of ar (θk).
We define a steering vector with respect to θk as

g (θk) =
[
1, ej2πd sin(θk)/λ, · · · , ej2π(M−1+βN−1)d sin(θk)/λ

]T
∈ C(M+βN−1)×1, (24)

which contains all elements in ar (θk)⊗bt (θk) but without duplication, where
βN−1 = (N −M + 1)M − 1 for the case with the nested array. Then, using
the operator of diagk(D), (23) can be simplified as

yn(l) = diagβn

(
K−1∑
k=0

ξk(l)ct (rk) g
T (θk)

)
+ nn(l)

= Qn

K−1∑
k=0

ξk(l) (g (θk)⊗ ct (rk)) + nn(l), (25)
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where Qn ∈ CM×M(M+βN−1) is the extraction matrix, whose element is one at
the {1+βnM+(M+1)m}-th column of the m-th row (m = 0, 1, . . . ,M−1, n =
0, 1, . . . , N − 1) and zero otherwise, and n(l) = [nT

0 (l), · · · ,nT
N−1(l)]

T . Note
that the definition of the extraction matrix Qn in this paper is different from
that in [19] or [25]. In order to help an intuitive understanding, Table 2
visually shows the configuration of the extraction matrix Qn, where each cell
contains a row vector of size M and ekM represents a 1×M vector with all-zero
except that the k-th element is 1. Note that the index of the column in Table
2, such as βn and 1 + βn, corresponds to the block index of the matrix Qn.

Table 2: Configuration of extraction matrix Qn.

index 1 · · · βn 1 + βn 2 + βn · · · M − 1 + βn M + βn M + βn + 1 · · · M + βN−1

0 0T
M · · · 0T

M e1M 0T
M · · · 0T

M 0T
M 0T

M · · · 0T
M

1 0T
M · · · 0T

M 0T
M e2M · · · 0T

M 0T
M 0T

M · · · 0T
M

...
...

...
...

...
. . .

...
...

...
...

M − 2 0T
M · · · 0T

M 0T
M 0T

M · · · eM−1
M 0T

M 0T
M · · · 0T

M

M − 1 0T
M · · · 0T

M 0T
M 0T

M · · · 0T
M eMM 0T

M · · · 0T
M

By stacking both sides of (25), we have

y(l) = Q [G(θ)⊙Ct(r)] ξ(t) + n(l), (26)

where

Q =
[
QT

0 , · · · ,QT
N−1

]T
, (27)

G(θ) = [g (θ0) , · · · , g (θK−1)] , (28)
Ct(r) = [ct (r0) , · · · , ct (rK−1)] , (29)

ξ(l) = [ξ0(l), · · · , ξK−1(l)]
T
. (30)

Moreover, the received signal matrix composed by L snapshots is given by

Ȳ = Q [G(θ)⊙Ct(r)] ξ +N ∈ CMN×L, (31)

where

Ȳ = [y(0), · · · ,y(L− 1)] , (32)
ξ = [ξ(0), · · · , ξ(L− 1)] , (33)
N = [n(0), · · · ,n(L− 1)] . (34)

Note that G(θ) depends only on the DOA information of θ = [θ0, · · · ,
θK−1]

T and Ct(r) depends only on the range information of r = [r0, · · · ,
rK−1]

T , thus the DOA-range decoupling has been achieved in (31) with the
manipulations above.
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5 DOA and Range Estimation Method

To fully utilize the extended virtual array aperture of the proposed nested
FDA and reduce required number of snapshots, we employ the 2D ANM
approach as in [19].

From (31), we can regard the available received signal matrix Ȳ as the
result of the extraction by using Q from an ideal received signal matrix of

Ŷ = G(θ)⊙Ct(r)ξ (35)

and the addition of the noise matrix. Thus, we firstly consider the ANM for
the received signal model of (35) for simplicity.

According to [28],[29], the solution of ANM for (35) is obtained by solving
a SDP problem with variables V and u as

min
u,V

1

2
√
MN

[tr(T(u)) + tr(V)]

s.t
[

T(u) Ŷ

ŶH V

]
⪰ 0,

(36)

where u is given by

u =[u0,0, u0,1, · · · , u0,N−1, u1,−(N−1), u1,−(N−2), · · · , u1,N−1, · · · ,
uM−1,−(N−1), uM−1,−(N−2), · · · , uM−1,−N−1]

T ∈ C[(M−1)(2N−1)+N ]×1.

T(u) is defined as a mapping from a vector u to an MN ×MN matrix with
M ×M blocks as

T(u) =


T0 TH

1 · · · TH
M−1

T1 T0 · · · TH
M−2

...
...

. . .
...

TM−1 TM−2 · · · T0

 ,

where each block of T(u) is an N ×N Toeplitz matrix expressed as

Tm =


um,0 um,−1 · · · um,−(N−1)

um,1 um,0 · · · um,−(N−2)

...
...

. . .
...

um,N−1 um,N−2 · · · um,0

 ,m = 0, 1, · · · ,M − 1.

Moreover, T(u) can be written as the Vandermonde decomposition form as

T(u) = (G(θ)⊙Ct(r))Γ (G(θ)⊙Ct(r))
H
, (37)
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where Γ = diag (σ0, · · · , σK−1) denotes a diagonal matrix whose diagonal
elements are the eigenvalues of T(u).

In order to solve (36) as the SDP problem, T(u) must be a twofold block
Toeplitz (2-level Toeplitz) matrix. According to the property of the Vander-
monde decomposition, Ct(r) must be a Vandermonde matrix to satisfy the
requirement (see Appendix A.2). This means that the transmitting array is
required to be a ULA in order to solve the ANM as the SDP problem. This is
the reason why we have selected nested array and utilized its inner ULA for
the transmitting array in Section 3.

Since the ideal received signal matrix Ŷ is not available, we need to use
the received signal model of

Ȳ = QŶ +N. (38)

Thus, taking the extraction matrix Q and the additive noise into consideration,
we solve the regularized version of (36) given by

min
u,V,Ŷ

1

2
√
MN

[tr(T(u)) + tr(V)] +
µ

2
∥Ȳ −QŶ∥F

s.t
[

T(u) Ŷ

ŶH V

]
⪰ 0,

(39)

where µ ≥ 0 is a regularization parameter. Algorithm 1 shows the specific pro-
cess to solve the SDP problem in (39) with CVX toolbox. Once the estimate
of T(u) are obtained with Algorithm 1, we utilize the idea of the 2D ESPRIT
algorithm [22] to obtain grid-free DOA and range estimates from T(u), since
it corresponds to the correlation matrix of the ideal received signal matrix
whose array manifold is G(θ)⊙Ct(r), while the MUSIC based algorithm has
been used in [19].

6 Computational Complexity

To evaluate the computational cost of the proposed 2D ANM algorithm, we
provide a theoretical complexity analysis of the algorithm and compare it with
the complexities of several existing algorithms, including the MUSIC based
algorithm [8], GFT based algorithm [23], and hybrid algorithm [9], which
will be used for performance comparison in Section 7. Table 3 summarizes
the computational complexity of each method using big-O notation. In the
table, η1 and η2 represent the number of searches for 2D parameters θ and
r, respectively, in the MUSIC based algorithm and the GFT based algorithm,
while b denotes the number of iterations required in the hybrid algorithm to
converge.
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Algorithm 1 2D ANM algorithm for FDA MIMO radar.
Input: Received signal matrix Ȳ, regularization parameter µ, stacked ex-

traction matrix Q;
Output: Equivalent correlation matrix T(u);
1: Construct SDP minimization problem in (39);
2: Randomly initialize V, T(u), and Ŷ under the constraints and construct

the initial semi-positive defined matrix[
T(u) Ŷ

ŶH V

]
⪰ 0;

3: Solve the SDP problem by CVX toolbox;
4: return T(u);

Table 3: Computational complexity of the algorithms.

Algorithms Computational complexity
2D ANM O([M(MN −M2 + 2M − 1) + L]4.5)

MUSIC based O(4/3(MN)3 + (K + η1 + η2)L(MN)2) [8]
GFT based O(η1η2(MN)3 + η1η2L(MN)2)

Hybrid O(b(MN)3 + bLK(MN)2 + bK(L+ 1)MN) [9]

We can see from the table that the 2D ANM algorithm has the highest
complexity, due to the high computation burden in solving the SDP problem
[14]. The complexities of the MUSIC based, GFT based, and hybrid algo-
rithms scale cubically with respect to MN , but their actual computational
costs differ due to different constant factors. The MUSIC based algorithm has
a relatively small constant of 4/3, while the constants of the GFT based and
hybrid algorithms depend on the numbers of 2D search points and iterations,
which are typically large in practice. Consequently, the actual computational
costs of the GFT based and hybrid algorithms are often higher than that of
the MUSIC based algorithm.

7 Simulation Results

To confirm the validity of the proposed approach, we have evaluated root-
mean-square error (RMSE) performance of the proposed nested FDA MIMO
radar using the 2D ANM via computer simulations. Operating frequency at
the 0-th element f0 and the unit frequency shift of the FDA ∆f are set to be
10GHz and 5kHz, respectively. Based on the settings in [19] and [25], three
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targets are assumed with DOA and range pairs of (θ0, r0) = (10◦, 4000m),
(θ1, r1) = (20◦, 12000m), and (θ2, r2) = (40◦, 6000m) except for the simulation
results under closely spaced targets in Figure 3.

(a) DOA estimation. (b) Range estimation.

Figure 3: RMSE versus number of snapshots with closely spaced targets (N = 10).

In order to compare the performance obtained via simulations with the-
oretical performance bound, we have derived CRLBs [12] for each antenna
configuration. Define ηθk and ηrk as the CRLBs of DOA and range estimates
for the k-th target, and

a (θk, rk) = [bt (θk)⊕ ct (rk)]⊗ ar (θk) , (40)

A (θ, r) = [a (θ0, r0) , . . . ,a (θK−1, rK−1)] , (41)

CRLB vector η = [ηθ0 , · · · , ηθK−1
, ηr0 , · · · , ηrK−1

]T is obtained as

η = diag

(
σ2

2L
Re
{(

WHΠ⊥
AW

)
⊙PT

}−1
)
, (42)

where σ2 denotes the noise variance, and

W = [Aθ,Ar] =

[
∂A (θ, r)

∂θ
,
∂A (θ, r)

∂r

]
, (43)

Π⊥
A = I−A (θ, r)

(
A (θ, r)

H
A (θ, r)

)−1

A (θ, r)
H
. (44)

Moreover, P is a block matrix defined as

P =

[
P0 P0

P0 P0

]
, (45)
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where

P0 = RξA (θ, r)
H
R−1

Ȳ
A (θ, r)Rξ, (46)

RȲ = E[ȲȲH ]/L is the covariance matrix of received signal, and Rξ =

E[ξξH ]/L.
Figure 4 shows the estimation results of 100 simulation trials with 100

points for each target using the proposed 1-level nested FDA MIMO radar
with the number of physical antennas N = 8, the number of snapshots L = 10,
and the received signal-to-noise ratio (SNR) of 10 dB. From Figure 4, we can
see that the DOAs and ranges of all 3 targets are estimated with high accuracy
without large deviation in spite of such a small number of snapshots.

Figure 4: Scatter plots of estimated DOAs and ranges for 100 simulation trials.

Figures 5a and 5b respectively depict the RMSE performance of the DOA
and range estimation versus the number of snapshots for the 1-level nested
FDA using the proposed 2D ANM algorithm, the MUSIC based algorithm [8],
the 2D ANM algorithm in [19], the GFT based algorithm [23], and the hybrid
algorithm in [9] with SNR of 10 dB and the number of antenna elements of
N = 10. Note that, except for the proposed 2D ANM algorithm and the
MUSIC based algorithm, the array structure is assumed to be the ULA due
to the limitations of the algorithms. The search steps of the DOA and range
are set to be 0.1◦ and 50m, respectively for the method in [8], while the
grids of the overcomplete dictionary are set to 1◦ and 50m for the methods in
[23] and [9], to balance computational complexity among different methods.
The RMSE for each number of snapshots is obtained by the average of 200
simulation trials. From the DOA estimation performance results in Figure 5a,
it can be seen that when the number of snapshots is small, the performance
of the GFT based and hybrid algorithms based on CS is better than the
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(a) DOA estimation. (b) Range estimation.

Figure 5: RMSE versus number of snapshots (N = 10).

MUSIC based algorithm. The proposed 1-level nested FDA achieves even
better RMSE performance than the state-of-the-art methods, especially for
the small number of snapshots region except when the number of snapshots is
1. On the other hand, from the range estimation results in Figure 5b, it can be
found that the GFT based and the hybrid algorithms still have outstanding
performance when the number of snapshots is small, while the proposed 1-
level nested FDA (ANM) achieves better performance in this region except
for the case with the number of snapshots of 1. Moreover, the proposed 1-
level nested FDA achieves better RMSE performance than that of the ANM
algorithm using the ULA for the number of snapshots greater than or equal to
4, thanks to the improved DOA estimates due to the expanded array aperture.

To further evaluate the robustness and practical performance of the pro-
posed 2D ANM algorithm under more realistic and challenging conditions,
we conduct a new simulation experiment involving closely spaced targets. In
this scenario, two targets are intentionally placed in close proximity in both
DOA and range dimensions as (θ0, r0) = (10◦, 4000m), (θ1, r1) = (12◦, 4500m),
while a third target is positioned far from them at (θ2, r2) = (40◦, 8000m).
Figures 3a and 3b present the DOA and range estimation RMSEs versus the
number of snapshots under this scenario with all other parameters identical
to those in Figures 5a and 5b. It is observed that the proposed 2D ANM
algorithm applied to the nested FDA configuration maintains high estima-
tion accuracy even when targets are closely spaced. Specifically, the proposed
method outperforms the other techniques in DOA estimation for all but the
single-snapshot case, and shows competitive performance in range estimation.
These results demonstrate the strong resolution capability and robustness of
our approach in difficult operating conditions.

Figures 6 and 7 present the RMSE performance of the proposed nested
FDA MIMO radar with different levels of the nested array using the 2D ANM
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for the DOA and the range estimation, respectively, versus the received SNR
with N = 6 and L = 10. To facilitate comparison, the performance of the
existing FDA MIMO radar using ULA FDA [19] with M = N = 6 and CRLB
for each array configuration are also plotted in the figures. The RMSE for
each SNR is obtained by the average of 200 simulation trials. From Figure
6, it can be observed that the DOA estimation performance of the proposed
nested FDA is better than that of ULA FDA regardless of the level of the
nested array. Among the three proposed nested FDAs, 2-level nested FDA
achieves the best performance. This would be because 2-level nested FDA has
a larger virtual array aperture of A = 14 than that of 1 or 3-level nested FDA
of A = 13 as discussed in Section 3. On the other hand, from Figure 7, we
can see that the ULA FDA achieves the best range estimation performance.
Moreover, the proposed nested FDA achieves better performance for lower
levels of the nested array. This is because, for a given number of physical an-
tenna elements, the ULA FDA utilizes the largest number of elements for the
signal transmission among the four methods, and the number of transmitting
antennas decreases as the level of the nested array increases. These numerical
results demonstrate that the proposed nested FDA can control the balance
between DOA and range estimation performance by adjusting the level of the
nested array. In practical applications, an appropriate level of the nested ar-
ray should be selected depending on the requirement on the DOA and range
estimation performance.

ULA [19]
1-level nested FDA
2-level nested FDA
3-level nested FDA
CRLB (ULA [19])
CRLB (1-level nested FDA)
CRLB (2-level nested FDA)
CRLB (3-level nested FDA)

Figure 6: RMSE of DOA estimation versus received SNR of different array configurations
(N = 6).

Figures 8 and 9 also illustrate the DOA and range RMSE performance for
the same system setting as in Figures 6 and 7 but with a larger number of
physical antenna elements of N = 10. As seen from Figure 8, the proposed 3-
level nested FDA achieves the best DOA estimation performance, since it has
the greatest virtual array aperture, which again supports the discussions in



20 Zhu et al.

ULA [19]
1-level nested FDA
2-level nested FDA
3-level nested FDA
CRLB (ULA [19])
CRLB (1-level nested FDA)
CRLB (2-level nested FDA)
CRLB (3-level nested FDA)

Figure 7: RMSE of range estimation versus received SNR of different array configurations
(N = 6).

Section 3. Moreover, the proposed 2 or 3-level nested FDA achieves the RMSE
performance very close to their CRLBs. On the other hand, the range esti-
mation performance largely depends on the number of transmitting antennas
again, and thus the proposed nested FDA with a lower level of the nested ar-
ray achieves better range performance. However, it should be noted here that,
unlike the case in Figure 7, the proposed 1 or 2-level nested FDA can achieve
better RMSE performance than that of the ULA FDA, which has the largest
number of transmitting antennas. This could be attributed to the fact that the
range estimation accuracy also depends on the estimation accuracy of DOA,
so the degradation due to smaller number of transmitted antennas is com-
pensated by the improved DOA estimation accuracy due to the larger virtual
array aperture for the case with 1 or 2-level nested FDA. This phenomenon
does not appear in simulations in Figure 7 with N = 6, where the impact of
decreasing transmitting antenna is relatively larger than the case with N = 10.
The results here suggest that the proposed approach using the nested FDA
will be more effective for the MIMO radar with larger number of antennas.

In practical radar systems, mutual coupling (MC) among antenna elements
can significantly distort the array manifold, leading to degraded estimation
performance. While the signal model in Section 2 assumes an MC-free situ-
ation, we now evaluate the performance of the proposed nested FDA MIMO
scheme under realistic MC conditions.

To this end, we adopt a widely used MC model [10, 11, 13], and the
received signal with the MC effect is expressed as
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ULA [19]
1-level nested FDA
2-level nested FDA
3-level nested FDA
CRLB (ULA [19])
CRLB (1-level nested FDA)
CRLB (2-level nested FDA)
CRLB (3-level nested FDA)

Figure 8: RMSE of DOA estimation versus received SNR of different array configurations
(N = 10).

ULA [19]
1-level nested FDA
2-level nested FDA
3-level nested FDA
CRLB (ULA [19])
CRLB (1-level nested FDA)
CRLB (2-level nested FDA)
CRLB (3-level nested FDA)

Figure 9: RMSE of range estimation versus received SNR of different array configurations
(N = 10).

Y(l) =

K−1∑
k=0

ξk(l)Ct [bt (θk)⊕ ct (rk)]a
T
r (θk)C

T
r +N(l), (47)

where the MC effect is represented by matrices Ct ∈ CM×M and Cr ∈ CP×P

applied to the transmitting and receiving arrays, respectively. The (i, j)-th
element of Ct is defined as

Ct(i, j) =

{
0, |αi − αj | > B

c|αi−αj |, |αi − αj | ≤ B
,
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where c0 = 1, c1 is the MC coefficient between antenna pairs with unit spacing
d, cn = c1e

−j(n−1)π/8/n, (2 ≤ n ≤ B), and B denotes the maximum distance
with the MC effect. Similarly, the (p, q)-th element of Cr can be defined as

Cr(p, q) =

{
0, |βp − βq| > B

c|βp−βq|, |βp − βq| ≤ B
.

To assess the impact of MC on estimation performance, we have conducted
simulations to evaluate DOA and range RMSEs with and without the MC
effect, whose results are shown in Figure 10. ULA and 1-level nested FDA
are used for comparison with the physical antenna elements N = 10, and the
number of snapshots L = 10. In the presence of MC, we set c1 = 0.1 and
B = 10. It is observed that while both systems experience some degrada-
tion, the nested FDA maintains superior robustness and estimation accuracy,
particularly at moderate-to-high SNR.

ULA [19]  (w/o MC)
1-level nested FDA (w/o MC)
ULA  [19] (with MC)
1-level nested FDA (with MC)

(a) DOA estimation. (b) Range estimation.

Figure 10: RMSE versus received SNR with and without MC effect (N = 10).

Meanwhile, to quantify the impact of MC, we introduce the coupling leak-
age ρ to measure the strength of the MC effect for an array, defined as [10]

ρ =
∥C− I∥F
∥C∥F

, (48)

where C represents the MC matrix and I denotes the identity matrix. Ta-
ble 4 compares the coupling leakage ρ for different array configurations with
c1 = 0.1 and B = 10. The results show that nested arrays exhibit leakages
consistently lower than that of the ULA structure, especially as the nesting
level increases. This implies that nested arrays are inherently more robust to
coupling effects due to their sparse structures.

In practical radar applications, some targets may be highly correlated or
even completely coherent, severely degrading the performance of traditional
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Table 4: Coupling leakage ρ of ULA and nested arrays.

Array Structure N = 6 N = 8 N = 10
ULA 0.1456 0.1523 0.1566

1-level
nested array 0.1299 0.1404 0.1471

2-level
nested array 0.1127 0.1275 0.1369

3-level
nested array 0.0962 0.1138 0.1262

subspace-based estimation methods because they rely on the full-rank condi-
tion of the signal covariance matrix. Figure 11 shows the DOA and range
RMSE performance of the 2D ANM algorithm and the MUSIC based algo-
rithm [8] for ULA FDA and 1-level nested FDA, as well as the GFT based
algorithm [23] and the hybrid algorithm [9] with ULA, where the two of the
three targets are completely coherent, the received SNR is 10 dB, and the
number of physical antennas is N = 10. It can be seen from the figure
that the 2D ANM algorithm achieves consistently accurate DOA and range
estimation, while the MUSIC based algorithm suffers from considerable per-
formance degradation compared with the non-coherent scenario in Figure 5
due to the rank deficiency of the covariance matrix. The reason for the good
performance of the 2D ANM algorithm could be attributed to the fact that
it does not rely on subspace decomposition of the sample covariance matrix.
Instead, the 2D ANM algorithm utilizes an optimization framework, where a
structured covariance-like matrix (i.e. T(u)) is iteratively constructed as an
optimization variable under the constraint of positive semi-definiteness. This
optimization process would bypass the rank-deficiency issue, which can be
observed in conventional subspace methods, allowing the matrix to maintain
full rank even when the input signals are coherent.

In order to demonstrate the controllability of the balance between DOA
and range estimation performance with the proposed approach, we provide
the DOA and the range RMSE of the proposed nested FDA MIMO radar for
the number of physical antennas 10 in Figure 12, with SNR of 20 dB and the
number of snapshots of L = 10. For comparison purpose, the performance
of ULA FDA [19] is also plotted in the figure. Note that the results for the
higher levels of nested array with reduced array aperture are not shown in
the figures, since the choices degrade both the DOA and range estimation
performance. We can clearly see the trade-off relationship between the DOA
and range estimation performance.

Finally, we evaluate the empirical computational complexity of the pro-
posed algorithm, the MUSIC based algorithm [8] and the 2D ANM algorithm
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(a) DOA estimation. (b) Range estimation.

Figure 11: RMSE versus number of snapshots with coherent targets (N = 10).
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Figure 12: DOA and range RMSE performance trade-off (N = 10).

with ULA [19] in terms of the average computation time for DOA and range
estimation in computer simulations. Note that, based on the discussion in Sec-
tion 6, we focus our numerical comparison on the 2D ANM algorithm and the
MUSIC based algorithm, as the MUSIC based algorithm requires the lowest
theoretical computational complexity among the compared algorithms. The
simulation environment is as follows: CPU: Intel Core i9-13900KF (number
of cores: 24, base clock frequency: 3.0 GHz), memory: 64 GB, MATLAB
version: 2023a, and OS version: Debian 6.1.106-3 x86 64 GNU/Linux. Fig-
ures 13a and 13b respectively show the results with the number of physical
antennas N = 6 and 10 under SNR of 20 dB. As depicted in the figures, the
average computation time of the proposed 2D ANM algorithm is greater than
that of the MUSIC based algorithm. Thus, we can say that the proposed
method achieves good estimation performance at the cost of higher compu-
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(a) Number of physical antennas N = 6. (b) Number of physical antennas N = 10.

Figure 13: Average computation time versus number of snapshots.

tational complexity. It should also be noted that in the proposed algorithm,
the computation time depends on the level of the nested array, since the size
of the matrix T(u) depends on it. With the fact that the proposed method
achieves better estimation accuracy in the region of a small number of snap-
shots, the proposed method would be suited for applications, where a small
number of snapshots is required.

8 Conclusion

In this paper, we have proposed to employ the nested array for the physical
antenna array of the co-located FDA MIMO radar using the 2D ANM ap-
proach, where the inner ULA serves as the transmitting array, while whole
nested array is utilized for the receiving array. Unlike the conventional ap-
proach of using the nested array solely for DOA estimation, the maximization
of the virtual array aperture is not necessarily the best strategy for the case
with the MIMO radar because it could result in the degradation of the range
estimation performance. Thus, we have proposed to control the level of the
nested array to take balance between DOA and range estimation performance.
The effectiveness of the proposed approach is demonstrated via computer sim-
ulations comparing its performance with that of the conventional FDA MIMO
radar using ULA and CRLBs.

Our future work includes the investigations of the estimation method,
which can cope with the transmitting array taking advantage of the entire
physical antenna array, and the computational complexity reduction scheme
based on some grid-free approaches, which do not require the SDP solver. In
addition, we plan to explore the applications of the proposed method in prac-
tical radar scenarios where fast response is critical, such as automotive radar
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[21], UAV-based surveillance [17], and cognitive radar systems [7]. These en-
vironments typically involve rapid target or platform motion and dynamically
changing conditions, under which the ability to perform accurate estimation
with a small number of snapshots is particularly advantageous.

A Derivation of Received Signal After Matched Filtering

The matched filter output corresponding to the k-th target at the p-th re-
ceiving antenna originally transmitted from the m-th transmitting antenna is
expressed as

ȳm,p,k(τ) =

∫ T

0

ϕ∗
m (t− τ) ŷm,p,k(t)dt.

=

∫ T

0

ϕ∗
m (t− τ) e−j2π(f0+αm∆f)txp,k(t)dt

=

∫ T

0

ϕ∗
m (t− τ) e−j2π(f0+αm∆f)t

M−1∑
m′=0

xm′,p,k(t)dt.

=

∫ T

0

ϕ∗
m (t− τ) e−j2π(f0+αm∆f)t

·
M−1∑
m′=0

ϕm′(t− τm′,p,k)e
j2π(f0+αm′∆f)(t−τm′,p,k)dt

=

∫ T

0

ϕ∗
m (t− τ)

·
M−1∑
m′=0

ϕm′(t− τm′,p,k)e
j2π(αm′−αm)∆fte−j2π(f0+αm′∆f)τm′,p,kdt

=

M−1∑
m′=0

e−j2π(f0+αm′∆f)τm′,p,k

·
∫ T

0

ϕ∗
m (t− τ)ϕm′(t− τm′,p,k)e

j2π(αm′−αm)∆ftdt. (49)

If we assume that ej2π(αm′−αm)∆ft has a constant value of ej2π(αm′−αm)∆fT
2

for the range t ∈ [0, T ] due to the low frequency of ∆f , the output of the
matched filter can be approximated as
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ȳm,p,k(τ) ≈
M−1∑
m′=0

e−j2π(f0+αm′∆f)τm′,p,kej2π(αm′−αm)∆fT
2

·
∫ T

0

ϕ∗
m (t− τ)ϕm′(t− τm′,p,k)dt. (50)

B Vandermonde Decomposition of Twofold Block Toeplitz Matrix

An AB × AB twofold block Toeplitz matrix T with rank K has its Vander-
monde decomposition as [30]

T = UΛUH , (51)

where Λ is a diagonal matrix and U is a block Vandermonde matrix expressed
as

U =


1f0 · · · 1fK−1

ej2πl0f0 · · · ej2πlK−1fK−1
...

. . .
...

ej2π(A−1)l0f0 · · · ej2π(A−1)lK−1fK−1

 , (52)

where F = [f0,f1, · · · ,fK−1] ∈ CB×K denotes a Vandermonde matrix. If we
define

lk =
[
1, ej2πlk , · · · , ej2π(A−1)lk

]T
, (53)

the twofold block Toeplitz matrix T can be rewritten as

T = (L⊙ F)Λ (L⊙ F)
H
, (54)

where L = [l0, l1, · · · , lK−1] ∈ CA×K . It is obviously found that L is also a
Vandermonde matrix.

On the other hand, if we assume that a matrix T ∈ CAB×AB admits a
Vandermonde decomposition as

T = (M⊙G)Γ (M⊙G)
H
, (55)

where M ∈ CA×K and G = [g0, · · · , gK−1] ∈ CB×K are Vandermonde matri-
ces expressed as

M =


1 · · · 1

ej2πm0 · · · ej2πmK−1

...
. . .

...
ej2π(A−1)m0 · · · ej2π(A−1)mK−1

 , (56)
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G =


1 · · · 1

ej2πg0 · · · ej2πgK−1

...
. . .

...
ej2π(B−1)g0 · · · ej2π(B−1)gK−1

 , (57)

and Γ ∈ CK×K denotes a diagonal matrix with diagonal elements γ0, γ1, · · · ,
γK−1.

Then, we have

(M⊙G)Γ =


γ0g0 · · · γK−1gK−1

γ0g0e
j2πm0 · · · γK−1gK−1e

j2πmK−1

...
. . .

...
γ0g0e

j2π(A−1)m0 · · · γK−1gK−1e
j2π(A−1)mK−1

 ,

and

(M⊙G)
H

=

 gH
0 gH

0 e−j2πm0 · · · gH
0 e−j2π(A−1)m0

...
...

. . .
...

gH
K−1 gH

K−1e
−j2πmK−1 · · · gH

K−1e
−j2π(A−1)mK−1

 .

Thus, T = (M⊙G)Γ (M⊙G)
H is a block matrix with each block size of

B ×B, and the (p, q)-th block can be obtained as

T(p,q) =

K−1∑
k=0

γkgkg
H
k ej2πmk(p−q). (58)

Since it depends only on p − q, we can confirm that T has a block Toeplitz
structure. Moreover, the (s, t)-th element of T(p,q) can be given by

(
T(p,q)

)
(s,t)

=

K−1∑
k=0

γke
j2πmk(p−q)ej2πgk(s−t), (59)

and hence each block of T also has a Toeplitz structure, which confirms that
the matrix T with the form in (55) is the twofold block Toeplitz matrix.
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