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ABSTRACT

In this paper, we propose text style transfer (T'ST) and text-to-
speech synthesis (TTS) using disfluency annotation for the ap-
plication of “spontaneous speech synthesis using the written text.”
TTS technology has progressed significantly, achieving human-like
naturalness in reading-style speech generation. However, it is still
developing when it comes to producing more spontaneous human-
like speech. Moreover, for existing spontaneous speech synthesiz-
ers, it is assumed that the input text contains spontaneous parts
such as disfluencies. Therefore, we aim to synthesize spontaneous
speech with disfluency on the basis of written materials without
disfluent parts. Specifically, we train the TST and TTS systems
for lecture speech generation by tagging disfluencies with special
symbols or converting disfluencies into special symbols to enhance
each model’s linguistic and acoustic control over disfluencies. We
combine the TST and TTS systems using disfluency annotation
to create a lecture speech generation system and demonstrate the
effectiveness of our method by comparing the results of objective
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and subjective evaluation experiments with those obtained with-
out disfluency annotation.

Keywords: Text-to-speech synthesis, text style transfer, spontaneous speech,
disfluency

1 Introduction

With the rapid improvement in speech synthesis and recognition performance
through the development of machine learning and deep learning technologies,
we are now entering an era in which spoken communication between “people
and computers” and between “people via computers” is a matter of course. In
this context, research on text-to-speech synthesis (TTS), a technology for gen-
erating appropriate speech using natural language text as input, is developing
significantly. In particular, “T'TS for reading-style speech” using written text
can produce speech as natural as human speech [29]. As the next challenge,
there is a growing interest in research on “spontaneous speech synthesis,” us-
ing spoken text to generate more natural and human-like speech.

The characteristics of spontaneous speech compared with those of reading-
style speech include the following: 1) the linguistic form and content of speech
are not predetermined, and no practice time is provided during recording; 2)
it includes nonverbal phenomena called spontaneous behaviors, e.g., laughter,
coughing, interjections, pauses, and disfluencies caused by hesitating, mis-
speaking or slurring of words; 3) the presence of listeners may affect the
speaker in some way [21]. These characteristics make spontaneous speech
more challenging to collect data than reading-style speech, and the sponta-
neous behaviors make modeling spontaneous speech more challenging.

Although spontaneous behaviors are challenging to replicate in speech syn-
thesis, many studies have shown that these behaviors, particularly disfluencies,
can affect the speaker’s perceived impression and enhance the listener’s mem-
ory, comprehension, and concentration [23, 1, 36, 8]. These studies indicate
that spontaneous behaviors are vital in enhancing the naturalness and effec-
tiveness of spontaneous speech.

Speech utterances are generally categorized into two primary types:
“monolog,” where the speaker delivers information in a one-way manner, and
“dialog,” which involves reciprocal interaction between the speaker and the
listener. Considerable research on spontaneous speech synthesis within dialog
has been undertaken. Yokoyama et al. [40] use a conversational dataset [24]
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annotated with six types of paralinguistic information, such as pleasantness
and arousal, to enhance neural speech synthesis and control various speak-
ing styles. Guo et al. [9] proposed a method for generating more natural
prosody in conversations by introducing a context encoder that considers con-
versational history, along with an auxiliary encoder based on BERT [6] for
integrating statistical features from text input. Li et al. [19] introduced con-
textual encoders and a method for predicting spontaneous behaviors from
text through the semi-supervised pretraining of a label predictor. The predic-
tor utilizes pseudo-labeled data from a multimodal label detector trained on
high-quality spontaneous speech data.

In contrast, research on speech synthesis for monologs is currently centered
around synthesizing reading-style speech, and the technology for replicating
spontaneous speech production remains in its early stages of development.
Moreover, spontaneous behaviors are not only effective in dialog. In monologs,
such as a lecture speech, incorporating spontaneous behaviors can effectively
retain the listener’s memory and create a favorable impression of the speaker,
enhancing the audience’s attentiveness [8, 28]. Given these considerations, the
importance of spontaneous behaviors in monologs deserves greater scholarly
attention.

In most research on spontaneous speech synthesis, it is assumed that the
text contains parts representing spontaneous behaviors. However, when we
want to generate a lecture and explanatory speech that is a monolog, the origi-
nal written text does not usually include spontaneous elements. Therefore, we
focus on spontaneous speech synthesis from written text, aiming to synthesize
a more natural and human-like speech [41]. We can accomplish this task by
combining text style transfer (TST) [12], which converts only the text style,
including sentiment and fluency, to another style while preserving the mean-
ing, with a TTS system that supports spontaneous speech. This combination
makes it possible to synthesize lecture and explanatory speech on the basis
of existing written materials, thereby reducing the cost and effort of creating
new speech scripts.

To achieve this goal, we focus on “disfluency” among spontaneous behav-
iors and attempt to improve the linguistic and acoustic controllability of dis-
fluency in each model by introducing disfluency annotation to each of the
TST and TTS systems. We describe the details of disfluency in Section 2.1.
Furthermore, we combine the TST and TTS systems with disfluency annota-
tions to generate speech from fluent text. The contributions of this paper are
summarized as follows.

e« We show that disfluency annotation improves style controllability in
TST systems.

e We investigate TTS systems suitable for spontaneous speech synthesis.
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¢ We show that disfluency annotation improves the reproducibility of dis-
fluency in TTS systems.

e We show that combining the TST and TTS systems with disfluency
annotation improves disfluency’s linguistic and acoustic controllability
in lecture speech generation.

2 Related Works

2.1 Disfluency Analysis

As mentioned in Section 1, nonverbal phenomena, e.g., pauses, disfluency,
laughter, and coughing, are some characteristics of spontaneous speech.
Among these spontaneous behaviors, we focus on disfluency in this paper. Al-
though numerous studies discuss the definition of disfluency, no standardized
definition has yet been established. We use the following definition; “disflu-
ency” can be defined as a phenomenon that interrupts the flow of speech and
does not add any propositional content [34]. There are also various ways of
categorizing types of disfluency. The main types of disfluency are listed as
follows; filled pauses (FPs or fillers) such as “uh” and “like”; repetitions, in
which some or all of the same words are repeated; repairs, which occurs when
one word is misspoken as another word; and prolongations, which extend the
phoneme at the end of a word. There are also cases where silent pauses are in-
cluded. Repetitions or repairs at the beginning of an utterance are sometimes
called false starts. FPs, silent pauses, and repetitions are often collectively
described as hesitation. In this paper, we deal with FP, widely studied in
previous research, and stutter words, fragments of words that occur due to
repetitions and repairs.

In the earliest studies, disfluency was examined mainly from a medical
perspective, such as stuttering or aphasia, and in relation to language devel-
opment in young children. Conversely, disfluency in spontaneous speech in
healthy adults was treated as a “redundant and useless element” and was
excluded from the scope of linguistic research [5]. Since the mid-1980s to
1990s, in psychology and psycholinguistic studies, analyzing the mechanisms
and cognitive processes of human language production has been attempted by
capturing spontaneous speech as it is [18, 2, 3]. In addition, with the progress
of AI research since the 2010s, the effects of disfluency have been actively
studied not only in human—human communication described in Section 2.1.1
but also in human—machine communication described in Section 2.1.2.
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2.1.1 In Human-human Communication

Several studies have shown that disfluency in human—human communication
positively affects cognition and recall. Arnold et al. [1] demonstrated that
article fluency (including “thee uh” and “the”) affects how a listener inter-
prets the following noun by monitoring the listener’s eye movement toward
the display object. With fluent articles, listeners were biased toward pre-
viously mentioned objects; with disfluent articles, they were biased toward
unmentioned objects. These results suggested that listeners use disfluency as
a predictive cue about the newness or oldness of information in subsequent
elements.

Following this, Watanabe et al. [36] investigated whether FPs affect lis-
teners’ predictions about the complexity of the following phrase in Japanese.
The participant’s task was to listen to sentences describing simple and com-
plex shapes on a computer screen and press a button as soon as they identified
the corresponding shape. An FP, or a silent pause of equal length or no pause,
was placed immediately before the description. Results for native Japanese
and non-native Chinese listeners showed that listeners’ reaction times to com-
plex shapes were shorter when FPs preceded the phrase describing the shape
than when they were absent. This result provided evidence that FPs are a
good cue for complex phrases. The response times of non-native listeners with
the lowest proficiency level were not affected by the presence or absence of
FPs, suggesting that the effect of FPs depends on their language proficiency
level.

Fraundorf and Watson [8] showed through an experiment of listening to
a recorded story-telling and recalling it orally that FPs facilitate recall at
not only the utterance level but also the discourse level. Participants who
listened to a pattern containing FPs were compared with those who listened
to a pattern containing silence or coughing of the same length, which indicated
that the group who listened to the pattern containing FPs showed better recall.
On the other hand, a similar experiment conducted on the web, but not in the
laboratory, in Germany showed opposite results [25]. This study suggested
that the results may be affected by differences in language and experimental
design, such as the web-based experiment, where it is more difficult to control
for distractors than in the laboratory experiment.

2.1.2 In Human-machine Communication

In response to these results, many researchers have focused on using speech
synthesis to reproduce disfluency in human—machine communication and its
possible effects. Various studies have been conducted in the context of a
dialog, including those described in Section 1. In the context of monolog,
Yamashita et al. [38] showed that the performance of a deep neural network-
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based statistical speech synthesizer could be improved by integrating a rich
annotation of contextual linguistic features at the morphological, prosodic and
phonetic levels (including disfluent phenomena) in Japanese. Schettino et al.
[28] conducted a comparative study of Italian tourist guide speech synthe-
sis with and without disfluency (FPs, lengthenings, or silent pauses). In the
first experiment, they conducted an AB test, and a significantly large number
of participants selected the voice with disfluency as the more natural voice.
However, a significantly large number of them also selected the voice without
disfluency as the more suitable voice for the virtual avatar. In a second ex-
periment, they conducted a parallel written recall test and an impression test,
and the average score of participants who listened to the disfluent voice in the
written test was significantly higher. Moreover, the synthesis of the hesitation
did not negatively affect the perception of quality or liking.

However, different studies have produced conflicting results regarding the
effect of FPs on the perception of personality traits in synthetic speech. Wester
et al. [37] trained a unit selection system on acting speech containing fillers
such as “I mean,” “you know,” “like,” “uh,” and “uhm,” and found that
the presence of these fillers made the synthetic speech sound more nervous,
less open, less conscientious, and less extroverted. On the basis of this finding,
Gustafson et al. [10] tested the effect of filler insertion in synthesized speech on
personality evaluation. They also found that in reading-style English speech,
filler insertion makes the sound more nervous, less open, less conscientious,
and slightly less extroverted. In contrast, they found that Swedish personality
ratings had no effect except a perceived increase in spontaneity. Kirkland et
al. [17] investigated the effects of filled pause placement, speech rate, and Fj
frequency on the speaker’s perception of confidence. When a filled pause was
inserted, the perceived confidence level decreased, especially when inserted in
the middle of the utterance, compared with when inserted at the beginning.

It is important to note that, in common with both human—human and
human-machine communication, different results are obtained depending on
the language and the conditions assumed, and it is worthwhile to conduct
experiments in various languages and conditions. From this perspective, we
now examine the effects of disfluency in Japanese lecture speech on human—
machine communication.

2.2 Filled Pause Annotation

In a related study, Székely et al. [32] performed speech synthesis using
Tacotron2 [29] with annotations for two filled pauses (FPs): “uh” and “um” in
English. Their research involved objective analysis and subjective perceptual
evaluation. They examined the following: 1) the effects of the FPs “uh” and
“um” in the context of a neural text-to-speech (TTS) system trained on a
large single-speaker spontaneous speech corpus; 2) the degree of FP control in
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output speech resulting from varying levels of detail in FP annotation during
training; and 3) the capability of TTS using probabilistic models to reproduce
FP patterns from training data, along with the effects of different levels of FP
control in output speech on perception.

The first TTS system introduced is AutoFP, which trains on speech that
contains FPs, whereas the text omits these FPs. Owing to the nature of
Tacotron’s statistical speech synthesis, which probabilistically reproduces the
most likely patterns learned from the data, FPs are automatically generated
in the output speech when fluent text is input, and the positions and types of
FPs cannot be specified. The second system is CtrlFP, which trains FPs us-
ing text explicitly annotated with unique symbols <uh> and <um>. CtrlFP
gives the user control over the placement of these FPs, similarly to how they
would control the placement of regular words. Finally, GenFP serves as an
intermediate system between AutoFP and CtrlFP, using a single generic sym-
bol <FP> for both “uh” and “um.” It learns only the positions of the FPs,
not their specific types.

Objective evaluation results indicate that AutoFP learns to automatically
reproduce patterns of FP locations and types similarly to those found in the
training corpus. Subjective listening tests suggest that listeners generally
prefer the FPs rendered by GenFP over those from CtrlFP, which specifies
ground truth (GT) FPs. This result shows that human listeners perceive
the FPs produced by GenFP as more authentically hesitant. From another
perspective, the authors also demonstrate that the complete control of FPs by
CtrlFP can slightly enhance the fluent speech synthesis performance of TTS
models trained with a speech that contains disfluencies.

Furthermore, we confirm that Tacotron2 and FastSpeech2, both commonly
used TTS systems in this study, struggle to reproduce spontaneous behaviors
accurately when trained solely on a corpus of spontaneous Japanese speech.
It is important to note that spontaneous speech has several types of disfluency
besides FPs, and the alignment between the speech and its transcribed text
is more unstable than when it does not contain disfluencies. On the basis
of the proposed methodology, we plan to extend the annotations to include
more disfluencies in Japanese using diffusion- and VAE-based TTS (DVT) [39],
which performs effectively even when the alignment between input text and
output speech is uncertain or incorrect.

2.3 TST-TTS Integration and Disfluency-aware Dialogue Systems

The study on TST-TTS integration is mentioned by Yoshioka et al. [41]. Still,
this study focuses almost exclusively on the TST side, and they have not
adequately verified the actual combination of TST and T'TS. As for the others,
there have been studies on using TST as pre-processing (data preparation) [26]
and post-processing [31] for other NLP-related tasks, such as chatbot systems.
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On the other hand, we focus on the novel framework of performing TST and
then TTS to produce the spontaneous speech from written text.

Among the studies on spontaneous speech synthesis for dialogue systems,
Cong et al. [4] and Li et al. [19] focus on disfluencies such as fillers and
prolongations in Mandarin conversations. They develop a spontaneous label
predictor that enables appropriate spontaneous speech synthesis from disfluent
text without manual labeling. Furthermore, Li et al. [19] also proposes a
multimodal pseudo-label predictor that generates pseudo-labeled data from
low-quality corpora, thereby further improving performance through semi-
supervised pre-training of the spontaneous label predictor.

3 Proposed Method

3.1 Overview

Using disfluency annotation, we propose a method to generate spontaneous
speech with disfluency from text without disfluency. Figure 1 shows an
overview of our proposed method. In the overall process, we first prepro-
cess the transcript data to divide fluent and disfluent texts and to conduct
disfluency annotation. Then, we train the bidirectional TST system using
disfluency-annotated text and the TTS system using disfluency-annotated
text and spontaneous speech. In TTS training, we conduct the customized
grapheme-to-phoneme (g2p) for transforming disfluency-annotated text to a
disfluency-annotated phoneme sequence described later in Section 4.2. Finally,
we use the TST system to add disfluency to fluent text and the TTS system
to generate spontaneous speech with the disfluency-added text as input.

We adopt the labeling method for disfluency annotation from prior work
[32] with minor modifications. Our labeling method uses slightly different
annotations between the TST and TTS. We explain our labeling method in
Section 3.2. In Section 3.2.1, we describe our labeling method for TST. In
Section 3.2.2, we describe our labeling method for TTS. In Section 3.2.3, we
explain a combined labeling method for TST and TTS systems. In Section 3.3,
we describe our approach’s TST method to convert fluent texts into disfluent
texts. Section 3.4 describes the TTS method for spontaneous speech synthesis
that can render disfluency on the basis of our disfluency annotations.

Note that disfluency annotation can be implemented simply by adding a
special token to each text or phoneme token’s vocabulary. It does not require
special processing for the annotated text and phoneme, and TST and TTS
are not dependent on any particular model. Although we use existing models
described in Sections 3.3 and 3.4 for TST and TTS, the crux of our proposal
is the disfluency annotation strategy and the integration of TST and TTS.
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Figure 1: Overview of our proposed method. We first preprocess the transcript data with
disfluency annotation and make fluent and disfluent texts. Secondly, we train the bidirec-
tional TST system using disfluency-annotated texts and the TTS system using disfluency-
annotated texts and spontaneous speech. Finally, we use the TST system to add disfluency
to fluent text and the TTS system to generate spontaneous speech from disfluency-added

text.

3.2 Disfluency Annotation
3.2.1 Disfluency Annotation for TST

Table 1 shows disfluency annotation methods for TST. We propose the follow-
ing three disfluency annotation methods for TST:
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Table 1: Summary of disfluency annotation for TST.

Name Annotation Description

Plain No annotation Not explicitly considered.

Symbol [FILLER]/[SLIP] Only position and type are specified.

Tag <> or () Specified with registered disfluency words.
S-Tag or Specified with arbitrary words.

Plain: the Plain method does not use annotation as a baseline. Plain
cannot explicitly consider which word is disfluency.

Symbol: the Symbol method converts disfluency words into unique
symbol tokens corresponding to their respective types. Specifically,
[FILLER] is used for fillers, and [SLIP] is used for word fragments caused
by misspeaking or stuttering (stutter word). This method is expected
to simplify training and improve the overall performance of the TST
model because the model needs to consider only the location and type
of disfluency.

Tag: the Tag method adds brackets around disfluency words. This
method does not insert a space between the word and the parentheses
and treats each disfluency as a unique token. Mountain brackets indicate
filler words and round brackets indicate stutter words. This approach
will enhance style control performance by allowing the TST model to
learn which words are disfluencies.

Space-Tag (S-Tag): the S-Tag method adds brackets around disfluency
words. A space between the word and parentheses is inserted to treat
the brackets as independent tokens. Mountain brackets indicate filler
words and round brackets indicate stutter words. This approach differs
from the Tag method in that it does not distinguish between disfluency
words and other words at the dictionary registration stage, increasing
the transfer flexibility but also complicating learning.

3.2.2 Disfluency Annotation for TTS

Table 2 shows disfluency annotation methods for TTS. We propose the fol-
lowing three disfluency annotation methods. As shown later in Section 4.1.3,
S-TAG significantly impairs content preservation by assigning parentheses to
no disfluent words. For this reason, S-TAG was excluded from the methods
using T'TS.

e Plain: the Plain method does not use annotation as a baseline. Plain

cannot explicitly consider which word is disfluency.
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Table 2: Summary of disfluency annotation for T'TS.

Name Annotation Description

Plain No annotation Not explicitly considered.

Symbol  § or # Only position and type are specified.
Tag <ee> or (N) Location, type, and word are specified.
Auto No annotation Texts don’t include disfluencies.

e Symbol: the Symbol method uses the special phonetic symbols corre-
sponding to each type for the entire phoneme sequence corresponding
to a disfluency word as input representation. Specifically, fillers are con-
verted to $ and stutter words are converted to #. This approach is
expected to create a TTS system in which the user specifies the loca-
tion of the disfluency, and the TTS model automatically synthesizes the
appropriate disfluency.

o Tag: the Tag method puts the entire phoneme sequence corresponding to
a disfluency word in special symbols for each type. Specifically, fillers are
enclosed with <> and stutter words are enclosed with (). This approach
is expected to allow a TTS system to account for acoustic differences
between disfluency and nondisfluency words. In addition, the user has
control over the location, type, and words of disfluency.

e Auto: the Auto method excludes all disfluency words from texts. This
approach is expected to realize a TTS system that automatically syn-
thesizes disfluencies into speech, even if the text input does not include
disfluencies.

3.2.8 Disfluency Annotation Combinations for TST + TTS

We propose three ways to combine disfluency annotations in a combined TST
and TTS system.

o Plain+Plain (PP): Use a model with Plain in both TST and TTS as a
baseline.

e Symbol+Symbol (SS): Use a model with the Symbol annotations in both
TST and TTS. This approach corresponds to determining the location
of disfluencies on the TST system side and the type and words on the
TTS system side.

o Tag+Tag (TT): Use a model with the Tag annotations in both TST
and TTS. This approach determines all locations, types, and words of
disfluencies on the TST system side.
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o None+Auto (NA): No style transfer is applied to the text, and spon-
taneous speech synthesis is performed on text that does not contain
disfluencies. This approach determines all locations, types, and words
of disfluencies on the TTS system side.

3.3 Base Model for TST: Cycle CVAE+CWS

CVAE [15], a probabilistic model, can be used to implement TST with relative
simplicity [12]. In TST, CVAE conditions the decoder by content features
obtained from input text to the encoder and style features obtained from
class labels. Since only reconstructions are learned during training, CVAE
does not require GT-transferred data for the style, whereas the labels must
be known. The content word storage (CWS) mechanism explicitly defines the
information retained during style conversion as “content words,” separating
them from the content features and directly forwarding them to the decoder.
CWS uses an attention mechanism to calculate the embedded representation
of content words in the input sentence and the attention weights for each step
of the decoder, and the product of the attention weights and the embedded
representation of content words is directly forwarded with the decoder output
as a context vector for word prediction. When combined, CVAE+CWS can
improve content preservation during generation [41].

To further improve style control performance, CycleCVAE+CWS has been
proposed [41]. Figure 2 shows the model architecture of CycleCVAE4+CWS.
CycleCVAE4+CWS uses the style-transferred text synthesized by CVAE+
CWS as pseudo-parallel data and simultaneously reconstructs and reconverts
the pseudo-parallel data back to the original style. CycleCVAE4+CWS takes
two types of input, the original text and style-transferred text, and outputs
the reconstructed text from the original text and cycle-reconstructed text re-
stored to the original style from the style-transferred text. It also calculates
the reconstruction loss between inputs and outputs for each.

CycleCVAE+CWS has improved style control performance and high con-
tent preservation while maintaining the condition without parallel data. Note
that this differs from CycleGAN [42] and CycleVAE [33], which output the
style-transferred text from the original text and further output the text back
to the original style to calculate the loss in a single model.

3.4 Base Model for TTS: DVT

DVT [39] is a TTS method using a diffusion probabilistic model. Figure 3
shows the model architecture of DVT. The method consists of three compo-
nents: a waveform model consisting of an acoustic encoder and a waveform
decoder, a latent acoustic model that converts language features into latent
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Figure 3: Model architecture of DVT.

acoustic representations with diffusion, and an alignment model that consid-
ers the correspondence between the series of latent linguistic and acoustic
representations.

During training, the waveform model predicts speech waveforms from
acoustic features X via latent acoustic representations zx. The acoustic en-
coder encodes acoustic features X into the latent acoustic representation zx,
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which follows the Gaussian distribution with the approximated mean g, (X)
and variance oi(X ). The waveform decoder decodes the waveform given zx.
The latent acoustic model predicts the latent acoustic representation zx from
the phoneme sequence Y via the latent linguistic representation zy. We ob-
tain the phoneme sequence Y from the input text using the customized g2p
described in Section 4.2. Unlike conventional diffusion models, which diffuse
the mean from 0 to x¢ and the variance from 1 to 0, this model diffuses
the mean from 0 to py(X) and the variance from 1 to ai(X ), leveraging
the known distribution of zx. The approximate posterior is defined by set-
ting py(X) as the target and interpolating variance from Ji(X ) to 1. The
prior distribution is assumed to be standard Gaussian, and the model func-
tion fp(x4,t, zy) predicts the mean and variance, optimized by minimizing
KL divergence, where ¢ means diffusion time. The alignment model learns to
align the latent acoustic representation zx and linguistic representation zy .
A monotonic path is searched as alignment in a trellis defined by distances
between the two representations [13]. To measure the distances between the
different representations, an alignment function g4(zx) — 2y is introduced
to map zx to zy. The parameter of the alignment function ¢ is optimized to
minimize distances between zy and g¢(zx). The duration model is trained
with the phoneme duration obtained from the alignment. DVT is trained in
two stages: in the first stage, the waveform model is trained independently,
and in the second stage, other models are trained with the parameters of the
waveform model fixed.

During inference, the duration model first predicts the duration using the
latent linguistic representation obtained from the text encoder and then up-
samples the latent representation. The latent acoustic model predicts the
latent acoustic representation using the upsampled latent linguistic represen-
tation. Finally, the waveform model generates speech waveforms from the
latent acoustic representation.

Because the diffusion model adds noise to the input and removes it as
a learning criterion, the synthesized speech will be clean and high-quality.
Moreover, one of the characteristics of DVT is its robustness to input format.
In general, TTS performs better with phoneme input than with character
input. An original paper showed that DVT performs better on character input
than phoneme input, whereas other comparative methods perform worse on
character input [39]. Another paper showed that DVT can produce correct
speech more robustly than other methods, even when the input text contains
a large amount of noise derived from automatic speech recognition [7]. This
finding suggests that DVT can effectively generate spontaneous speech that
contains many difficult-to-model elements, including disfluency.
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4 Experimental Evaluations

4.1 Ezxperiment 1: Disfluency Annotation for TST
4.1.1 Settings

To confirm the effectiveness of disfluency annotation in TST, we conducted
an experiment with style transfer in both directions for “with and without
disfluency.” We used CycleCVAE+CWS [41] as the TST method. The systems
compared in the experiment were Symbol, Tag, and S-Tag, which were trained
by applying each of the three proposed annotation methods. We also used
Plain as a baseline, which was trained without disfluency annotation. In
the objective evaluation experiment, the average of the entire test data was
calculated for each evaluation metric described in Section 4.1.2.

For the experimental data, we used the corpus of spontaneous Japanese
(CSJ) [22]. CSJ has manually annotated the word, for example, (F ) (filler)
and (D ) (stutter word). We preprocess the transcripts from CSJ in the
following steps;

e divided the data by labeling each text as “with” or “without” disfluency
using CSJ’s manually annotated word labels,

o deleted manually annotated word labels without (F) and (D) labels (CSJ
includes some other labels, such as whisper (L) and laughing ()),

o separated transcripts into short units of about 10-20 words,
e labeled each unit according to whether it contained a disfluency,
e processed by each annotation method.

The specific process for each method is as follows: in Plain, the (F) and (D)
labels were removed; in Symbol, the words labeled (F) and (D) were replaced
with [FILLER] and [SLIP]; in Tag and S-Tag, the words labeled (F) and (D)
were enclosed with <> and (). In Auto, which is not used in this experiment
but will be used in Experiment 2, the words labeled (F) and (D) are deleted.
The TST used in this paper does not support the transfer of long sentences,
so we separated transcripts into short units. We obtained 349,983 fluent and
330,650 disfluent texts; the total is 680,633. We split them into 654,817,
17,222, and 8,594 texts to construct training, validation, and test datasets at
a 96.0:2.5:1.5 ratio.

4.1.2  Metrics

The following three types of objective evaluation indicators were used:
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o AC: Accuracy (AC) is the style accuracy rate used for evaluation to in-
dicate style control performance. In the calculation, a CNN classifier for
texts [14] was first trained using training data. Using this, we predicted
the text style generated by each model and calculated the percentage of
text that could be classified as being in the target style.

o BLEU: BLEU [27] is a metric proposed in machine translation. We
measured the content preservation of the entire text by calculating the
n-gram overlap (n = 1-4) of the generated and reference texts and taking
the average of the overlaps. To maintain fairness with the evaluation in
Plain, each special symbol was converted to the most frequent filler ()
and stutter word () in Symbol, and brackets were removed in Tag and
S-Tag before calculation.

o Content word error rate (CWER): CWER [41] is a metric similar to
the word error rate (WER) used in speech recognition, specifically ap-
plied to content word sequences. In TST, the content words of input
and generated texts should not change. Therefore, CWER was used to
calculate WER for “content word series of generated text” and “content
word series of input text” to measure the preservation of content words.

4.1.3  Results

Table 3 shows each experiment’s objective evaluation results. From the re-
sults, the proposed method outperformed the baseline Plain method in each
index. In particular, AC was improved by all the disfluency annotation meth-
ods, and BLEU and CWER, were comparable or improved by Symbol and
Tag, respectively. From this, disfluency annotation enabled the TST model to
significantly improve its style control performance without compromising con-
tent preservation. On the other hand, S-Tag showed a higher AC than Plain
and Tag, but BLEU and CWER were degraded. This result was because the
model added brackets to words other than those indicating disfluency, sug-
gesting the need for more rigorous annotation that treats disfluency as an
independent token rather than simply indicating which position in an exist-
ing word is disfluency. On the basis of this result, we will use Symbol and Tag
in the TST + TTS experiment described in Section 4.3.

Table 4 shows the evaluation results for each transfer direction to confirm
the results in more detail. Although Plain performed well in style control
in the disfluent to fluent direction, its performance in the reverse direction
was poor. This result indicated that Plain can add disfluency to only about
40% of the generated text. In contrast, the three proposed methods showed a
higher AC than Plain in the direction of fluent to disfluent. Since this paper
aims to generate disfluent speech from fluent text, these results indicate that
using disfluency annotation in TST was effective.
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Table 3: Automatic evaluation results for TST.

Method AC (%) BLEU CWER (%)

Oracle 93.73  100.00 0.00
Plain 61.31  58.33 7.68
Symbol 95.36 57.56 8.13
Tag 79.25 57.96 7.62
S-Tag 82.74 50.36 14.25

Table 4: Performance comparison between different style transfer directions.

Method Direction AC (%) BLEU
Plai fluent — disfluent 39.67 53.31
m disfluent — fluent 85.75  53.30
Symbol fluent — disfluent 99.25 53.23
YIDOL disfluent — fluent 90.96  55.94
Ta fluent — disfluent 70.25 53.72
& disfluent — fluent 90.49 54.66
9T fluent — disfluent 72.55 51.97
"ag disfluent — fluent 94.20 41.58

4.2  Ezxperiment 2: Disfluency Annotation for TTS
4.2.1 Settings

We conducted a subjective evaluation experiment to confirm the effective-
ness of disfluency annotation in TTS. First, as a preliminary experiment, we
conducted a mean opinion score (MOS) test, which evaluated the overall nat-
uralness of spontaneous speech to select a suitable model for Spontaneous
TTS. We compared two acoustic models, Fastspeech2 and DVT, which were
trained with CSJ under the Plain condition, plus human speech (GT), for
three types of speech for evaluation. HiFiGAN was used for the waveform
model in both Fastspeech2 and DVT. However, because the input features
differ, we used different training models for the two methods. Ten male and
female native Japanese speakers in their 20s listened to each voice individually
and rated each on a five-point scale from 1 to 5. We used 50 samples of 2 to 12
s containing disfluency words randomly selected from the test data. Different
participants rated each sample at least six times, obtaining 300 evaluations
for each system. Finally, we conducted Mann—Whitney’s U test to confirm
the statistical significance of MOS.
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The second experiment was an ABX test with reference speech to con-
firm the effectiveness of applying disfluency annotation. We used the DVT
TTS model for this experiment. We compared three systems, Auto, Symbol,
and Tag, trained by applying each proposed annotation method. We also used
Plain, trained without disfluency annotation, as a baseline. We employed 100
native Japanese speakers as crowd workers and experimented with a web test
format. First, we presented the participants with a description of the “disflu-
ency” to be evaluated, sample human voices for each, and sample synthesized
voices that both acoustically reproduced the disfluency and did not. Then,
the participants listened to a reference speech, X, followed by two synthesized
speeches, A and B. They were instructed to choose the speech that more
closely reproduced X’s disfluency acoustically. Additionally, the participants
evaluated which of the two speeches sounded more natural and spontaneous,
regardless of X. Here, we aimed to assess the style reproducibility and natu-
ralness of the synthesized speech. However, since the synthesized speech for
each annotation method was predicted to differ in its textual content from
the original speech, the participants were concerned that they might focus
on textual similarities rather than acoustic or stylistic features, introducing
noise into the evaluation. For this reason, we used speeches A and B synthe-
sized from different texts of the same speaker as X in this Section and the
next Section 4.3. We used 50 randomly selected 5 to 15 s samples containing
disfluency words from the test data. Different participants rated each sam-
ple at least eight times, obtaining 400 evaluations for each of the six system
combinations. We calculated the evaluation values as the preference score of
voice B over voice A by calculating the average of the evaluations, which was
1 when voice B was selected as better than voice A and 0 when voice A was
selected as better. Finally, we conducted a binomial test to confirm statistical
superiority.

We used approximately 400k speech samples and their corresponding tran-
scriptions from the CSJ [22] for our experimental data. It contained fluent
and disfluent samples. Within the CSJ, about 7% of the total data is clas-
sified as “core data,” which includes more detailed manual annotations such
as accent and phoneme labels. However, in this study, we used the entire
CSJ dataset. Additionally, in the next Section 4.3, we used style-transferred
text that has no accent and phoneme information. Therefore, we employed
a dictionary in the external text processing front-end tool, pyopenjtalk,! to
process the grapheme-to-phoneme conversion and extract accent labels for
each phoneme. In this experiment, since we used disfluency-annotated text,
we developed a custom pyopenjtalk, which has the function of converting and
retaining a special text token to a special phoneme token. Specifically, we
converted [FILLER] to $, [SLIP] to #. Parentheses, such as <> and (), were

Thttps://github.com/r9y9/pyopenjtalk.
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lost when converted from graphemes to phonemes in pyopenjtalk’s default
settings, so we changed the code to allow them to remain.

Furthermore, we used speaker labels during TTS training to build the
multispeaker TTS model. Since CSJ does not have specific speaker labels,
we utilized lecture IDs as pseudo-speaker labels. The number of lecture IDs
was 3,224. These included a few lectures by the same speaker, but we did
not consider the speaker duplicates and used all the lectures this time. We
set the dimension of the speaker embedding to 256. Note that Fastspeech2
was implemented by ESPnet2 [11], which used a pretrained x-vector [30] with
this pseudo-speaker label, whereas DVT trained the speaker embedding from
scratch.

In the latent acoustic model of DVT, we set the number of diffusion steps
to 100. We sampled diffusion time ¢ uniformly and optimized KL divergence
directly as in the original DVT settings [39]. We trained plain DVT up to
830k steps and Fastspeech2 up to 1M steps. We trained DVT for Symbol
up to 738k steps, Tag up to 773k steps, and Auto up to 818k steps. The
system used to synthesize each speech remained undisclosed to participants
throughout both experiments. The audio samples used in Experiments 2 and
3 are available at the URL in the notes.?

4.2.2  Results

Table 5 shows MOS evaluation results. DVT showed better results than Fast-
speech2, and the U-test showed significant differences between the two systems
and between each system and GT. Speech from Fastspeech2 was character-
ized by beeps and mechanical noises throughout, especially in phonological
stretches. This could be attributed to the fact that Fastspeech2 uses soft at-
tention for teacher alignment. Soft attention makes it difficult to align the
transcript with the speech with phonological stretches. This effect is a prob-
lem in spontaneous speech, often including fillers and hesitations. Although
DVT could synthesize disfluent speech without noise, it also had unnatural
accents and intonations. DVT has good signal quality since noise removal
is the learning criterion. Nonetheless, random sampling in DVT generates
diverse intonation patterns, which may contribute to the unnatural quality of
certain samples. Additionally, although accent labels are provided, they may
not be accurately rendered. This is likely because DVT learned the speaker
vector simultaneously, making the training process more complex owing to
interspeaker variations, even for identical accent labels. The overall natural-
ness score of DVT was higher than that of Fastspeech2, and we judged DVT
to be more in line with our goal of speech synthesis, focusing on disfluency.
Therefore, we decided to use DVT in subsequent experiments.

2https://dyoshioka-555.github.io/SponTTS-samples/audio_ samples.html.
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Table 5: Evaluation results for MOS in TTS.

Method MOS
GT 4.69 + 0.07
Fastspeech2  2.78 4+ 0.14
DVT 3.01 + 0.12

Figures 4 and 5 show the results of the ABX test and the presence or
absence of significant differences by the binomial test. Pairs marked with
an asterisk indicate significant differences. The results confirmed that Auto
is significantly inferior to all other systems in style reproducibility and that
Symbol is superior to Auto but significantly inferior to Tag. These results differ
from previous studies [32], which concluded that listeners generally prefer the
disfluencies selected by Symbol over those specified GT disfluencies by Tag.
This difference suggests that when the number of disfluency types increases,
the T'TS system may find it challenging to automatically select the appropriate
disfluency location and content.

M Plain ® Auto ® Symbol m Tag

PLN - AUTO* 66.25 33.75
PLN - SYM 54.50 45.50
PLN - TAG* 40.50

AUTO - SYM* 36.75 63.25

AUTO - TAG* 29.50

SYM - TAG* 38.75

Figure 4: ABX test results on the preference for style reproducibility in TTS. Pairs marked
with an asterisk indicate significant differences.

On the other hand, the most detailed annotated TTS system, Tag, sig-
nificantly outperforms all other systems regarding style reproducibility and
overall naturalness. This result suggests that detailed annotation can repro-
duce disfluency more naturally for the TTS system.
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M Plain W Auto mSymbol m Tag
PLN - AUTO 50.50 49.50
PLN - SYM 46.75 53.25
PLN - TAG* 42.75
AUTO - SYM 47.75 52.25
AUTO - TAG* 40.50

SYM - TAG* 43.50

Figure 5: ABX test results on the preference for naturalness in T'TS. Pairs marked with an
asterisk indicate significant differences.

4.3 Experiment 3: Disfluency Annotation for TST + TTS
4.3.1 Settings

We conducted subjective evaluation experiments, an ABX test as in Section
4.2, to confirm the effectiveness of disfluency annotation in a combined TST
and TTS system. We used CycleCVAE4+CWS as the TST model and DVT
as the TTS model. We compared the three proposed ways of combining
the annotation method: NA, SS, and TT. We also used PP, trained without
disfluency annotation, as the baseline. We employed 100 native Japanese
speakers as crowd workers and experimented with a web test format. First,
we presented the participants with a description of the “disfluency” to be
evaluated and sample human voices for each. Then, the participants listened
to a reference speech, X, followed by two synthesized speeches, A and B,
synthesized from different texts of the same speaker as X. The participants
selected the speech that better reproduced X’s overall disfluency style. We
also evaluated which of the two voices was more natural and spontaneous,
regardless of X. We used 50 randomly selected 5 to 15 s samples that did
not contain disfluency words from the test data and applied TST to each
transcript.

Different participants evaluated each sample at least eight times, obtaining
400 evaluations for each of the six system combinations. We calculated the
evaluation values as the preference score of voice B over voice A by calculating
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the average of the evaluations, as in Section 4.2.1. Finally, we conducted a
binomial test to confirm statistical significance.

For the experimental data, we used about 400k speech data and its tran-
scription in CSJ [22] as in Sections 4.1 and 4.2. As in Section 4.2, we built
the multispeaker TT'S model using pseudo-speaker labels.

4.3.2  Results

Figures 6 and 7 show the results of the ABX test and the presence or absence
of significant differences by the binomial test. Pairs marked with an asterisk
indicate significant differences. The results confirmed that NA is significantly
inferior to all other systems regarding style reproducibility. There is no signif-
icant difference between PP and SS and SS and TT, but the preference scores
are in the order TT > SS > PP, and there is a significant difference between
PP and TT. This result showed that the use of Tag annotations in TST and
TTS improves style reproducibility compared with the use of Plain.

H Plain+Plain  ® None+Auto ® Symbol+Symbol Tag+Tag

PP - NA* 57.75 42.25
PP - SS 49.25 50.75
PP - TT* 44.75

NA - SS* 32.75 67.25

NA - TT* 32.50

SS-TT 46.00

Figure 6: ABX test results on the preference for style reproducibility in TST + TTS. Pairs
marked with an asterisk indicate significant differences.

Regarding naturalness, we found no significant difference among NA, PP,
and TT, but SS was significantly inferior to all other systems. SS was inferior
in naturalness even to NA, rated as having the lowest style reproducibility, and
there was no significant difference between Symbol and Auto in Experiment
2. These results suggest a problem with TST using Symbol. We discuss the
detailed causes in Section 4.4.
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H Plain+Plain B None+Auto M Symbol+Symbol Tag+Tag

PP - NA 49.25 50.75

PP - SS* 58.75 41.25

PP -TT 46.75

NA - SS* 55.75 44.25

NA - TT 47.50

SS-TT* 38.25

Figure 7: ABX test results on the preference for naturalness in TST + TTS. Pairs marked
with an asterisk indicate significant differences.

4.4 Discussion

We conducted an experimental evaluation of the application of disfluency an-
notation to TST, TTS, and a combination of the two. Naturally, the method
using Tag, the most detailed annotation, improves in all aspects over Plain.
Even when using the same detailed annotations, the mainstream method for
spontaneous speech synthesis in Mandarin is to input detailed annotated la-
bels as separate inputs from the text [4, 19]. In contrast, we directly annotate
the input text without implementing new inputs into the existing TTS model.
One of our following tasks is to compare our method with the models using
labels as separate input with the text.

In English-focused work [32], the method corresponding to Symbol had
an effect equal to or greater than that of the method corresponding to Tag.
However, our experimental results showed that the method using Symbol is
inferior to Tag and equal to or inferior to even Plain. One possible reason for
this is the difference in the number of types of disfluency between English and
Japanese. In a large-scale corpus of British English [20], five types of fillers
were identified, but in terms of pronunciation, they can be summarized into
two series: nasal (erm/um) and non-nasal (eh/uh) [16]. Székely et al. [32]
also dealt with only two types of fillers: uh and um. In contrast, Japanese
fillers are more varied than English fillers [35]. In addition, since we were also
dealing with stutter words in this study, it is quite possible that the Symbol
were not being converted into appropriate disfluency during speech synthesis.
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Here, we discuss the factors that prevented Symbol with partial annota-
tions from significantly outperforming Plain and Tag in terms of the natural-
ness of TST + TTS. First, let us look at the TTS part in Experiment 2. To
isolate the problem once, we examined the performance of synthesizing flu-
ent speech from the TTS model using disfluency annotation. We calculated
three metrics, Mel-cepstral distortion (MCD), Fy route mean squared error
(Fo RMSE), and character error rate (CER), to examine the acoustic and
prosodic differences and the intelligibility of fluent speech from each method.
In calculating CER, we transcribed the synthesized fluent speech using pre-
trained automatic speech recognition (ASR) implemented by ESPnet2 [11]
with the same data (CSJ). This ASR’s average recognition rate for the test
data, including disfluency, is about 4.47%. The results of each metric are
shown in Table 6. Symbol’s MCD was slightly higher than the other methods,
and its Fy RMSE was slightly lower. Plain, which does not use disfluent an-
notation, had the best CER, followed by Tag and Symbol. Symbol’s CER was
inferior to Plain but comparable to Tag. The results in CER exceed those in
the test data because the test data contains disfluency, but the speech assessed
here does not. The results suggest that Symbol was acoustically and prosod-
ically comparable to Plain and Tag, and its acoustic and prosodic features
were not a factor that significantly impaired the perception of naturalness.

Table 6: Mel-cepstral distortion (MCD) and Fy route mean squared error (Fp RMSE) for
fluent synthesis speech to original speech, and character error rate (%) for fluent synthesis
speech.

Method MCD F, RMSE CER (%)

Test data - - 4.47
Plain 5.44 72.47 3.45
Symbol 5.60 65.61 4.14
Tag 5.42 68.05 4.03
Auto 5.50 66.80 5.68

What about the disfluent part of synthetic speech from Symbol? We inves-
tigated Symbol’s synthesized speech, focusing on the disfluent parts, and did
not notice any particular acoustic or prosodic discomfort. On the other hand,
in Experiment 2, Symbol’s style reproducibility for disfluency was inferior to
that of Plain and Tag. To ascertain the cause of this, we manually exam-
ined the ASR results of the synthetic speech containing disfluency used in the
experiments and found the following features for decoding disfluent symbols
into speech: Stutter word symbols may be ignored; filler symbols may be
output as other disfluencies, such as stutter words, which are generally not
considered as fillers; when there is a sequence of disfluent symbols, some of
them may be ignored. In addition, disfluencies synthesized using Symbol tend
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to have shorter durations than those synthesized using other methods. These
can be seen by looking at the average of the pseudo disfluency lengths by
calculating the difference between the length of the entire synthesized speech
used in Section 4.2 and the length of the fluent synthesized speech excluding
the disfluency, as shown in Table 7. In test data, Whole is measured using
original speech, and Fluent is measured using speech that has had disfluency
manually removed. We can assume that these factors made it difficult for lis-
teners to perceive disfluency and caused Symbol to be rated equal or inferior
to Plain regarding style reproducibility.

Table 7: The average length of each synthesis speech (sec). Whole is the length of the
synthesized speech used in Section 4.2, and Fluent is synthesized speech from transcription
without disfluency. Disfluent is the difference between the lengths of Whole and Fluent.

Method Whole (sec) Fluent (sec) Disfluent (sec)

Test data 6.56 5.86 0.70
Plain 6.00 5.34 0.66
Symbol 5.86 5.26 0.60
Tag 6.18 5.32 0.86
Auto 5.35 5.23 0.22

Then, we will look at the TST part in Experiments 1 and 3. By compar-
ing the style-transferred text with Symbol among the samples used in this
experiment with those of Plain and Tag for detailed analysis, we found scat-
tered cases where the T'ST system output disfluent symbols instead of content
words, which was different from the case with Plain and Tag. Moreover, in
Japanese, words such as “(that)” and “(it)” are used as both pronouns and
fillers. However, in Tag, the accidental transfer of these pronouns to fillers
does not markedly affect pronunciation. In contrast, when Symbol replaces
these words with [FILLER], the TTS system may pronounce them as entirely
different fillers (such as “uh,” etc.), which could be one of the reasons for the
reduced naturalness.

On the basis of these results of our analysis, we predict that to success-
fully train Symbol, which is less expensive than Tag, it would be helpful to add
part-of-speech information from morphological analysis to supplement infor-
mation for inferring relationships with surrounding words and to add duration
constraints when decoding disfluent symbols into speech.

Another critical factor is the proportion of disfluency in the synthesized
text and speech, and the proportion of fillers and stutter words. We have
trained the TST and TTS systems to handle these two types of words, and
for TST, we have found that the percentage of stuttered word output in the
conversion is extremely low. This is because the number of stutter words in
the training data is lower than that of fillers, but Symbol tends to output a
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relatively large number of stutter words. Table 8 shows the proportion of dis-
fluency in the training data with disfluency and that of the fluent to disfluent
transferred text for each model. The results suggest that the low naturalness
ratings for Symbol in Section 4.3 are due to the high proportion of stutter
words included. Possible solutions to the imbalance include training on bal-
anced data or using the same data but repeatedly generating and evaluating
it until both types of disfluency are produced.

Table 8: Proportion of disfluency in the text and the proportion of fillers and stutter words
(number of words per sentence).

Method Disfluency Filler Stutter

Train data 1.55 1.28 0.27
Tag 0.75 0.72 0.03
S-Tag 0.75 0.71 0.04
Symbol 1.10 0.97 0.13

Stutter words are generally susceptible to negative ratings in the “natural-
ness” and “likability” indices, but they are disfluent phenomena that always
occur in the pursuit of “human-like” and thus are something we would like to
reproduce. It is necessary to isolate the issue and investigate the impact of
“stutter words” as a stand-alone phenomenon that elicits the perception and
recall of spontaneous speech.

5 Conclusion

In this paper, we proposed three types of disfluency annotation: Symbol, Tag,
and S-TAG for text style transfer (TST) and Symbol, Tag, and Auto for text-to-
speech (TTS). We also proposed combinations of disfluency-annotated TST
and TTS. We conducted three experiments to evaluate disfluency annotation
by comparing the condition without disfluency annotation (Plain): Auto-
matic evaluation for bidirectional style-transferred text, ABX test for T'TS in
terms of style reproducibility and naturalness, and ABX test for TST + TTS
in terms of style reproducibility and naturalness.

The results of the first experiment showed that disfluency annotations
could improve TST’s style controlability and content preservation. S-Tag
treated all words as disfluency during transfer and indicated the need for an
annotation that treats disfluency as an independent token. The results of
the second experiment showed that using Tag, which specifies the location,
type, and word of disfluency in detail, could improve the style reproducibility
and naturalness in spontaneous speech synthesis compared with using other
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annotations and not using disfluency annotation. Auto and Symbol, methods
with lower annotation costs than Tag, were inferior to Plain in terms of
style reproducibility and had difficulty automatically rendering disfluencies for
fluent text or text with only disfluency positions when there were many types
of disfluency. The results of the third experiment showed that a combination
of Tag could improve the style reproducibility in spontaneous speech synthesis
compared with Plain, and Symbol’s naturalness is inferior to all other systems.
Additional statistical analysis and discussion revealed that Symbol’s TST had
shortcomings that were difficult to see from the automatic evaluation and that
Symbol’s TTS had a shorter duration of disfluency than Tag’s.

In this study, we did not conduct a test to investigate the effect of dis-
fluency on recall by creating an actual whole lecture speech, as has been
performed in previous studies; we only evaluated impressions of speech units.
However, we aim to investigate the effect of perception and recall for the
whole lecture speech and to produce a more natural and spontaneous style
by annotating other spontaneous behaviors, such as pauses and nonverbal
emotional expressions. In addition, since we did not perform multispeaker
learning on the TST side, we would like to introduce speaker labels and the
like on the T'ST side to realize spontaneous speech synthesis that reflects more
individuality.

This research has applications in the educational field, such as lecture
videos, classes with virtual teachers, and a more human-like reading-aloud
function for online news articles. The limitation of this paper is that the
experiments were only conducted in ‘limited language (Japanese)’ and ‘limited
spontaneous behavior (filler and stutter words).” In particular, we need to test
our proposed method in other languages to determine whether the reasons for
Symbol’s failure were derived from the model or language differences.
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