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ABSTRACT

Convolutional neural networks (CNN) are widely used in the recog-
nition and classification of scene images due to their effectiveness
in this task. However, their applicability is not quite as favorable
when used with variations of parameters such as rotation, scaling,
and translation in input data. To overcome this drawback, this
study presents a feature fusion technique that combines Hu mo-
ments with deep learning features derived from the CNN model.
Hu’s moments of an image are statistical values obtained based on
the intensities of the image pixels that are invariant to geometric
transformations. These moments are then combined with the fea-
tures of the fully connected layer of the CNN model, making the
proposed method more accurate and robust. The study also uti-
lizes data augmentation, specifically geometrical transformations
such as rotating, scaling, flipping, and translation to balance class
image distribution in training datasets and reduce interclass bias
resulting from the imbalance in number of images within different
classes. The fused feature representation was evaluated on three
benchmark datasets: MIT67, AID and Scenel5. Detailed experi-
ments with different CNN models were conducted, and Inception-
ResNetV2 as deep feature extractor combined with Hu Moments
demonstrated the effectiveness of the proposed approach which de-
livers significant improvements in accuracy scores, Scenel5: 96.4%,
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AID: 94.1% and MIT67: 87.1%. This result presents a novel av-
enue approach for enhancing the resilience and accuracy of Scene
Understanding.

Keywords: CNN, data augmentation, deep learning features, Hu’s moments,
scene understanding

1 Introduction

Scene understanding is a foundational challenge in computer vision,requiring
the extraction and interpretation of meaningful information from visual data
to enable machines to recognize, categorize, and reason about complex en-
vironments, including human-computer interaction, robotic movement, and
autonomous systems [43]. It is the process of obtaining clear patterns of vi-
suals with the ability to perform various tasks, including categorization of
scenes, identification of objects, and navigation of space. Traditionally, this
field utilized handmade features, which were engineered patterns of extrinsic
characteristics that identified the representation of particular image proper-
ties, including edges, texture, or color distribution [8]. However, these meth-
ods formed the basis for pragmatically solving the problems of visual scene
analysis, but had significant drawbacks associated with generalization abilities
and the handling of nonlinear transformations.

The advent of deep learning has significantly advanced the field of scene
understanding by enabling the automatic extraction of hierarchical features
from raw image data. Deep neural networks, particularly convolutional neu-
ral networks (CNN), have demonstrated remarkable capability in recognition
accuracy and made CNNs the key component of most image-based categoriza-
tion methods [21, 16, 34, 23, 24, 29, 41, 20, 38]. Despite these successes, CNN
can sometimes be sensitive to geometric transformations such as translation,
scaling, and rotation, which are common in real-world applications. Several
techniques have been proposed in the literature to improve generalization, in-
cluding data augmentation. Where the training data set is created artificially
using techniques such as flipping, scaling, rotation, or translation, among oth-
ers, similar to the explanation above, data augmentation not only extends
the variety of samples used for training, but also acts as a way to reduce
the risk of overfitting [22]. As noted in [30], data augmentation, when used
in conjunction with transfer learning, has been shown to help overcome the
problem of limited training samples and improve model performance. These
transformations require that specific features, which should remain unchanged,
be preserved when the scene image undergoes geometrical changes for image
recognition. This requirement extends beyond simple data augmentation to
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realistic application areas, such as robotic applications and self-driving cars,
where images may be transformed in unintended ways due to environmental
factors.

Hu [11] proposed a seven-moment invariant that remains unchanged de-
spite the geometric transformation including rotation, scaling, and translation.
These features, computed from the pixel intensity distribution of images, have
been found to be useful in attaining geometric invariance. The study of [17]
investigated the nature and behavior of such moment invariants under dif-
ferent image resolutions and observed that as the resolution increases, it en-
hances the stability of moment invariants. We used this study to determine
the optimal image size for our experiments. In addition, the work done in
[4]introduced Hu’s moment invariants to a binary problem, where there were
only two classes taken from the Scenelb dataset: the MIT-street and MIT-
highway classes. They achieved an improved classification rate, despite using
only a limited number of classes for the experiments. This study presents
a novel method that integrates deep learning features with Hu’s moment in-
variants to improve scene understanding. Convolutional Neural Networks are
employed to extract a substantial number of salient features that contain se-
mantic and structural information, which is crucial for discrimination tasks.
These features are then combined with Hu’s moment invariants, yielding a
representation that preserves information and remains invariant to geomet-
ric transformations. By combining these two complementary feature sets,
the proposed method addresses limitations found in traditional CNN-based
models, offering enhanced stability and classification accuracy for scene un-
derstanding applications. The framework’s performance is evaluated on three
benchmark datasets: MIT67, AID, and Scenel5. Different scene categories in
these datasets are challenging and diverse enough to assess the performance
of the proposed approach. Sample images from MIT67 are shown in Fig-
ure 1. The experiments demonstrate that integrating deep features and Hu’s
moments enhances classification performance, highlighting the significance of
this approach for scene understanding in real-world contexts. This integration
enhances the scene recognition aspect of the model, resulting in more consis-
tent recognition even when scenes are rotated, scaled, or translated in some
manner. In addition, data augmentation strategies are incorporated into the
method to enhance its ability to generalize.

The primary contribution of this paper is the development of a new hybrid
feature architecture that combines deep learning features with Hu moments
for scene understanding. The remaining part of this paper is structured as
follows. Section 2 reviews related work, including several recent deep learning
techniques for scene understanding, and the use of Hu moments in image-
based tasks. Section 3 explains the method that has been proposed and gives
details of how deep features are merged with Hu moments, along with the
overall approach. Section 4 describes the experiment, the data to be used,
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Figure 1: Sample images of scene categories from MIT67 dataset. First row: Computer
room; second row: Gym; third row: Bar.

data pre-processing, and data measures used to assess the results, and it also
gives results and discussions on the application of the idea. Section 5 shows the
conclusion and part of future work in which the effectiveness of the introduced
method is described and a comparison with similar approaches is made.

2 Related Work

2.1 Deep Learning Approaches for Scene Understanding

In recent years, there has been a growing interest in using deep learning meth-
ods to understand scenes [21, 41, 10, 39, 13, 12]. These methods have achieved
remarkable success in various computer vision applications, including image
recognition, object detection, and semantic segmentation. However, most ex-
isting methods rely solely on deep features extracted from a single modality,
disregarding the potential benefits of incorporating multimodal information.
In [21], one of the remarked approaches employs the ResNet architecture
and the multi-layer fusion strategy to retain discriminative features across
different layers. This strategy solves one of the main issues with transfer
learning, namely the fact that higher-layer features may obscure fine details
in the lower layers. The authors only used CNN which to some extent lack
geometric transformation invarience. To combat intraclass variability in in-
door scene classification, [13] proposed a new feature transformation method,
which focuses especially on mid-level features. It is evident that elements
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give an acceptable level of abstraction on one side and sufficient detail on
the other which makes them useful when considering the classification perfor-
mance. The method tried to get the features that balance between the high
and low levels image presentation but still didn’t look at the features which
remain unaltered when subjected to changes. The work of [12] extended scene
classification by introducing multi-stage feature fusion in InceptionResNetV2.
This method combines the set of local features and the set of global features
for the stages and gets the fused classifier to yield a better accuracy. Like-
wise, [33] discussed the effects of repeated transformations in CNN outputs on
detail loss. To enhance the efficiency of the discovered models and the over-
all model resilience, they suggested that GooglLeNet should be divided into
three parts and use the classifier product rule at each part. The work of [37]
addresses the challenge of limited labeled samples in remote sensing image clas-
sification by proposing a discrete wavelet-based multi-level deep feature fusion
method. The method involves multiple steps including discrete wavelet trans-
form, deep feature extration, and a modified discriminant correlation analysis.
The method is computationally expensive but also depend on careful selection
of parameters for each step so as to have better results at the end. There have
been some more work which specifically try to tackle a certain challenge like
[28] focusses on reducing computational cost for scene classification of UAV
images, the author use Modified GhostNet model to improve the challenges
of distinguishing ground objects from UAV images. The similar idea from
[2] where the author address the problem f remote sensing scene classification
with limited labelled data. They proposed the method called RS-FewShotSSL
which used Deep learning model that has to be trained using high-resolution
and low-resolution images. Aforementioned studies use different techniques
trying to get more discriminative features by leveraging features at the fully
connected layer, multi-layer fusion, hybrid feature fusion, stage-wise integra-
tion, or mid-level features, but still these are features only obtained by the
CNN model extractors which are still suffer the problem on not being invari-
ant to geometric transformations and some still has performance which need
to be improved.

2.2  Application of Hu’s Moment in Image-based Classification

Moment Invariants, particularly those developed by Hu, have been widely ap-
plied in various image processing tasks and methods for their ability to handle
rotation, scaling, and translation of images. The authors in [18] showed that
when Hu’s Moment Invariants were integrated into a method for detecting
automotive connectors on manufacturing assembly lines it offered a picture
of 5.03% higher matching accuracy and 45.06% improved speed as compared
to other standard techniques. To address the computational workload and
the issues related to precision of classical methods, the study employed a gain
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function and an adaptive pyramid search approach. Furthermore, [27] im-
plemented Hu’s Moment Invariants for the early diagnosis of cervical cancer
with a feature extraction of cervical cell images and classification with SVM.
Their method means that the accuracy rate was 71.9% with the processors
taking 0.98705 seconds, thus underlining the use of CNNs together with Hu’s
Moment Invar-iants can be used for much higher levels of accuracy in clas-
sification in much less time. Additionally, similar to [35], the use of Hu’s
Moments in identifying patterns for medical images was confirmed to help in
making medical images invariant to the scales and rotations. Furthermore,
the authors stressed issues related to the experimental inputs and directives
in addition to segmentations necessary while applying Hu’s Moments for fea-
ture extraction in medical image processing. By drawing on the concept of
Hu, [4] has been able to show the role of moment Invariants by doing exper-
iments on two classes of Scenel5 (MIT-street, and MIT-Highways) datasets
and claimed to have improved the classification accuracy. This study was
more like a binary classification problem as the author only categorize two
classes only. However, in an attempt to enhance classification and recog-
nition of binary objects in image processing, computer vision and machine
learning applications, [14] integrated Local Binary Patterns with Hu’s Mo-
ments. Through this combination, the model’s handling of the transformed
appearance of objects was further improved. The author in [25] address the
problem of geometric transformation when classifying ships in video surveil-
lance images. They incorporated denoising, segmentation and Hu’s Moment
into their CNN framework and created a compact vector of Hu’s Mo-ments;
including this compact vector with deep learning features gave them a better
discriminant image representation. The authors proved that the presented
approach based on the suggested method performs better than state-of-art
methodologies in the context of accuracy and complexity. This study set a
new avenue where the deep learning features and Hu’s moment are used for
scene understanding.

3 Proposed Method

This research proposes the improvement of CNN architectures by incorporat-
ing Hu’s Moment Invariants into the feature extraction segment to improve
image transformation invariance. Seven invariant Moments of Hu were ob-
tained from these images and we combined them with the fully connected
layer of our CNN model as shown in Figure 2. For feature extraction, the
CNN model as well as the Hu’s Moment sub-pipeline was run in parallel.
The images undergo preprocessing which involved resizing of the images to
a dimension of 224 by 224 pixels. Regarding the deep learning model, the
images were preserved in the shape of the three-dimensional color channels.
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Figure 2: The proposed method architecture.

Before the images were fed into the Hu’s Moment extractor, they were shifted
to gray scale. The fully connected layer features that were extracted were
concatenated with Hu’s Moments that were obtained from the Hu’s Moment
extraction module. All these features were concatenated for training the clas-
sifier.

3.0.1 Deep Learning Feature Extraction

Features for deep learning were extracted with three CNN models that were
pre-trained from ImageNet dataset[3] which include: ResNet50 [9], Inception-
ResNetV2 [31], and InceptionV3 [32].

These models have shown top performances in most computer vision tasks.
Due to the high computational costs and time considerations, transfer learning
was adopted to save of training them from scratch. From the above models, we
formulated the feature set that incorporates discriminative features of CNN
that were incorporated with the Hu moment-invariant features to form a new
appended feature vector.
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3.1 Hu’s Invariant Moment

The Hu Moments Invariant features are derived as defined by the works [11,
17, 1]. The two-dimensional (p + ¢)** order moments are defined as follows:

o= [ [ art sty )

where p,q =0,1,2, ...
The invariant features can be achieved by using central moments which can
be defined as follows;

lipg = //_O;(w —2)"(y — 9)*f (2, y)dzdy (2)

where p,q =0,1,2...,T = z—ég and § = m—;g Given the Centroid of the image
f(z,y) with the pixel point at Z,7, the centroid moments p,, whose center
has been shifted to the centroid of the image. This makes the central moments
invariant to image translation. The Scale Invariance can be attained by nor-
malization of the central moments [30] The normalized central moments are
defined as follows;

Mpg = P21y PTIE2 a3 3)
Hoo 2

Based on the normalized central moments, [11] introduced seven moments

invariants.

$1 = n20 + Mo2

¢2 = (n20 — Mo2)” + 417

¢3 = (130 — 3m2)? + (321 — po3)?

¢a = (130 +M2)* + (M21 + p103)*

b5 = (m30 — 3m2)(M30 + m2)[(M30 + Mm2)* — 3(121 + 3102)°]

+ (321 — 103) (21 + n03)[3(130 + 1M12)* — (1121 + 103)?]

d6 = (120 — m02) (N30 + M2)* — (M21 + M03)?] + 4m11(n30 + m2)(M21 + Mo3)

b7 = (3n21 — 103) (N30 + m2)[(M30 + Mm2)* — 3(121 + M03)?]

— (n30 — 3m2)(N21 + 103) [3(n30 + Mm2)* — (21 + 103)?]

These seven moment invariants have unchanged properties when the image
is subjected to scaling, translation and rotation. By using these seven moment
invariants feature vector can be expressed as;

v =(¢1, b2, 93, b4, 95, b6, P7)

The obtained feature vector V is normalized to ensure that all features have
a similar scale, preventing some features from dominating others due to their
large magnitudes and making the learning algorithm converge faster [7].
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3.2 Features Fusion

In order to create a more comprehensive image representation, the high-level
features extracted from Deep learning models were combined with the Hu Mo-
ments features of each image to form a composite vector. The process involved
the applying cascade fusion, which directly connects the feature maps while
retaining all elements. This fusion technique was proposed by [25]. Concretely,
it is especially well suited to fuse feature maps of different dimensions.

3.8 Classification

Our proposal builds upon the combined Deep learning and Hu invariant mo-
ments features after feature concatenation followed by a fully connected layer
for classification. Instead, fused features allow the classification to take ad-
vantage of the deep learning and the Hu moments features. The task included
several classes; the classifier became Softmax, and the cost function became
the modified categorical-cross entropy. The output of the last layer was fixed
at 15 for the Scenel [15] datasets, 30 for the AID [36] datasets and 67 for
the MIT-67 [24] dataset, respectively.

4 Experiments and Results Discussion

4.1 Ezxperimental Setup

The proposed approach was implemented by Python 3.10 using PyCharm IDE
on 64-bit Windows 11 running on a Dell OptiPlex 7000 operated with a 12th
Gen Intel(R) Core (TM) i7-12700T CPU @ 1.70GHz and installed RAM of
64.00 GB. The experiment was conducted to validate our proposed approach.
In implementation, three datasets were used, which were MIT67 [24], AID
[36] and Scenelb [15].

4.2 Datasets

The some datasets used were observed to have an imbalanced image number
across different classes. The imbalance can affect the calculation of some
metrics; thus, the Data Augmentation was applied to balance the number
of images distributions within the classes. The graphs in Figure 3 show the
number of image distribution between classes of the benchmark datasets used
to validate our proposed approach. We addressed the imbalanced by using
Data Augmentation; technique used involved rotation, zooming, translation,
and flipping. Sample images of augmented images are shown in Figure 4.
This technique balanced the number of images but also increased the image
variations hence boost generalizability of our approach. The datasets were
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Figure 3: The image distribution in MIT67 and Scenel5.

divided in ratios of 80%, 10%, and 10% for training, test, and validation sets
respectively. To avoid any chance of the system to see the training set, these
three sets were stored in different folders.

4.3 Evaluation Metrics

Confusion matrix generate values which are extremely valuable used to obtain
important metrics for machine learning models. These metrics are Accuracy,
Precision and Recall. Accuracy is the total number of correct classifications
divided by the total number of classification [6], given by the following formula:
TP is True Positive, TN is True Negative, FP is False Positive and FN is False

Negative.
TP+TN

TP+TN+FP+ FN
Precision is the ratio between the number of images correctly classified as TP
and the total number of images in the class under observation (TP and FP) [6].
Precision can be defined as the accuracy of the classification of a particular
class.

ACC =

TP

P=_———
TP+ FP
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Figure 4: Data augmented samples from MIT67 dataset; above is Bakery and the lower is
Inside Subway categories.

Recall is the ratio between the total number of images classified as TP and
the total number of images in the class under observation [6].

TP

R=T7p 1 FN

These metrics were used to measure the effectiveness of the models used in
the experiments on both datasets.

4.4 Ablation Study
4.4.1 Data Augmentation

The contribution of data augmentation was demonstrated through an exper-
imental study in which geometric data augmentation techniques, specifically
rotation, translation, scaling, and shearing were employed to simulate various
real-world scenarios. Three distinct model architectures were evaluated, and
results were recorded both with and without the application of data augmen-
tation. The findings indicate a consistent improvement in performance in all
models when data augmentation was utilized.
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4.4.2  Feature Importance

To quantify the contribution of Hu’s moments, we conducted an ablation
study comparing three configurations: (1) CNN alone (InceptionResNetV2),
(2) Hu’s moments alone and (3) the proposed fusion method. Table 1 reports
results on MIT67, AID and Scene. 87. 1%, outperforming the CNN baseline
(84%) and Hu’s Moments alone (67. 3%) for MIT67, 94. 1%, outperforming
CNN alone (93%) and Hu’s Moments alone (73. 2%) for AID, and 96. 4%,
outperforming CNN alone (95%) and Hu’s Moments alone (75%) for Scenel5,
this confirms that the combination enhances robustness We also did feature
importance analysis by using SHAP (SHapley Additive exPlanations) where
the more important features that contributed to the prediction appeared more
on the fusion setup, as shown in Figure 5.

Table 1: Effects of data augmentation on different models for Scenel5, AID and MIT67.

. Accuracy (% Precision (% Recall (%

Model Augmentation |-g- TS 13[1T67 Scenel5 | AID : 1\)/IIT67 Scenels AI]§ )MIT67
ResNet50 No 86 84.6 46 84.9 85 48 85 85 48
InceptionV3 No 85 84 60 86.1 84.5 | 61.5 86 84.5 | 61.5
InceptionResNetV2 | No 94 91.5 | 81 94.5 92 82 94 92 82
ResNet50 Yes 88 86 65 87 87 64 87 86.9 | 64
InceptionV3 Yes 92 88 72 93 89 73 92 89 72
InceptionResNetV2 | Yes 95 93 84 96 93.8 | 85 96 94.1 | 85

Outpa 0
= outpt 0

........

Figure 5: From left: warehouse image, SHAP values for fused feature, CNN alone and Hu’s
moment alone.

4.5 Results Discussion

This research demonstrates that integrating Hu’s moments, deep learning fea-
tures, and data augmentation significantly improves the performance of im-
age classification. The study evaluated the effectiveness of fusing geometric
invariants with learned features using three pre-trained ImageNet CNN mod-
els - ResNet50, InceptionResNetV2, and InceptionV3. The results indicate
that models utilizing the combined features outperformed those relying solely
on the DL features, showing improvements in accuracy, robustness, and gen-
eralization. This can be seen in Tables 2, 3 and 4 where the results have



Scene Understanding by Fused Hu’s Invariant Moments and Deep Learning Features 13

Table 2: Models’ perfomance on Scenel5 with and without Hu’s moment.

Without Hu’s Moment With Hu’s Moment

Model Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%)
InceptionResNetV2 95 96 96 96.4 97 97
ResNet50 88 87 87 92.3 92 92
InceptionV3 92 93 92 93 94 94

Table 3: Models’ performance on AID with and without Hu’s moment.

Without Hu’s Moment With Hu’s Moment

Model Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%)
InceptionResNetV2 93 93.8 94 94.1 95 95
ResNet50 86 87 86.9 87.5 88.2 88
InceptionV3 88 89 89 90 91.2 91

Table 4: Models’ performance on MIT67 with and without Hu’s moment.

Without Hu’s Moment With Hu’s Moment

Model Accuracy (%) Precision (%) Recall (%) Accuracy (%) Precision (%) Recall (%)
InceptionResNetV2 84 85 85 87.1 88 88
ResNet50 65 64 64 66.5 66 67
InceptionV3 72 73 72 74 75 75

been tabulated showing the comparison of the results with and without Hu
moments.

The integrated approach balanced the use of Hu’s moments, which are
rotationally, scale, and translation-invariant features, with the discriminative
DL features extracted from pre-trained models. This fusion addressed com-
mon drawbacks associated with standalone CNNs, including vulnerability to
spatial transformations of the input data. The incorporation of Hu’s moments
enabled the models to capture the precise geometric attributes of the input
images, leading to more accurate classification. Moreover, the application of
data augmentation enhanced the observed increases in precision by providing
a wider set of training data, reducing the likelihood of over-fitting. Techniques
such as moving, mirroring, and resizing boosted other aspects of the model
by generalizing the future data, particularly in cases of intraclass variance.
The combination of data augmentation and feature fusion resulted in greater
model robustness due to complementary processes. The image distribution
between classes was imbalanced as seen in Figure 3, Data Augmentation was
also used to eliminate bias between classes due to the unbalanced image distri-
bution. When Hu’s moments were introduced, the InceptionResNetV2 model
exhibited the highest increases compared to other CNN models, likely due to
its outstanding ability to learn both low-level and high-level features. Similar
enhancements were observed for ResNet50 and InceptionV3, demonstrating
the efficacy of the proposed approach across various architectures. The anal-
ysis of the confusion matrix and quantitative results indicated that the fused
models had higher precision, recall, and accuracy compared to the compara-
tive models as tabulated in Table 5.
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Table 5: Comparison with other works.

Accuracy (%
Author Method Soomets AT ] MITe7
Tang et al. [33] (G-MS2F) 93.37 - 80.3
Zhou et al. [40] PLACES-CNN 92.15 - 79.49
Liu et al. [21] FTOTLM 94.01 - 74.63
Rezanejad et al. [26] Pre-trained CNN using scene contours - - 48.61
Guo et al. [5] LS-DHM (VggNet11) - - 83.75
Salman et al. [13] DUCA 94.5 - 71.8
Zhou et al. [42] AlexNet + ImageNet 84.23 - 56.79
Liu et al. [19] Deep Learning + Spatial coding 89.70 - 62.90
Nachipyangu et al. [22] | Pre-trained CNN+Data Augmentation 95 - 86
Devendran et al. [4] Moment Invariant+ANN - - 83.5
Xia et al. [36) VGG-VD-16 - 89.64 | -
Alosaimi et al. [2] RS-FewShotSSL - 87.13 -
Shen et al. [2§] Modified GhostNet - 92.05 -
Song et al. [37] DWMLFF - 86.17 -
Ours Fused DL and Hu’s moment 96.4 94.1 87.1

The study suggests that using Hu’s moments in conjunction with DL fea-
tures provides a more comprehensive feature set, satisfying both geometric
invariance and semantic aspects of the images. Additionally, the study found
that the proposed approach has the potential to enhance the performance of
Scene understanding tasks by addressing the limitations of standalone CNN
models. However, the computational complexity associated with extracting
Hu’s moments and integrating DL features remains a significant limitation,
which requires further investigation to optimize the process.

5 Conclusion

This research further demonstrates the potential of integrating Hu’s moments,
combined with deep learning features and data augmentation, to significantly
enhance Scene image understanding performance. The incorporation of ge-
ometric invariants and learned features introduced here has addressed im-
portant limitations associated with the original CNN models, including their
susceptibility to spatial transformations such as rotation, scaling, or transla-
tion. The results showcase consistent improvements across three pre-trained
CNN models, including ResNet50, InceptionResNetV2, and InceptionV3, un-
derscoring the reliability and broad applicability of the proposed ap-proach.
Given that Hu’s moments are invariant to image transformations and hence
rotation, and the DL features are semantically rich, the fused models have
outperformed models relying solely on DL features in terms of accuracy, pre-
cision, and recall. Furthermore, the application of data augmentation has
provided an even stronger foundation to this framework, increasing variabil-
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ity and reducing overfitting, thereby enhancing overall performance. The
findings suggest that integrating geometric invariants as additional features
into deep learning architectures can expand the range of features covered. Al-
though the high computational overhead remains a limitation, the present
study identifies avenues for further research to minimize demands and refine
the fusion process, ultimately improving the performance of more compre-
hensive computer vision applications. Consequently, the proposed approach
offers a promising path towards developing more effective and stable Scene Un-
derstanding methods that are invariant to illumination and other conditions.
This research underscores the significant potential of combining geometric in-
variants, deep learning features, and data augmentation to achieve substantial
improvements in Scene understanding, paving the way for more robust and
versatile computer vision solutions.
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