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ABSTRACT
Image-text retrieval is a fundamental task in image understanding.
The algorithm fetches the most relevant counterpart in the other
modality by giving the image or text. Large visual-language mod-
els are trained by paired image and text data to extract the joint
representations. However, they are computationally expensive and
not explainable regarding how the data from different modalities
are aligned. To this end, we propose an efficient and stage-wise
alignment for image and text representations, called the Green
Explainable Multi-Modal Alignment (GEMMA). GEMMA is com-
putationally efficient by reducing trainable parameters to 3% com-
pared to fine-tuning all image and text encoders. The intermediate
clustering results demonstrate the explainability of the alignment
mechanism in our model. Experiments show that GEMMA outper-
forms state-of-the-art retrieval models in text-to-image and image-
to-text retrieval tasks on the Flick30k and MS-COCO datasets.
GEMMA can also be generalized to unseen image-text pairs from
pre-trained visual and text encoders separately.
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1 Introduction

Image-text retrieval links textual and visual information and is a foundational
image understanding application in computer vision. The goal of the task is
to link textual descriptions and pixels in image arrays that represent similar
concepts or semantics. The image-text retrieval task aims to find the most rel-
evant information from the candidate sets in the counterpart modality. That
is, when an image is given, the model needs to extract related captions by
ranking them with higher scores and vice versa. Figure 1 shows an example
of an image and its paired textual descriptions.

Figure 1: The example of image-to-text retrieval. By giving an image, we need to retrieve
the paired captions from the candidate set.

Image-text retrieval can provide the information for visual-textual appli-
cations, including visual question answering [27], image captioning [1], visual
grounding [38], and visual common sense reasoning [48]. With the thriving
development of deep learning and computational resources, neural networks
dominate the current research trend. Jointly trained neural network-based
image and text encoders transform the input text and image into vectors in
a common latent space. The two encoders are trained under metric learning
schemes, which compare the cosine similarity between the paired and unpaired
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image and text samples. For example, an intuitive solution to representing
the image and text in a joint latent space is optimizing two encoder models
by minimizing contrastive loss [4]. The loss function can gather the paired
information but repel the unpaired data in the latent space.

Although end-to-end solutions perform astonishingly, explainability is cru-
cial for image-understanding applications. In the multi-modal application
scenario, humans expect a complete reasoning procedure instead of a magic
answer from the model. However, neural networks obscure the reasoning
process within the joint latent space through complex floating-point opera-
tions, e.g., calculating cosine similarities between vectors. The nonlinearities
in the model make the whole inference process a black box. To this end, we
propose a multi-stage methodology, dividing the retrieval process into three
stages: 1) Global Alignment, 2) Image Cluster Alignment, and 3) Text Cluster
Alignment. Each alignment stage consists of three modules: a) alignment, b)
subdomain clustering, and c) subdomain feature selection. More fine-grained
information is revealed in the module’s feature selection process.

The availability of paired image and text data is another challenge when
training multi-modal models. Most datasets contain only high-quality data
in a single modality. For example, ImageNet [7] and MS-COCO [23] contain
diverse images but lack sentence-level textual descriptions associated with the
images. In contrast, in textual datasets, the BooksCorpus (800M words) [52]
and English Wikipedia (2,500M words) contain well-structured paragraphs,
yet without corresponding images. Collecting paired images and captions is
expensive and labor-intensive. Due to the subjectiveness of caption labels, it is
impractical to assume consistent captions for one image. However, the quality
of collected pairs in both domains significantly impacts the performance of
the jointly trained multi-modal encoders. Aiming to relieve the data scarcity,
we adopt the pre-trained encoders in the image and text domains instead of
jointly training text and image encoders from scratch. Then, we proposed a
green learning alignment process to deal with the lack of paired information.

We propose a new Green Explainable Multi-Modal Alignment (GEMMA)
scheme to deal with paired data scarcity and explainability. The method uti-
lizes the frozen image and text encoder models and aligns the representations
using the proposed alignment process. Our contributions are summarized as
follows:

• We reduce the number of parameters to around 3% compared to fine-
tuning the whole encoders. Instead of fine-tuning the pre-trained en-
coders, we propose an alignment scheme from two pretrained encoders,
making the pipeline computationally efficient.

• In order to achieve pipeline transparency, we narrow the set of candi-
dates in a stage-wise manner. The modular design divides the entire
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dataset into subsets. We can statistically understand the retrieval pro-
cess and the crucial tokens by the feature selection modules in the sub-
domain clustering.

• We provide bidirectional retrieval in the proposed pipeline. The align-
ment modules consist of linear projections without incorporating any
nonlinearity. Thus, the alignment process can be easily reversed from
one to another.

• We conduct extensive experiments on two public multi-modal datasets.
The results demonstrate that our method can significantly improve the
performance in text-to-image retrieval.

2 Related Work

The existing methods can be classified into 1) cross-modal retrieval and 2)
visual-language models (VLMs). Cross-modal models consist of a convolu-
tional neural network (CNN) to extract features from images and a recurrent
neural network (RNN) to process text data. The joint representations of the
convolution and recurrent backbones are optimized by metric learning. On
the other hand, VLMs employ Large Language Models (LLMs) that work in
tandem with the Visual Transformer models (ViTs) for optimal performance.
The VLM optimization can be performed by contrastive learning, masking
filling, and generative matching.

2.1 Cross-modal Retrieval

The cross-modal retrieval algorithms consist of representation matching and
feature extraction. Metric learning schemes measure the similarity between
the samples and predict the matching scores. Hadsell et al. [13] propose the
idea of contrastive learning. The loss formulation aims to reduce the distance
in the latent space for similar samples and to increase the distance for differ-
ent samples. Triplet loss [32], lifted structure loss [28], and N-Pair loss [35]
construct the joint latent space by sampling training data. The losses gather
the positive and repel the negative sampling schemes from positive and nega-
tive pairs, forming the positive and negative pairs with the sampling schemes.
Thus, optimization can be improved by the hard sampling process [31, 43].
With the thriving development of self-supervised applications, SimSCE [12]
and SimCLR [4] provide metrics to reinforce the representations. The losses
map the origin and representations from the augmented images (crop, rotate,
color distort, etc.) onto the same latent space.
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Frome et al. [11] first proposed the concept of joint image and text embed-
ding in the ImageNet [7] classification. The pipeline utilizes the textual infor-
mation from the label to construct a lookup table from the nearby concepts
as the target embedding, leading to a hierarchical classification. Zheng et al.
[51] adopts deep CNN as the basis for extracting the image and text features.
The instance loss optimizes the two feature extractors, which can project the
representations from different modalities onto the joint latent space. Lee
et al. [21] utilize bottom-up attention object detector [1] to obtain semantic
representations of images and to perform word-level matching in the captions.
The bottom-up detector can provide the modifiers with the noun, matching
the corresponding sentence with the details.

C. Liu et al. [24] formulate the information as a graph and adopt the
structural matching to retrieve the closest subgraph. The object detector
obtains the visual graph. The node features are the region of interest (ROI)
feature of the model, and the vertices are constructed by the Multi-Layer
Perceptron (MLP). The textual graph is the Part-Of-Speech (POS) prediction
from the Gated Recurrent Unit (GRU) Networks. L. Wang et al. [37] adopts
the instance-wise matching for the subgraphs. The overall matching score
aggregates the partial graph similarities in a bottom-up manner.

To further exploit the information in the query image, Cheng et al. [6]
adopts the optical character recognition (OCR) module to extract semantic
information such as text embeddings of the scene. The model fuses the image
token and the scene text for the joint representation. Diao et al. [9] build
the image tokens from ROI by the object detector and bidirectional GRU
textual tokens. The cross-modal attention module is used for the token-wise
matching process. Jawade et al. [15] constructs the visual and textual tokens
from the pre-trained model. However, the research merges the cross-modal
information by cross-attention [36] modules and manages the retrieval task
with the transformer structures.

2.2 Visual-language Model

Transformers [36] have achieved significant results in natural language pro-
cessing and computer vision tasks. The image-text encoders can share similar
architectures. W. Wang et al. [39] crop the input images into patches and
use the patches as visual tokens to formulate the images as a novel language.
The jointly trained visual and text encoders [5] [49] are optimized end-to-end.
Visual language models (VLMs) can be categorized into three families [29] by
the optimization process: (1) contrast-based VLMs, (2) VLMs with masking
objects, and (3) generative-based VLMs. Constructive VLMs [30] are trained
by the paired multi-modal data, and the objective loss is the contrastive loss.
The self-supervised learning scheme obtains VLMs with masking objects [18,
20, 33]; the model needs to predict the masked visual and textual tokens.
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Generative-based VLMs [46, 47, 25] take advantage of the great success of AI
chatbots, which are trained in visual question answering, image captioning,
and other downstream tasks.

CLIP [30] demonstrates impressive visual representations trained together
with paired text descriptions. The transformer encoder takes the nonoverlap-
ping patches and the words as input and utilizes the pooled encoded tokens
to represent the images and sentences. The model uses a contrastive learn-
ing scheme to project image and text representations onto a shared latent
space. This shared space allows for a better understanding of the relationship
between the two modalities. The dual (image-text) encoder architecture is
prevalent in multi-modal applications.

W. Kim et al. [18] utilizes the masked tokens in self-supervised learning
in transformers [8] for natural language processing. The model takes tok-
enized sentences and image patches as input. Training tasks include paired
classification and masked token filling. Kwon et al. [20] proposes the uniform
transformer with two pre-training objectives, including masked vision and lan-
guage modeling, and multi-modal alignment. Singh et al. [33] proposes the
multi-modal encoder with visual and text encoders. The multi-modal encoder
aligns the features from the two encoders with global contrastive learning and
masked multi-modal modeling.

In addition to representation learning, the large language model provides
incredible performance on text generation tasks. J. Yu et al. [46] optimize the
visual encoder with image captioning as a downstream task. With a jointly
trained visual encoder and language decoder, the model provides unified text
and visual representations for the transformer. L. Yu et al. [47] employ the
diffusion models [14, 34] for image generation and reinforce cross-modal repre-
sentations. H. Liu et al. [25] combine the visual encoder with the LLM. The
given image tokens are used as instructions for the detailed LLM responses.
However, the training process requires large-scale paired images and texts,
which is computationally expensive.

Despite achieving state-of-the-art performance, large visual-language pre-
trained models still have shortcomings in inference. The matching process is
not transparent, and humans cannot understand the decision-making within
fully connected layers because they lack semantic meanings. In addition to
the lack of explainability, the fine-tuning process is computationally expensive.
These models have billions of trainable parameters, and high-quality image-
text pairs are required for tuning.

2.3 Green Learning

To handle the computationally intensive fine-tuning process and expand the
image-text encoder using unpaired data, we introduce the Green Learning
Alignment algorithm, which uses separately pre-trained image-text encoders.
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The idea of Green Learning was proposed by Kuo and Madni [19] and aims
to reduce the computational cost of backpropagation while providing a theo-
retically explainable learning process for various applications. The modular
designs can divide the problem into subproblems, which can be solved using
transparent algorithms.

3 Proposed GEMMA Method

The GEMMA algorithm can be divided into three stages: 1) Global Alignment,
2) Image Cluster Alignment, and 3) Text Cluster Alignment. We adopt the
multi-stage approach to approximate the complicated decision-making process
rather than building a single large visual-language foundation model from
scratch to ensure model efficiency. Starting from the pre-trained image and
text feature extractors, we keep the pre-trained model frozen to maintain its
ability to generalize with unpaired data in the matching process. We align the
representations by training additional single-layer adapter matrices to project
the representations onto the joint latent space. Specifically, the alignment
process consists of three modules: a) alignment, b) clustering in subdomains,
and c) selection of subdomain features, where clustering and feature selection
are performed in both the image and text domains, as shown in Figure 2.

Figure 2: The overall algorithm design of Alignment. The first stage is the global alignment.
The second and third stages include fine-grained clustering and feature selections in the
image and text domain.
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3.1 Alignment

In the alignment process, we do not fine-tune the pre-trained encoders. We
train a lightweight linear transformation in the visual and textual domains to
align the two representation spaces. The alignment module is illustrated in
Figure 3. The visual and text embeddings can be formulated as:

evis = F(Image) ∈ Rdvis

etxt = G(Caption) ∈ Rdtxt ,
(1)

where evis, etxt are the image and text embeddings, F ,G are the frozen image
and text encoder models, and dvis, dtxt are the dimensions of the image and
text representations. With the deterministic representations, the matching
process can be denoted as:

sim(Aevis, Betxt) = sim(zvis, ztxt), (2)

where A ∈ Rdjoint×dvis and B ∈ Rdjoint×dtxt represent the trainable image-
text alignment matrices, z ∈ Rdjoint represents the vector in the joint space,
and sim(., .) represents the similarity metric. We adopt cosine similarity as
the similarity metric, namely sim(u, v) = u·v

∥u∥∥v∥ . We can further optimize
the trainable parameters with the contrastive learning loss function [4].

Lcon = − log
exp(sim(zi, zj)/τ)∑N

k=1 1[k ̸=i]exp(sim(zi, zk)/τ)
. (3)

Here, (i, j) denotes the paired image and sentence in the sampled batch, N
denotes the batch size, and τ ∈ R denotes the temperature hyperparameter.
1 ∈ {0, 1} is an indicator function and the value is one, while [k ̸= i]. The
objective function maximizes the similarity of relevant image-text pairs while
avoiding negative image-text pairs from being embedded closely in the latent
space.

Hence, the problem can be formulated as an optimization problem, and all
transformations are linear. We can define the inverse projection in the joint
latent space without nonlinearities.

evis = A−1zvis

etxt = B−1ztxt,
(4)

where A−1 ∈ Rdvis∗djoint and B−1 ∈ Rdtxt∗djoint represent the inverse trans-
formation from the joint space to the original image-text representations. We
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Figure 3: The illustration of the alignment process. The blue boxes are the features ex-
tracted by the frozen encoders. The orange boxes are the trainable transformation matrices.
The red boxes are the auxiliary matrices for constraining the representations in the joint
space.

define the reconstruction loss for both the image and text modality.

Lrecon =
∥∥A−1zvis − evis

∥∥
2

+
∥∥B−1ztxt − etxt

∥∥
2
,

(5)

Furthermore, we use the auxiliary matrices to constrain the joint representa-
tions and define the loss of cross-modality reconstruction as

Lcross−recon = ∥Cztxt − evis∥2
+ ∥Dzvis − etxt∥2 ,

(6)

where C ∈ Rdvis×djoint and C ∈ Rdtxt×djoint are the auxiliary transformation
matrices from the joint space onto the image and text modality, respectively.
In addition, zvis, ztxt are obtained from the corresponding paired caption or
image data, evis and etxt. However, the C and D matrices will not be used
during inference. The alignment process is a linear transformation carried out
by matrices A and B. The objective function can be written as:

L = αLcon + βLrecon + γLcross−recon, (7)

where α, β, and γ ∈ R represent hyperparameters in training. Linear align-
ment provides an invertible transformation from the image-text modality to
the joint latent space and vice versa. However, the single-layered alignment
is too simple to match all the samples. Thus, we cluster the data to form
sub-datasets and utilize the stage-wise alignments for the detailed decision.
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3.2 Sub-domain Clustering

With the alignment process, we can find similar representations by linear
transformations. However, the transformation can only take global repre-
sentations, which means that images or captions are represented as dvis- or
dtxt-dimensional vectors. The image and sentence representations are the
pooled output of the tokens in the prevailing transformer models. It can be
inferred from previous research that fine-grained information is also crucial in
information-matching tasks.

Due to the complexity of the fine-grained token representations, it is chal-
lenging to train the token-wise alignment in a brute-force manner. Thus, we
adopt the clustering algorithms and use the clustering results to obtain cru-
cial tokens. The crucial token selection will be introduced in Section 3.3. We
can reduce the feature dimension from the number of tokens and perform a
second-stage alignment.

We adopt frequency analysis and statistical approaches to construct a
transparent and human-sensible intermediate structure. The clustering is con-
ducted through (1) concept aggregation and (2) representation aggregation.

3.2.1 Concept Aggregation

We extract the concrete concepts for the candidate sentences by the Part-
of-speech (POS) tagger [41]. We collect the nouns as anchors and calculate
the Term Frequency-Inverse Document Frequency (TF-IDF) to select the rep-
resentative terms. As shown in Figure 4, the concepts lie in a long-tailed
distribution, leading to a biased probability estimation. Hence, we aggregate
the high-frequency terms based on the detector results and divide the candi-
date set into subsets for better-detailed alignments.

We construct the co-occurrence matrix of the POS tagging and object
detection results in the training set. As shown in Figure 5, concepts have
a significant relationship with detection results. Hence, we can group the
concepts tagged with POS with the probability conditional on the detection
results. To visualize the physical meaning of the clusters, we can use the word
clouds to show the high-frequency concepts in each cluster, shown in Figure 6.

3.2.2 Representation Aggregation

The clustering is based on the K-means algorithm. To ensure consistency of
alignment and clustering, we use the l2-norm of normalized representations
as a distance metric.

∥ũ− ṽ∥22 = ∥ũ∥22 + ∥ṽ∥22 − 2ũṽ = 2− 2sim(u, v), (8)
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Figure 4: The frequency bar chart of the extracted corpus concepts. Top ten concepts and
the corresponding counts are (‘man’, 36743), (‘woman’, 23845), (‘people’, 12810), (‘shirt’,
12743), (‘girl’, 10035), (‘dog’, 10030), (‘boy’, 9393), (‘men’, 8005), (‘child’, 7746), (‘street’,
7435), (‘group’, 6959), (‘front’, 6857), (‘water’, 5489), (‘hat’, 4075), (‘person’, 3810), (‘ball’,
3679), (‘jacket’, 3365), (‘building’, 3334), (‘hand’, 3113), and (‘player’, 3099).

where ũ and ṽ are the normalized representations, namely ũ = u
∥ũ∥ . The

clustering probability can be denoted as

prob(u ∈ clusi) =
eϵ

′(2−2sim(u,cenj))∑K
j=1 e

ϵ′(2−2sim(u,ceni))

=
eϵ·sim(u,ceni)∑K
j=1 e

ϵ·sim(u,cenj)
,

(9)

where clusi and ceni represent the i-th cluster and i-th centroid vector, re-
spectively. K represents the number of clusters and ϵ is a hyperparameter. If
ϵ increases, the probability distribution will concentrate on a certain class. If
ϵ decreases, the probability distribution will become uniform.

We can group images and texts based on their probabilities and then align
them using contrastive learning within these groups. We can improve the
contrastive learning process by using negative samples similar to positive ones.
We use hard-sample mining to ensure sample diversity within each group. The
global alignment process helps identify the most challenging cases. We can
then enlarge the groups by selecting the K-top candidates from the previous
alignments as negative samples.
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Figure 5: The occurrence matrix of POS tagging concepts and the detection results. The
x-axis is the 80 object classes from the pretrained detector from the MS-COCO [23] dataset.
The y-axis is the top 100 concepts from the POS tagger.

Figure 6: The visualization results of the clustering. The font size denotes the frequency of
the word in the corpus.

To clarify the roles of K-means clustering and the choice of hyperparame-
ters, we conducted experiments comparing K-means and Agglomerative Clus-
tering and varying the number of clusters. As shown in Table 1, increasing the
number of clusters improves the retrieval in certain settings. However, this
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Table 1: Sensitivity to clustering methods, where R@k presents the top-k recalls and
#Param denotes the number of trainable parameters. All the experiment is based on
CLIP [30] visual encoder and RoBERTa [26] text encoder with Flickr30k [45] dataset.

Clustering #Cluster image-to-text text-to-image #Param
R@1 R@5 R@10 R@1 R@5 R@10

KMeans
4 84.1 95.7 96.6 65.3 90.1 93.4 5.2M
8 86.3 98.2 99.4 73.2 94.2 97.2 10M
16 86.4 98.1 99.6 73.4 94.2 97.3 20M

Agglomerative
4 84.0 94.4 96.2 64.8 90.0 92.2 5.2M
8 85.5 97.7 98.7 72.9 92.8 96.1 10M
16 86.0 96.9 99.5 73.4 93.7 97.0 20M

also requires training additional alignment matrices for the clusters. There-
fore, we set the number of clusters to eight to strike a balance between the
number of trainable parameters and the performance. K-means clustering is
selected in GEMMA due to its slight empirical advantage over agglomerative
clustering.

3.3 Feature Selection

Clustering results provide pseudo-labels for further feature selection. The
label can be denoted as:

labeluclusi =

{
0, if prob(u ∈ clusi) < T.

1, otherwise.
(10)

Here, labeluclusi represents the label of the data point u whether it belongs to
the group i, and T ∈ (0, 1] is the self-definition threshold. With pseudo-labels,
we can further adopt Discriminant Feature Selection [44] (DFT) to select
informative features and reduce feature dimensions. DFT is a supervised
feature selection process that measures dimension-wise importance. For a
given 1D input feature, we can order the samples by the feature values and
bind the feature dimension to the sample maximum and sample minimum.
Then, we can partition the samples along the given dimension and calculate
the partition purity by weighted cross-entropy with pseudo-labels obtained
from Section 3.2. A feature is more discriminant if it has a lower loss value.
Then, we can plot the loss value curve from the lowest to the highest and use
the elbow point to select discriminant features from the whole feature set.

Separating the whole dataset into subsets allows us to conduct the discrim-
inant feature test among the tokens with the pseudo-labels from the clustering
results. Thus, token-level alignments can be performed using the same proce-
dure as global-level alignment.
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Figure 7: Visualization of DFT. Red and orange dots represent the binary labels. The
partition metric is the weighted sum of the left and right binary cross-entropy. Dashed
lines denote the potential partition points.

3.4 Mathematical Expression

The overall alignment process can be divided into three modules: 1) global
matching, 2) subdomain clustering, and 3) subdomain matching. The subdo-
main clustering and alignment will be conducted within the image and the text
domain. We can aggregate the alignments in the subproblem to approximate
the overall alignment.

P (image|text) = P (image, text)/P (text)

= P (text|image)× P (image)

P (text)

=
1

P (text)

∑
c∈cluster

P (text|image ∈ c) ∗ P (image ∈ c)

∝
∑

c∈cluster

P (text|image ∈ c) ∗ P (image ∈ c),

(11)

where P (image|text) denotes the probability distribution of the images with
a given query text. P (image) and P (text) denote the probability distribution
of image and text, and cluster is the result of the clustering of our clustering
modules. We further assume that the probability distribution within the
cluster can be approximated as uniform. Conditional probability can reflect
the stage-wise design in the proposed pipeline.

Furthermore, we use the similarity measurement to simplify the prob-
ability estimator, which means that we use sim(image, text) to represent
P (image|text). In the work, we adopt the cosine similarity as
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sim(image, text)

= sim(W visF(image),W txtG(text))
= sim(W vis[Gvis;Tvis],W

txt[Gtxt;Ttxt])

∼ sim(W vis
globalGvis,W

txt
globalGtxt)

+ sim(W vis
tokens[Gvis;Tvis],W

txt
globalGtxt)

+ sim(W vis
globalGvis,W

txt
tokens[Gtxt;Ttxt]),

(12)

where Gvis and Gtxt denote the pooled outputs from the feature extractors
(global features), Tvis and Ttxt denote the token, i.e. fine-grained, features,
W .

. denote the alignment matrices corresponding to different subsets from
the clustering results. The [G;T ] denotes the concatenated features of global
and tokens. Due to computational cost, we cannot directly collect all token
features. Therefore, we conduct the feature selection process based on the
clustering results.

The feature selection process is an approximation based on the cluster-
ing results. The process is expressed as a combination of the conditional
probabilities. For simplicity, we ignore the alignment matrix in the following
representations.

E[sim(F(image),G(text))]
= E[E[sim(F(image),G(text))]|image ∈ C1; text ∈ C2]

∼ E[sim(Gvis, Gtxt)]

+ E[E[sim(DFT ([Gvis;Tvis]), Gtxt)|image ∈ C1]]

+ E[E[sim(Gvis, DFT ([Gtxt;Ttxt]))|text ∈ C2]],

(13)

where DFT (.) represents the feature selection and dimension reduction pro-
cess in Section 3.3 and C1 and C2 represent the cluster sets of K-means.
Instead of training a complicated alignment process from the token-level out-
put of the feature extractor, we propose a stage-wise decomposition on the
dataset and train simpler structures for the subsets. Meanwhile, the align-
ments in the stages are linear, which provides the inversion operation and
preserves the dual accessibility in image and text domains.

4 Experiments

4.1 Dataset

We perform the image-to-text and text-to-image retrieval on the image-text
benchmark: Flickr30k and MS-COCO. The Flickr30k dataset [45] contains
31,000 images, and every image has five paired captions. The training set
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contains 29,000 images; the validation and testing sets contain 1,000. The MS-
COCO [23] is a larger-scale dataset with 123,287 images, each containing at
least five captions. We follow the ‘Karpathy’ splitting for the experiments [17]:
113,287 images for training, 5,000 for validation, and 5,000 for testing. We
use the two benchmarks with different sizes to demonstrate the scalability
and generalizability of our approaches. The performance is evaluated using
the Recall@K metric where K ∈ {1, 5, 10}. The notation K refers to the top-
K matches of the retrieval results. A retrieval is considered a true positive if
the predicted matches include at least one of the paired ground-truth captions.
Specifically, if the top K matches contain one of the five corresponding captions
for a given image, it is counted as a positive in the recall metrics.

4.2 Hyperparameter Settings

The overall algorithm is trained stage by stage. We adopt K-means as the
clustering algorithm. The number of clusters is 8, and ϵ is 50 for pseudo-
labeling. For Flickr30K, we set the temperature parameter at 0.02, and the
ratio between losses is set to α : β : γ = 1 : 0.5 : 0.6 in the global alignment.
In the alignment of the image subdomain, the temperature parameter is set
to 0.015, and the ratio between the losses is set to α : β : γ = 1 : 0.4 : 0.5. In
the text subdomain alignment, the temperature parameter is set to 0.01, and
the ratio between the losses is set to α : β : γ = 1 : 0.3 : 0.4.

For the MS-COCO dataset, the temperature parameter is set to 0.05, and
the ratio between the losses is set to α : β : γ = 1 : 0.5 : 0.5 in the global align-
ment. In the alignment of the image subdomain, the temperature parameter
is set to 0.03, and the ratio between the losses is set to α : β : γ = 1 : 0.3 : 0.5.
In the text subdomain alignment, the temperature parameter is set to 0.02,
and the ratio between the losses is set to α : β : γ = 1 : 0.2 : 0.4.

The dimension of the joint space is set to 768, which follows the token
dimension of the transformer encoders. All optimization is performed using
AdamW with the learning rate = 0.001.

4.3 Retrieval

We conducted the experiments and compared our alignment approach to the
SOTA retrieval models. The results are shown in Table 2. We extract infor-
mation from the frozen CLIP image and text encoder in the experiments. The
CLIP encoders remain frozen during further alignments and serve as the base-
line for our alignment process. The CLIP encoder contains more than 428M
parameters. However, we do not fine-tune the overall encoder in our align-
ment process; instead, we train additional alignment matrices. The trainable
parameters can be reduced from 428M to 9.43M (∼ 2.2%). The encoders re-
main untrainable during the training of alignment matrices. Therefore, GPU
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Table 2: The Flickr30k(1k testing set) and MSCOCO(5k testing set) dataset retrieval
performance. We compare the single-model performance among all multi-modal retrieval
models. The numbers are taken from Diao et al. [9] R@1 represents Recall@1 for simplicity.

Flickr30k (1k testing set) MS-COCO (5k testing set)
image-to-text text-to-image image-to-text text-to-image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
SCAN [21] 67.4 90.3 95.8 48.6 77.7 85.2 50.4 82.2 90.0 38.6 69.3 80.4
VSRN [22] 71.3 90.6 96.0 54.7 81.8 88.2 53.0 81.1 89.4 40.5 70.6 81.1
CAAN [50] 70.1 91.6 97.2 52.8 79.0 87.9 52.5 83.3 90.9 41.2 70.3 82.9
IMRAM [3] 74.1 93.0 96.6 53.9 79.4 87.2 53.7 83.2 91.0 39.7 69.1 79.8
MMCA [42] 74.2 92.8 96.4 54.8 81.4 87.8 54.0 82.5 90.7 38.7 69.7 80.8
GSMN [24] 76.4 94.3 97.3 57.4 82.3 89.0
SGRAF [10] 77.8 94.1 97.4 58.5 83.0 88.8 57.8 84.9 91.6 41.9 70.7 81.3
SHAN [16] 74.6 93.5 96.9 55.3 81.3 88.4
WCGL [40] 74.8 93.3 96.8 54.8 80.6 87.5
RCAR [9] 78.7 94.6 97.6 59.5 84.0 89.5 59.6 85.8 92.4 42.5 71.7 81.8

SGRAFS [15] 79.2 95.3 97.7 58.3 83.1 89.2 58.0 85.1 91.6 41.7 71.2 81.5
CLIP [30] 88.0 98.7 99.4 68.7 90.6 95.2 58.4 81.5 88.1 37.8 62.4 72.2

GEMMA(Ours) 88.6 98.9 99.6 75.7 94.2 97.1 58.6 83.2 90.0 45.3 72.6 82.8

memory consumption is proportional to the trainable parameters, which can
be reduced to less than 10 percent of the fully fine-tuned approach.

In Flickr30k (1k testing set), our approach outperforms other image-to-
text and text-to-image retrieval methods. Alignment can improve recall @
1 by 0. 6% in image-to-text retrieval. Meanwhile, our approach provides
a 6% boost in text-to-image retrieval. RCAR [9] needs dual-way optimized
models, namely image-to-text and text-to-image. Our method is optimized in
a feed-forward manner, and it ensembles the substructures directly.

In MS-COCO (5k testing set), our method provides competitive perfor-
mance in image-to-text retrieval and outperforms the others in text-to-image
retrieval by a boost of 2.1% in Recall@1. We achieve the best text-to-image
retrieval performance among the two datasets, showcasing our approach’s scal-
ability.

4.4 Generalizability

This section demonstrates the alignment between the visual/text encoders,
which are trained separately. The encoders remain frozen in the alignment
process. All alignments are based on the grouping and linear projection pro-
posed in our pipeline. The performance of CLIP visual and text encoders
without GEMMA alignment is taken from the original CLIP paper. [30] Start-
ing from the jointly trained CLIP structure, we change the text encoders into
the RoBERTa [26] and the visual encoder into a CNN-based object detec-
tor [1]. All experiments are carried out on the Flickr30k dataset and follow
the parameter settings in Section 4.2.

The results are shown in Table 3. The best performance comes from the
jointly trained models, whose representations are preliminarily aligned in the
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Table 3: The experiment results with different visual and text features for the alignment
process. All the experiments are conducted in the Flickr30k dataset.

Flickr30k (1k testing set)

Visual enc. Text enc. Alignment image-to-text text-to-image
(GEMMA) Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

CLIP vis [30] CLIP text [30] x 88.0 98.7 99.4 68.7 90.6 95.2
DETR [2] RoBERTa [26] v 66.7 89.5 93.6 56.7 84.5 90.3
DETR [2] CLIP text [30] v 73.6 91.6 94.5 60.0 85.8 90.6
CLIP vis [30] RoBERTa [26] v 86.3 98.2 99.4 73.2 94.2 97.2
CLIP vis [30] CLIP text [30] v 88.6 98.9 99.6 74.8 94.2 97.1

pre-training process. Compared to the CLIP visual encoder, the features of
the object detector are weaker in the alignment process. However, the sepa-
rately trained text encoder, RoBERTa [26], does not suffer from the unpaired
training dataset. The representations from the CLIP visual encoder and the
RoBERTa text encoder can provide competitive performance in image-to-text
retrieval and better performance in text-to-image retrieval than the original
CLIP. The encoder can be adapted to the retrieval application without fine-
tuning with the paired image and text data.

In contrast, the Convolution Neural Network (CNN)-based object detector
representation cannot be applied directly to rthe image-text retrieval task.
The decrease in performance results from global understanding. The object
detector efeatures are obtained from part of the image, and the representations
lack a global understanding of the image. As dto CLIP visual encoders, the
visual tokens’ pooled output contains the input images’ global information and
has detailed token features for us to process further stage alignments. The
visual example can be found in Section 4.6. If the alignment process misses
the global information in the very beginning, then the alignment process on
detailed information may lead to a misfocused result.

4.5 Ablation Study on Different Stages

Due to the modularized design, we can compare the design from global align-
ment to subgroup alignment in the visual and textual domains. We choose
encoders trained in different modalities to perform the alignment process. We
use the CLIP visual encoder [30] and the RoBERTa [26] text encoder for the
ablation study of stage-wise alignment on Flickr30k dataset [45]. The two
encoders remain frozen in the experiments. The ‘without alignment’ setting
means the direct dot product between the encoded features from two models.
The two embeddings are located in different semantic latent spaces. Hence,
the performance is the lowest compared to the other alignment processes.

With global alignment, the features can provide basic performance in re-
trieval tasks. However, a naive linear projection can not handle complex
interactions between detailed information in the candidate set. Thus, recall
rates increase as we add more stages in grouping, feature selection, and align-
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ment. Feature selection provides statistical criteria for dimension reduction,
preventing the latent dimension from increasing with additional tokens. We
can take the essential features into the next stage and reduce computational
cost simultaneously. Hence, the three-stage alignment can achieve the best
performance with comparable efficiency.

Table 4: Ablation Studies on different stages, where R@k presents the top-k recalls and
#Param denotes the number of trainable parameters. All the experiment is based on
CLIP [30] visual encoder and RoBERTa [26] text encoder with Flickr30k [45] dataset.

Alignment image-to-text text-to-image
R@1 R@5 R@10 R@1 R@5 R@10

Without Alignment 64.5 71.7 84.3 32.7 61.6 80.1
Global 84.8 97.8 99.0 68.3 90.7 91.1

+Image Cluster 85.4 98.0 99.1 70.3 91.5 94.3
+Text Cluster (Final) 86.3 98.2 99.4 73.2 94.2 97.2

4.6 From Detection to Alignment

To better understand the difference between the visual features of transformers
and object detectors, we demonstrate the retrieval processing step by step.

The object detector can detect humans and vehicles, but the features lack
a sensible relationship with each other. In the clustering stage, the clusters
will focus on the specific object in the figure, that is, the bus in Figure 8. In
global alignment, the paired sentence is fifth. However, the correct captions
fall to the seventh when we perform the finer alignment, which clusters on
cars and buses. Although object detectors can provide information fragments,
the grouping process cannot link features. The detector features cannot find
the central concept in the picture, but can be distracted by the surrounding
objects.

The object detector can provide the features with the local information,
yet the patched information is not represented in a structured manner. That
is, we can only obtain the partial contents in the image and lose the global
semantic representation in the clustering process. We rely on the global and
local information relationship to retrieve suitable captions in the proposed
coarse-to-fine clustering process.

On the other hand, the visual transformer can provide more information
about the tokens and integrate the rrepresentations through a global pooling
process. Hence, the token information can be selected in our feature selection
module (Section 3.3) and clustered according to the global features. The
overall architecture can sort the rich representation in a coarse-to-fine manner
and provide a better multi-modal alignment performance.
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Figure 8: Error cases of object detector alignment. The object detector will give all objects
equal weights and try to include all the objects in the captions.

When comparing the alignment process across different features, it be-
comes evident that performance is influenced by the types of features used.
However, the alignment process cannot transform weak visual features into
strong ones. Instead, it aims to bridge the gap caused by differences in modal-
ity. Consequently, performance improves when encoded features have larger
receptive fields. The proposed alignment does not require jointly fine-tuning
the encoders in the limited paired multi-modal data and generalizes the single-
modal encoder with additional alignment matrices.

Table 5: Experiments on Detector Features

Flickr30k (1k testing set)
Vis Feat Text Feat image-to-text text-to-image

Global Feat Detail Feat Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10
CLIP CLIP CLIP 85.3 91.9 93.3 72.1 90.6 92.2

DETR encoder DETR decoder CLIP 18.3 35.1 41.8 19.5 25.3 45.9
ResNet Backbone DETR encoder CLIP 66.7 89.5 93.3 56.7 84.5 90.3
ResNet Backbone DETR decoder CLIP 72.4 91.6 95.1 59.5 85.7 90.5
ResNet Backbone DETR decoder RoBERTa 64.5 84.5 88.4 53.3 83.3 87.3

5 Conclusion and Future Work

Our approach can achieve outstanding performance in both image-to-text and
text-to-image retrieval tasks. Furthermore, our method involves a step-by-
step alignment process that maintains compatibility in the decision-making
procedure. We divide the alignment into global and subdomain matching and
apply a feature selection method to decrease the input feature dimensions. All
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subprocesses can be expressed mathematically and analyzed statistically, pro-
viding transparency compared to black-box output. To ensure computational
efficiency, we froze the visual and text encoders and only trained the align-
ment matrices, which represent only about 3% of the parameters compared
to the original model.

In addition, we conducted experiments on applying our alignment mecha-
nism to individually trained text and image encoders. In the testing dataset,
we found that the pre-trained text encoder can improve the performance of
text-to-image retrieval. Replacement of the text encoder can also lead to
similar performance in image-to-text retrieval.

We are working on developing a purely green learning solution for image
understanding in the foreseeable future. By aiming not only for transparency
but also computational efficiency, we can have a better understanding of the
multi-modal information representation.
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