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ABSTRACT
We investigate hierarchical emotion distribution (ED) for achiev-
ing multi-level quantitative control of emotion rendering in text-
to-speech synthesis (TTS). We introduce a novel multi-step hier-
archical ED prediction module that quantifies emotion variance
at the utterance, word, and phoneme levels. By predicting emo-
tion variance in a multi-step manner, we leverage global emotional
context to refine local emotional variations, thereby capturing the
intrinsic hierarchical structure of speech emotion. Our approach
is validated through its integration into a variance adaptor and
an external module design compatible with various TTS systems.
Both objective and subjective evaluations demonstrate that the
proposed framework significantly enhances emotional expressive-
ness and enables precise control of emotion rendering across mul-
tiple speech granularities.
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1 Introduction

Text-to-speech (TTS) synthesis focuses on generating human-like speech from
text input [38]. Advancements in deep learning have significantly improved
the naturalness and quality of synthesized speech. However, current TTS
systems still struggle with conveying emotional expressiveness and precisely
controlling emotional nuances, limiting their ability to deliver humanlike ex-
pressive speech [41]. To address these limitations, Emotional TTS aims to
bridge this gap by enhancing speech expressiveness, enabling more engaging
and empathetic dialogue systems with emotional intelligence [40].

Emotional TTS faces challenges stemming from the hierarchical structure
of human emotions [22]. Since speech emotion is characterized by distinct
prosodic patterns at the phoneme, word, and utterance levels [41, 22, 9],
these patterns naturally form a hierarchy, as established in previous stud-
ies [6, 35]. The prior literature indicates that modifying only global prosodic
attributes does not capture the full complexity of emotional speech [48, 46,
23, 49]. Additionally, prior work in text-to-speech synthesis and emotional
voice conversion underscores the necessity of multi-level modeling [29, 49, 24].
Consequently, developing a method to model the hierarchical structure of
emotions is essential for generating nuanced speech synthesis. However, ex-
isting text-based emotion representation prediction networks in controllable
models address phoneme-level variations [33, 25], overlooking the benefits of
multi-level emotion modeling.

In this work, we build upon our previous work on a multi-level quantifiable
method for speech emotion control [14] and editing [12] by proposing a multi-
step prediction framework for hierarchical emotion distribution (ED) derived
from textual cues. Our proposed pipeline supports three inference scenarios,
as illustrated in Figure 1: (a) Text-to-Speech (TTS) with Emotion Prediction,
where the hierarchical emotion distribution (ED) is directly predicted from
the input text; (b) TTS with Emotion Control, where the ED is predicted
from the text and can be modified by users; and (c) Emotion Editing, where
the ED is extracted from input audio and manually adjusted by users. In
[14, 12, 13], a hierarchical ED was introduced to enable both global and fine-
grained emotion modification in speech generation. Unlike prior single-step
ED prediction approaches [14], which treat different levels of emotion vari-
ance independently, we propose to explicitly model hierarchical dependencies
by predicting EDs at the utterance, word, and phoneme levels in a multi-
step manner. This structured approach ensures that higher-level emotional
context influences lower-level prosodic details, resulting in a more coherent,
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Figure 1: Inference diagram of the proposed system: (a) TTS with emotion prediction; (b)
TTS with emotion control; and (c) emotion editing. The hierarchical emotion distribution
(ED) can be obtained in three ways: (1) directly predicted from the input text (“Emotion
Prediction”), (2) predicted from the input text with user modifications (“Emotion Control”),
or (3) extracted from the input audio and manually adjusted by users (“Emotion Editing”).

expressive, and controllable emotional rendering. By leveraging multi-step
ED prediction, our method provides fine-grained control, closely mimicking
the way humans modulate speechstarting with an overall tone and refining
intonation and articulation dynamically. This leads to an improved perfor-
mance on both emotion expressiveness and speech naturalness. Furthermore,
to demonstrate its flexibility, we explore two integration strategies for hierar-
chical ED: implementing it as a variance adaptor within FastSpeech2 [14] and
incorporating it as an external module compatible with any text-to-speech
(TTS) model [12]. Through this approach, we bridge the gap between inter-
pretability and fine-grained emotion control. Our contributions are summa-
rized as follows:1

• We introduce a multi-step prediction framework for hierarchical emo-
tion distribution (ED), where the utterance-, word-, and phoneme-level
EDs are derived from textual cues in successive steps. This structured
approach ensures that higher-level emotional context guides low-level
prosodic details, resulting in synthesized emotional speech that is both
natural and expressive;

1Demo: https://shinshoji01.github.io/multi-step-prediction-HED/.

https://shinshoji01.github.io/multi-step-prediction-HED/
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• Leveraging the multi-step prediction of EDs, our method achieves re-
fined control over emotion rendering and closely emulates human speech
modulation. This approach not only enhances global and nuanced emo-
tional expressiveness but also significantly improves performance in con-
trolled emotional voices;

• We explore two integration strategies for hierarchical ED into TTS sys-
tems: (1) embedding it as a variance adaptor within FastSpeech2 and (2)
implementing it as an external module, making it adaptable to various
text-to-speech (TTS) systems.

The rest of this paper is organized as follows: In Section 2, we discuss the
related works. Section 3 describes our proposed methodology. In Section 4,
we summarize experimental setups. In Section 5, we report our experiments
and results. Section 6 concludes our study.

2 Related Works

In this section, we briefly introduce related studies to set the stage for our re-
search and highlight the novelty of our contributions. We begin by discussing
the hierarchical nature of speech emotions, emphasizing the need for multi-
level and multi-step emotion modeling. We then review existing approaches to
emotion rendering control in the TTS literature, identifying key advancements
and gaps that our work addresses.

2.1 Hierarchical Nature of Speech Emotion

Speech emotions manifest hierarchically across three levels: utterance, word,
and phoneme. At the utterance level, previous studies have shown that global
prosodic patterns—such as pitch contour, range, mean, intonation, tempo,
and rhythm—play a crucial role in conveying emotion [34]. At the word level,
lexical cues shape emotional tone [45] and enhance intensity through empha-
sis [10]. Additionally, research suggests that when lexical and prosodic signals
conflict, listeners tend to rely on prosodic cues to interpret emotion [37]. At
the phoneme level, individual prosodic features such as pitch, energy, and du-
ration contribute to emotional expression [20], as supported by multiple stud-
ies [1, 7, 26]. This hierarchical structure highlights the necessity of studying
multi-level and multi-step emotion modeling for effective emotion modeling
and control.

2.2 Control of Speech Emotion

Recent advancements in emotional TTS have significantly enhanced expres-
siveness; however, achieving interpretable emotion control remains a challenge.



Multi-step Prediction and Control of Hierarchical Emotion Distribution 5

Prior studies have primarily focused on refining emotion intensity control
by treating speech emotion as a global feature and manipulating representa-
tions or attributes derived from reference audio. For instance, [30] enables
utterance-level control via a speech mixer that predicts pseudo-labels and
modulates features such as pitch, duration, and energy. [47, 27] further con-
trolled emotion by manipulating speaker-disentangled representations in cross-
speaker scenarios. Recent studies employ relative attributes [31] for intensity
control [53, 55]. Approaches for mixed emotions include manipulating rela-
tive attributes [52], incorporating noise mixing in diffusion models [39], and
leveraging continuous emotional representations [54]. In contrast, EmoSphere-
TTS [2, 3] models emotional complexity via a spherical emotion vector through
Cartesian-spherical transformations, while [15] integrates computational par-
alinguistic text prompts to enhance emotional expressiveness.

To achieve fine-grained emotion control, several studies have explored
segmental-level representations. For example, MsEmoTTS [25] employs a
global emotion label and modifies phoneme-level intensity via relative at-
tributes. EmoQ-TTS [11] quantifies emotion intensity using a distance-based
method, while the study in [44] refines control by examining inter- and intra-
class distances. Additionally, CASEIN [5] leverages a speech emotion recog-
nition module to predict phoneme-level emotion distributions. These multi
or phonemelevel approaches outperform utterancelevel modeling in emotional
speech synthesis [25, 11, 5] Building upon these efforts, our previous work in-
troduced hierarchical emotion distribution (ED)[14, 12], which enables multi-
level emotion control, capturing both global and fine-grained emotional vari-
ations in speech synthesis.

However, existing approaches to hierarchical emotion modeling still face
several limitations. Previous methods [14, 12] rely on single-step prediction
strategies, which treat different levels of emotion variance independently and
fail to capture the contextual dependencies between hierarchical emotion dis-
tributions. Additionally, current techniques often lack a structured mecha-
nism to ensure that higher-level emotions influence lower-level prosodic vari-
ations, leading to inconsistencies in emotion expressiveness. Furthermore, in-
tegration with TTS remains another challenge, as most approaches are either
model-specific or require reference audio, limiting their adaptability across
different TTS architectures. Addressing these gaps, we propose a multi-step
ED prediction framework that models hierarchical ED progressively, ensur-
ing a more interpretable, flexible, and effective approach to speech emotion
rendering and control.
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3 Multi-step Prediction and Hierarchical Control of Emotion Intensity

We propose a novel approach, which supports the rendering of both single
emotions and mixed emotions, that can be seamlessly integrated with various
text-to-speech frameworks. Traditionally, speech databases label emotions at
the utterance level, overlooking nuanced intensity variations within speech.
To address this challenge, we automatically generate fine-grained, quantita-
tive intensity labels, which serve as “soft labels” for speech generation models,
eliminating the need for manual annotation. This method effectively enhances
emotion control, enables mixed-emotion rendering, and can be readily adapted
to speech generation frameworks, including text-to-speech and voice conver-
sion.

3.1 Hierarchical Emotion Distribution (ED) Extractor

Built upon our previous studies [14, 12], the hierarchical emotion distribu-
tion (ED) extraction module integrates OpenSmile feature extractors [8] with
pre-trained ranking functions at each segmental level to quantify emotion
intensities in an utterance, as shown in Figure 2. Grounded in relative at-
tributes [31], our method measures emotion prominence by treating emotion
style as a speech attribute and ranking its presence relative to other emotions,
enabling a structured and interpretable approach to hierarchical emotion quan-
tification.

Specifically, we define the ranking function as:

f(xi) = wTxi + b (1)

where xi, w, and b denote the acoustic features of the i-th sample, weight
vector, and bias, respectively. We optimize these parameters using a sup-
port vector machine objective for binary classification (e.g., Angry vs. Non-
angry) [4] and normalize the outputs to the range [0, 1], with larger values
indicating stronger emotion intensity. This process enables continuous label-
ing of training data and the quantification of emotion intensity in unseen
utterances during run-time.

Figure 2(b) illustrates our hierarchical ED extractor. We begin by seg-
menting the input audio into phoneme, word, and utterance levels using the
Montreal Forced Aligner [28], and extracting an 88-dimensional feature set
for each segment via OpenSMILE [8]. The pre-trained ranking functions then
estimate an ED vector for each segment, where each element represents the in-
tensity of a specific emotion. To ensure hierarchical consistency, we duplicate
the utterance-level ED across all phonemes and replicate the word-level ED
for the corresponding phonemes, as shown in Figure 2(a). These hierarchical
ED vectors are subsequently incorporated into TTS training, which will be
introduced in the next subsection.
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Figure 2: (a) Example of Hierarchical Emotion Distribution (ED) including EDs at levels
of utterance, words, and phonemes; (b) Diagram of Hierarchical ED Extractor.

3.2 Multi-step Modeling of Hierarchical ED for TTS

We propose a multi-step strategy for modeling hierarchical emotion distri-
bution (ED) to enable precise, multi-level control over emotion rendering in
text-to-speech (TTS) synthesis. By progressively predicting ED at the utter-
ance, word, and phoneme levels, our approach ensures that global emotional
context guides local prosodic details. We explore two integration strategies to
incorporate this multi-step hierarchical ED prediction into TTS frameworks.

3.2.1 External Integration

In the external integration approach (“External”), as shown in Figure 3(a), we
enhance a model-agnostic TTS pipeline by integrating a hierarchical ED em-
bedding after text processing. In this paper, we choose FastSpeech2 [33] as our
TTS backbone. A text encoder converts phoneme sequences into linguistic em-
beddings, while a fully connected network transforms the hierarchical ED into
an ED embedding. A variance adaptor then predicts pitch, duration, and en-
ergy, followed by a decoder that reconstructs the Mel-spectrogram using an L1
loss. This design effectively captures emotion intensity and improves prosody.
Since the “External” framework does not inherently predict hierarchical ED,
we incorporate a dedicated multi-step hierarchical ED prediction module. In
this module, EDs are predicted sequentiallystarting from the utterance level,
progressing to the word level, and finally to the phoneme levelwhile keeping
the text encoder frozen as shown in Figure 3(b). This multi-step process allows
a higher-level emotional context to guide finer, local prosodic adjustments.

3.2.2 Variation Adaptor Integration

The variation adaptor integration approach (“VA”) integrates hierarchical ED
modeling directly within the variance adaptor of FastSpeech2 [33]. This con-
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Figure 3: Training and Inference Diagrams of the proposed framework using external in-
tegration (“External”): (a) Overall diagram; (b) Training diagram of hierarchical emotion
distribution (ED) predictor; (c) Emotion editing (inference) diagram (d) Example of emo-
tion editing.

figuration extends the variance adaptor to jointly learn emotion representa-
tions and acoustic features, thereby tightly coupling emotion prediction with
prosody generation. In contrast to the “External” setting, we train the lin-
guistic encoder with a loss function that minimizes hierarchical ED differences.
Specifically, we use a mean squared error (MSE) loss to reduce the discrepancy
between the predicted and ground-truth EDs. Within the VA integration, ED
prediction is also performed in a multi-step manner. The process begins with
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predicting the utterance-level ED to establish the global emotional tone, which
then informs the word-level prediction. Finally, these outputs are combined to
generate phoneme-level ED, enabling fine-grained emotion control, as shown
in Figure 4(b). This hierarchical, multi-step approach ensures that a broader
emotional context effectively influences lower-level prosodic details.

Figure 4: Training and Inference Diagrams of the proposed framework using variance adap-
tor integration (“VA”): (a) Overall diagram; (b) Diagram of sequential hierarchical emotion
distribution (hierarchical ED) variance adaptor; (c) Diagram of variance adaptor; (d) Dia-
gram of parallel hierarchical ED variance adaptor (e) Emotion editing (inference) diagram
(f) Example of emotion editing.

3.3 Run-time Emotion Editing and Control

During run-time, our framework supports two primary tasks: (1) Emotion
Control and (2) Emotion Editing. For emotion control, where only text input
is available, our model predicts a hierarchical emotion distribution that aligns
with the textual content. This allows users to control the emotion intensity
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of individual speech segments, enabling fine-grained and quantifiable emotion
rendering in synthesized speech. For the speech editing task, given an audio
input and its corresponding transcript, our model extracts the hierarchical
emotion distribution from the audio signal, enabling users control over emo-
tion intensity for quantifiable emotion modification. In general, as depicted in
Figure 3(c) and Figure 4(e), users are able to control the emotion rendering
by adjusting the emotion distributions at three distinct levels, regardless of
whether the ED is derived from audio or predicted from text.

4 Experimental Setup

We evaluated our system performance by conducting two experiments: (1)
emotion prediction and (2) emotion editing. For emotion prediction, we train
the TTS model on LibriTTS-R [18], a multi-speaker dataset containing ap-
proximately 580 hours of recordings from 2,306 speakers. Specifically, we
utilized the “train-clean-100” and “train-clean-360” subsets for model train-
ing.

For the speech editing experiment, we used the Emotion Speech Dataset
(ESD) [50, 51], which comprises over 29 hours of emotional speech in five
categories—Neutral, Angry, Happy, Sad, and Surprise—from 20 speakers (10
native English and 10 Mandarin). We exclusively used the English recordings
and the full training split for TTS model training. We also use the ESD
dataset to train the hierarchical ED extractors ranking functions, where we
randomly selected 100 samples per speaker and emotion, resulting in a total
of 5,000 audio samples for hierarchical ED extractor training.

4.1 Model Architecture

We choose FastSpeech2 [33] as our backbone, which comprises a text encoder,
variance adaptor, and decoder. We use a transformer [42]-based encoder
to convert input phoneme sequences into linguistic embeddings. Variance
adaptors predict hierarchical ED, duration, pitch, and energy. We utilize
a transformer-based decoder to synthesize mel-spectrograms from these fea-
tures. Our loss function combines the L1 loss on mel-spectrograms with the
mean squared error for prosodic predictions in the variance adaptor. To ad-
dress multi-speaker scenarios, we integrate speaker embeddings from Resem-
blyzer [43] into the encoder output. We adopt the Adam optimizer [16]. For
TTS training, we use a batch size of 32 and perform 200,000 iterations over
48 hours on a single GPU. For text-based hierarchical ED prediction in “Ex-
ternal”, we conduct 100,000 iterations. The ED embedding layers consist of
fully connected layers with a Tanh activation function. Finally, we employ
HiFiGAN [19] as the vocoder, trained on the ESD and LibriTTS-R datasets.
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4.2 Baselines Comparison

For emotion prediction experiments, we compared the model with our previ-
ous works [14, 12] (“single-step”), which predict EDs from text in a single-
step manner. For example, in the “VA” setting, our proposed model pro-
gressively predicted utterance-, word-, and phoneme-level EDs (Figure 4(b)),
whereas the baseline [14] predicted all segments concurrently (Figure 4(d)).
For emotion editing experiments, we re-implemented MsEmoTTS [25] into
the FastSpeech2 framework as the baseline (“MsEmoTTS”) to ensure a fair
comparison.

4.3 Evaluation Metrics

For objective evaluation, we calculated the Word Error Rate (WER) using
Whisper2 [32] to assess the system’s robustness. To measure emotion sim-
ilarity with the target, we evaluated spectral similarity using Mel-Cepstral
Distortion (MCD) [21], prosody alignment through pitch and energy distor-
tion, and duration deviation using Frame Disturbance (FD) [36].

For subjective evaluation, we conducted three listening experiments with
20 participants, each evaluating 210 synthesized samples. First, we conducted
MUSHRA tests, where participants rated each speech sample on a scale from
0 to 100, with higher scores indicating better quality or greater similarity.
The first test assessed speech naturalness, instructing participants to disre-
gard noise and emotion. The second test evaluated emotion similarity, asking
participants to rate the synthesized audio solely based on its emotional expres-
siveness while ignoring speech quality. Additionally, we conducted best-worst
scaling (BWS) tests [17] to compare word-level emotion controllability be-
tween our model and the baseline. In BWStests, we adjusted the emotion
intensity of three words per utterance to 0.0, 0.5, and 1.0, and evaluators
selected the least and most expressive samples.

5 Experiments and Results

In this section, we present the experimental results for two tasks: (1) Emotion
Prediction and (2) Emotion Editing. For Emotion Prediction, we evaluated
our models based on speech quality and emotional expressiveness, supple-
mented by qualitative analysis. For Emotion Editing, we assessed the control-
lability of emotions, measuring how effectively the model modifies and adjusts
emotion intensity for different speech segmental levels.

2Whisper Large: https://github.com/openai/whisper.

https://github.com/openai/whisper
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5.1 Experiments with Emotion Prediction

We compared synthesized audio samples across seven different conditions, as
detailed in Table 1 and Table 2. These tables organize these conditions into
three key categories: “GT or Pred”, “TTS Model”, and “Pred Mode”:

• GT or Pred: This column specifies whether the hierarchical emotion
distributions (EDs) are obtained from ground-truth data (GT) or pre-
dicted from text.

• TTS Model: This column indicates the TTS model used. VA refers
to the model utilizing the Single-Step hierarchical ED Variance Adaptor
(Figure 4(d)), while VA (Multi-Step) corresponds to the model employ-
ing the Multi-Step hierarchical ED Variance Adaptor (Figure 4(b)).

• Pred Mode: This column describes how the hierarchical ED is pre-
dicted. It is either generated progressively from longer to shorter seg-
ments (“Multi-Step”) or in parallel for all segments at once (“Single-
Step”).

This configuration allows for a structured comparison of how different hier-
archical ED configurations and prediction strategies impact synthesis quality
and emotion expressiveness.

Table 1: Speech Quality Test Results: MUSHRA naturalness scores with 95% confidence
interval and Word Error Rate (WER). The column “GT or Pred” indicates whether we
use ground-truth hierarchical ED (“GT”) or a text-predicted version. In the “TTS Model”
column, “VA” and “VA(Multi-Step)” denote the TTS models employing the Single-Step hi-
erarchical ED Variance Adaptor (Figure 4(d)) and the Multi-Step hierarchical ED Variance
Adaptor (Figure 4(b)), respectively. Finally, the “Pred Mode” column specifies whether we
predict the hierarchical ED sequentially from longer to shorter segments (Multi-Step) or in
parallel for all segments (Single-Step).

Hierarchical ED Speech Quality
GT or Pred TTS Model Pred Mode MUSHRA (↑) WER (↓)

— Ground-Truth Speech Samples — 79.4± 1.9 2.16
GT External - 61.6± 2.2 3.37
GT VA - 57.5± 2.6 3.11
GT VA(Multi-Step) - 62.2± 2.3 2.48

Predicted External Single-Step 50.7± 2.4 3.80
Predicted External Multi-Step 54.0± 2.3 3.25
Predicted VA Single-Step 52.2± 2.6 4.61
Predicted VA(Multi-Step) Multi-Step 53.2± 2.4 2.45
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Table 2: Emotion Expressiveness Test Results with 95% confidence interval: MUSHRA
similarity scores, Mel-Cepstral Distortion (MCD), Pitch/Energy Distortion (Pitch/Energy),
and Frame Disturbance (FD). The column “GT or Pred” indicates whether we use ground-
truth hierarchical ED (“GT”) or a text-predicted version. In the “TTS Model” column,
“VA” and “VA(Multi-Step)” denote the TTS models employing the Single-Step hierarchical
ED Variance Adaptor (Figure 4(d)) and the Multi-Step hierarchical ED Variance Adaptor
(Figure 4(b)), respectively. Finally, the “Pred Mode” column specifies whether we predict
the hierarchical ED progressively from longer to shorter segments (Multi-Step) or in parallel
for all segments (Single-Step).

Hierarchical ED Emotion Expressiveness
GT or Pred TTS Model Pred Mode MUSHRA (↑) MCD (↓) Pitch (↓) Energy (↓) FD (↓)

GT External - 61.9± 2.1 5.88± 0.10 15.6± 1.0 0.363± 0.022 24.8± 3.4

GT VA - 55.8± 2.6 6.48± 0.23 16.1± 1.1 0.386± 0.023 25.5± 3.6

GT VA(Multi-Step) - 61.9± 2.1 5.62± 0.11 15.5± 1.1 0.348± 0.020 22.4± 2.9

Predicted External Single-Step 47.2± 2.3 7.59± 0.14 18.2± 1.1 0.438± 0.027 46.3± 6.5

Predicted External Multi-Step 51.9± 2.2 6.89± 0.12 16.9± 1.2 0.409± 0.024 42.6± 4.7

Predicted VA Single-Step 48.2± 2.5 7.23± 0.20 16.7± 1.0 0.426± 0.025 41.4± 4.7

Predicted VA(Multi-Step) Multi-Step 49.1± 2.2 6.91± 0.12 17.2± 1.1 0.416± 0.025 46.3± 5.1

5.1.1 Speech Quality Evaluation

Table 1 summarizes the results of the MUSHRA and WER tests. With ground-
truth hierarchical ED, the variance adapter with multi-step emotion modeling
(VA (Multi-Step)) consistently outperforms the single-step approach (VA),
achieving higher MUSHRA scores and lower WER. We also observe that, when
using predicted hierarchical ED, the multi-step models significantly improve
both speech naturalness and intelligibility compared to the single-step models.
These findings suggest that aligning the EDs of shorter segments with those
of longer segments is crucial for enhancing overall speech quality.

5.1.2 Emotion Expressiveness Evaluation

We further assess emotion expressiveness by conducting MUSHRA tests on
emotional similarity and computing multiple objective prosody-related met-
rics, including Mel-Cepstral Distortion (MCD), Pitch/Energy Distortion, and
Frame Disturbance (FD). As shown in Table 2, our proposed multi-step hier-
archical ED prediction consistently achieves higher MUSHRA emotional sim-
ilarity scores and lower distortion values across all objective metrics for both
ground-truth and predicted hierarchical EDs. These results highlight the ef-
fectiveness of the multi-step scheme in enhancing emotion expressiveness and
improving alignment with ground-truth emotions. However, we observe that
in the “VA” setting, the multi-step scheme does not outperform the single-step
approach in Pitch and FD. This discrepancy may stem from error accumula-
tion across different levels of ED prediction (utterance, word, and phoneme
levels). Compared to the “External” setting, where the linguistic encoder
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remains independent to emotion prediction, the “VA” setting incorporates
hierarchical emotion distribution difference loss in training. This joint train-
ing may increase the models sensitivity to ED variations in longer segments,
potentially leading to greater fluctuations in prosody-related metrics.

5.1.3 Analysis on Hierarchical ED Prediction

We further analyzed the predicted hierarchical emotion distribution (ED). Ta-
ble 3 presents the mean absolute difference between the predicted and ground-
truth values for each segment. The column “Longer Segments” denotes the
longer segments used to predict shorter segments; “GT” indicates that ground-
truth values were employed. For example, under the “GT” condition, we used
the ground-truth utterance-level ED to predict the word-level ED, whereas un-
der the “Predicted” condition, we utilized the predicted utterance-level ED.

Table 3: Mean Absolute Difference of Hierarchical ED: differences between the predicted and
the ground-truth hierarchical ED values. The column Longer “Longer Segments” denotes
the longer segments used to predict shorter segments; “GT” indicates that ground-truth
values were employed. For example, under the “GT” condition, we used the ground-truth
utterance-level ED to predict the word-level ED, whereas under the “Predicted” condition,
we utilized the predicted utterance-level ED.

Hierarchical ED Condition Hierarchical ED Difference
TTS Model Pred Mode Longer Segments Phonemes Words Utterance Avg.

External Single-Step - 0.1333 0.1283 0.0594 0.1070
External Multi-Step Predicted 0.1345 0.1297 0.0587 0.1077
External Multi-Step GT 0.1214 0.1281 0.0587 0.1028

VA Single-Step - 0.1358 0.1294 0.0599 0.1084
VA(Multi-Step) Multi-Step Predicted 0.1356 0.1298 0.0601 0.1085
VA(Multi-Step) Multi-Step GT 0.1230 0.1272 0.0601 0.1034

Table 3 summarizes our results. We did not observe significant differences
between single-step and multi-step predictions, despite substantial differences
in synthesized audio performances (see Tables 1 and 2). These results suggest
that our prediction modules not only reduce hierarchical ED differences but
also generate emotion representations consistent with the textual emotional
content in the audio domain. More importantly, when comparing “Predicted”
and “GT” in the multi-step mode, we found error accumulation in ED predic-
tion, evidenced by a smaller gap at the word level and an increased gap at the
phoneme level. These findings suggest that our model prioritizes the depen-
dency of EDs across segments over mere ED differences, which explains the
improved speech naturalness (Table 1) and only marginally better emotion
expressiveness (Table 2).

Next, we analyzed the predicted word- and phoneme-level EDs derived
from different utterance-level EDs. Specifically, we systematically varied the
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intensity of a single emotion, setting it to 1.0 while keeping the intensities
of all other emotions at 0.0. We then visualized the resulting ED distribu-
tions as histograms for each segment in Figure 5, where each row represents
the intensified emotion and each column corresponds to a segment. We uti-
lized a TTS model trained on the ESD dataset to highlight the impact of
emotional variations in speech synthesis. From Figure 5, we observe that
both word- and phoneme-level EDs exhibit a positive correlation with their
respective utterance-level ED values, with the correlation being stronger at
the word level. This suggests that emotion propagation is more consistent
across words than phonemes. Additionally, we find that word-level anger and
surprise intensities display a notably stronger inter-correlation compared to
other emotions, indicating that these two emotions may share similar prosodic
and acoustic patterns at the word level. This observation aligns with psycho-
logical studies suggesting that anger and surprise often exhibit overlapping
acoustic characteristics, such as increased pitch and energy.

Figure 5: Histograms of word-level and phoneme-level emotion distributions (EDs) for
various intensified utterance-level EDs. Each row corresponds to an intensified emotion,
and each column corresponds to a segment.

5.2 Experiments with Emotion Editing

Following [12], we evaluated our models’ emotion controllability on the ESD
dataset through subjective evaluations and objective analysis. We first con-
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ducted best-worst scaling (BWS) tests [17] to compare word-level emotion
controllability between our model and the baseline MsEmoTTS [25]. As pre-
sented in Table 4, our model exhibited a stronger tendency than MsEmoTTS
to select the least expressive sample at low intensity and the most expressive
sample at high intensity across all five emotions. This trend was especially
pronounced for Sad and Surprise emotions, where the distinction between
intensity levels was more evident. These results demonstrate our model’s abil-
ity to capture fine-grained variations in emotional intensity, ensuring more
precise and consistent emotion rendering control compared to the baseline
MsEmoTTS.

Table 4: Best-Worst Scaling (BWS) Test Result: The value represents evaluator preferences
(%), with red and blue indicating the heatmap for the least expressive and most expressive
audio, respectively.

Hierarchical ED MsEmoTTS
Ang Hap Sad Sur Ang Hap Sad Sur

0.0 79 63 67 81 42 32 21 33
Least 0.5 0 28 14 14 47 47 54 42

1.0 21 9 19 5 11 21 25 25
0.0 11 18 16 7 11 12 30 18

Most 0.5 16 7 9 7 26 16 23 30
1.0 74 75 75 86 63 72 47 53

We further validated controllability across utterance, word, phoneme, and
word-and-phoneme levels. We incremented emotion intensity from 0.0 to 1.0
and computed prosodic features such as duration and the mean/standard de-
viation of pitch and energy (Figure 6). Because duration values vary between
levels, we standardized them prior to visualization. Prior literature [35] corre-
lates these features with emotion intensity; for example, sadness is associated
with a slower speaking rate and lower pitch and energy values. We ana-
lyzed the ESD dataset [50] to examine these acoustic-emotion relationships.
A red background indicates a negative trend, while blue is a positive trend
with increasing intensity. Our model followed these expected trends, show-
ing a positive correlation between happiness and mean pitch and a negative
correlation between sadness and pitch. Additionally, editing both word and
phoneme-level emotions produced significant prosodic changes, with the stan-
dard deviation of pitch at the utterance level aligning with our expectations.

Figure 7 shows the spectrograms of synthesized audio samples with vary-
ing emotion intensities. We display pitch and energy contours (blue and green
lines, respectively), noting that the y-axis for the energy contours is not rele-
vant. Figures 7(a) and (b) present utterance and wordlevel intensity control.
Each row corresponds to a different emotion, with the first column depicting
acoustic features at an emotion intensity of 0.0, and the second column at 1.0.
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Figure 6: The illustration of prosodic variants with intensity changes. The red background
represents the expected negative trend, the blue indicates the expected positive trend, both
summarized from the ESD dataset.

In (b), the three highlighted areas indicate regions where the intensity has
been modified. For both segments, for anger, we observe more pronounced
energy spikes, at higher intensities. In happiness, pitch and energy patterns
are similar, with higher pitch values at an intensity of 1.0. Sadness prolongs
duration and stabilizes pitch contour as intensity increases. For surprise, we
note a rise in both pitch contours and energy spikes. These results align with
Figure 6 and demonstrate that our model’s ability to manipulate duration
and pitch/energy according to emotion intensity.

6 Conclusion

We present a multi-step prediction framework for hierarchical emotion dis-
tribution (ED), enabling multi-level control of emotion rendering in speech
synthesis. By modeling ED at the utterance, word, and phoneme levels pro-
gressively, our approach ensures that higher-level emotional context influences
lower-level prosody, resulting in more natural and expressive speech. We inte-
grate ED into TTS systems through two strategies: embedding it within the
variance adaptor of FastSpeech2 and incorporating it as an external module
for other non-autoregressive TTS models, making our method flexible and
widely applicable. At runtime, users can quantitatively control emotion inten-
sity, enhancing the interpretability and adaptability of emotional speech syn-
thesis. Objective and subjective evaluations demonstrate that our approach
significantly improves speech quality, expressiveness, and controllability. In
future work, we will extend our proposed method to additional languages,
varied voice qualities, and more diverse emotional datasets, further explor-
ing cross-lingual robustness and broadening the applicability of multi-level
emotion intensity prediction.
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Figure 7: Spectrograms of synthesized audio samples across different emotion intensities
with pitch (blue) and energy (green) contours: the y-axis for energy contours are not rel-
evant. (a) Utterance-level Emotion Intensity Control (b) Word-level Emotion Intensity
Control.
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