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ABSTRACT
Fake speech detection is essential to defend speech spoofing at-
tacks of imitation through Artificial Intelligence Generated Con-
tent (AIGC) technologies including text-to-speech synthesis (TTS)
and voice conversion (VC). Existing solutions are classification-
based and rely on large data, showing limitations in solving both
data diversity and result explainabilty problems. To resolve these
limitations, we design a Brain-inspired Multi-Detector Machine
(BiMDM), which is inspired by the brain’s perception and decision-
making mechanisms. Our method proposes to use multiple detec-
tors to capture various aspects of fake speech characteristics. To
ensure the final detection precision, each detector is trained with
the aim of Maximum Detection Precision (MDP) for a specific
forgery clue, unlike previous classifiers optimized for Minimum
Classification Error (MCE). And a sufficient number of detectors
are necessary to reduce the total detection miss rate. This mecha-
nism assigns meaningful roles to each individual detector as well as
ensures the detection performance. Then the detectors’ results are
integrated through an overall explainable decision-making module,
including OR logic calculus and decision trees, to produce result
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with explainability of the entire detection process. Our experi-
mental results demonstrate the effectiveness of our multi-detector
machine and reveal the potential of our proposed novel perspective
for fake speech detection task.

Keywords: Fake speech detection, multiple detectors, decision trees, OR logic

1 Introduction

Fake speech detection is to defend fake speech spoofing attacks from Artificial
Intelligence Generated Content (AIGC) technologies including text-to-speech
synthesis (TTS) [3, 16] and voice conversion (VC) [9, 19]. As these technolo-
gies continue to improve, fake speech has become increasingly accessible and
closer to genuine human speech, posing significant security risks for voice au-
thentication systems, audio recording evidence authentication and telephone
communication. Therefore, the importance of fake speech detection is grow-
ing. Currently, the types of fake speech generation algorithms are diverse,
which requires the fake speech detection methods to handle data with di-
versity. Additionally, the reliability of AI-based detection is also crucial in
practical security applications, which requires fake speech detection methods
to be able to provide explanations for their results.

Existing methods treat the fake speech detection problem as a classifi-
cation task, typically a binary classification problem to distinguish between
fake and genuine speech. These approaches employ classifiers [8, 10, 30] opti-
mized for Minimum Classification Error (MCE), which calculate a confidence
score indicating the likelihood of the input data belonging to a specific class.
Such classification-based methods need to consider the characteristics of both
classes and rely on large data for training, and when there is data diversity
within one class (e.g., the fake speech class), it becomes more difficult to
capture the distinctions between the two classes as well as the commonali-
ties within the same class. Additionally, the results of classifiers are derived
from balancing the two classes, and this balancing process is opaque and fails
to provide explanations aligning with human reasoning and decision-making
logic. Therefore, the existing methods still show limitations in solving both
data diversity and result explainabilty problems.

To resolve these limitations and problems, this paper proposes a novel ap-
proach that constructs global detection information from multiple individual
detection clues, moving away from the traditional classification perspective.
We design a Brain-inspired Multi-Detector Machine (BiMDM), which is in-
spired by the brains perception and decision-making mechanisms. In the
BiMDM, each detector is independent of each other. And each is assigned to
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detect whether a specific forgery clue is shown in the speech audio, with 100%
confidence, which is designed with the goal of Maximum Detection Precision
(MDP). It is implemented by setting threshold for the computation results and
adding precison penalty in the training process. The output of a detector is a
binarized value of bool type, where true value indicates that the forgery clue
has been detected, and false value indicates that it has not been detected. And
a sufficient number of detectors are necessary to reduce the total detection
miss rate, which ensures the detection performance. The detectors’ results are
then integrated through an overall explainable decision-making module with
decision trees concatenated with OR logic calculus, which maintains fault tol-
erance to detection errors of detectors. Such decision-making module is similar
to human reasoning in decision-making process and can provide explanations
for the final detection result.

This paper evaluates the performance on ASVspoof2019 Logical Access
(LA) dataset and ASVspoof2021 LA dataset. We analyze the overall detection
performance as well as the breakdown performance according to different fake
speech generation algorithms and signal distortion conditions, comparing with
the two state-of-the-art methods mentioned on the dataset’s official website.
Furthermore, we also trace back to the detectors’ results, with which the
final detection result obtains explanations. The experiments demonstrate that
our method is capable of handling various fake speech types and providing
explanations, which reveals the potential of our proposed novel perspective
for fake speech detection task.

The rest of the paper is organized as follows. We reviewed related work in
Section 2. BiMDM design details are described in Section 3. Our experimental
details and the evaluation results are reported in Section 4. The conclusion
of our work is in Section 5.

2 Related Work

Previous methods have primarily focused on developing feature extraction
techniques as well as classifier models to improve the detection performance.
The features are extracted from spectral-based information [11, 24], phase-
based information [25, 37] or learned through deep learning methods [20, 36,
38, 39]. As for classifier model design, there are traditional machine learn-
ing models [26, 27], Convolutional Neural Network (CNN) models [36], Deep
Residual Network (ResNet) models [15], Graph Attention Network (GAT)
models [28] and end-to-end models [7, 30, 33] that directly operate on audio
sampling points.

To further handle various fake speech data in fake speech detection task,
researchers explore to fuse multiple aspects of information. The multiple
aspects of information can be obtained by extracting different features or em-
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ploying different models to capture various aspects of the data. Pal et al.
[21] proposes to use three kinds of features, including prosody information,
spectral-based features and phase-based features to construct three different
classifiers, and then perform a weighted sum of the scores from the three
classifiers. Kumar et al. [14] propose to input prosody information into four
types of classifiers and then obtain the final results by averaging the output
scores from the four classifiers. Fan et al. [4] propose to use different informa-
tion of complex spectral features, including Log Power Spectrogram (LPS),
real and imaginary spectrograms to build different DNN-based classifiers and
using a weighted sum of scores to obtain the final resutls. Tak et al. [29]
extracts different sub-band information for sub-band classifiers and then in-
tegrates them through non-linear computation. There are also approaches of
multi-path models [5, 35] to learn several models on different speech data and
then integrate the models. But in one word, the existing information fusion
approaches are based on classifier models from the classification perspective,
which focuses on fusion of score from the classifiers.

3 Brain-inspired Multi-Detector Machine Design

The process through which the human brain makes decisions based on exter-
nal information is a complex, layered mechanism that begins with perception.
This perception relies on multiple specialized sensory receptors [22], each spe-
cialized to detect a specific type of environmental stimuli. These receptors
process information to a binarized form with the state of activation or inac-
tivation. If the stimuli match the detection pattern, specific neural pathways
are activated to further process and respond to the information. In contrast,
when the stimuli do not meet the required criteria, the neural pathways re-
main inactive. Additionally, each receptor is assigned specific meaning and
function within the brain’s processing system, which allows for distinct recog-
nition of environmental cues. The brain then integrates the sensory inputs
from various receptors into a unified global representation of the environment.
This integrated perception serves as the foundation for further logical reason-
ing and ultimately guides decision-making processes, ensuring that actions
are based on a comprehensive understanding of the surroundings.

Inspired by the multi-clue perception and decision-making mechanism, we
propose BiMDM for fake speech detection task where the fake speech audios
are diverse and possess many aspects of forgery clues [6, 13, 27]. Our pro-
posed BiMDM is structured in two key stages: the artifact detection stage
and decision making stage, as shown in Figure 1. The two stages are trained
independently. The first stage processes the speech audio input through mul-
tiple detectors, each specialized to identify different forgery clues related to
four specific artifact aspects. These detectors function similarly to sensory re-
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Figure 1: The overview of our proposed Brain-inspired Multi-Detector Machine (BiMDM).

ceptors in the human brain, where each detector outputs a binarized value for
its state of activation or inactivation and the forgery clue pattern is matched
with maximized precision. The aim of detectors is different from the MCE
aim of classifiers in previous methods. The second stage solely relies on the
outputs from the first stage, combining these detection results to generate
the final task result. Unlike previous model-fusion methods that focus on
score-level fusion with weighted sum of scores from the classifiers’ results, our
BiMDM works with binarized outputs of detectors. And its decision-making
structure with decision trees mimics the logical inference of the human brain.

This method can be formulated in the form of mathematical set, as in
Figure 2. We define S to be the universal set containing all the targets (the
entire dataset of fake speech). There are n detectors with D1, D2, ..., Dn.
In theory, each detector Di detects a subset Si ⊆ S perfectly with 100%
precision and no non-targets (i.e. genuine speech) will be detected. So the
non-targets will never be detected and can be disregarded in the detection set.
Our task goal is simplified to covering the entire set S using the union of the
sets detected by all n detectors. In other words, every element in S should
be detected by at least one of the detectors. The coverage formulation can
be presented by S ⊆

∪n
i=1 Si, where S1, S2, ..., Sn are the subsets of S that

each detector D1, D2, ..., Dn detects respectively. To cover the entire set S,
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Figure 2: Fake speech detection problem in the form of mathematical set. In BiMDM, the
detectors with maximum precision check out only fake speech data, so we consider only
fake speech data set. Here, the relationship of subset Sa and Sb is Sa ∩ Sb ̸= ∅, while the
relationship of subset Sa and Sc is Sa ∩ Sc = ∅.

we require that every element of S is in at least one of these subsets, which is
guaranteed if S is a subset of the union of all Si. Additionally, the subset of S
is independent of each other. These subsets may either intersect or be disjoint,
meaning that there is no restriction on whether their pairwise intersections are
non-empty or empty. The independence refers to the lack of any dependency
or specific relationship between the subset Si and Sj , where i ̸= j, regardless
of whether they share common elements. That is, Si ∩ Sj = ∅ or Si ∩ Sj ̸=
∅(i ̸= j) both meet the conditions of detection. In the meanwhile, for subset
Si detected by the detector Di, its uncovering subset is not considered for the
detector Di.

3.1 Artifact Detection Stage

This stage composes of multiple detectors that focus on a specific forgery clue
and handles a portion of fake speech detection information with detection
precision of 100% in probability.

A detector comprises a computing model that calculates information pat-
terns and a threshold θopt that can result in the highest detection precision.
By comparing the score of the detection computing model with threshold θopt,
the output of a detector is obtained and is in the form of binarized bool value,
indicating whether the forgery clue is present or not. If the score exceeds the
threshold, the response is true; otherwise, it is false. The detector output
D(x) on sample x with computing score ŷ can be formulated as

D(x) =

{
True, if ŷ > θopt

False, if ŷ ≤ θopt
(1)



A Brain-inspired Multi-Detector Machine for Fake Speech Detection 7

Threshold Search

The threshold θopt is determined through a process called ThresholdSearch,
which can be formalized as follows:

θopt = argmax
θ

Precision(θ) subject to θ ∈ [θmin, θmax]. (2)

where

• Precision(θ) is the detection precision of the detector when the thresh-
old Th is applied on the current dataset (i.e. training or development
dataset).

• θmin and θmax represent the minimum and maximum possible threshold
values.

Training for Maximum Precision

The detectors in the BiMDM are designed with the aim of MDP, that is, the
detection precision of 100% in probability. It needs to pay more attention
to attributes of the target samples (i.e. fake speech samples) in the training
process. And as the output of detector is a binarized value that relies on the
fixed decision threshold obtained through Threshold Search on the training or
development dataset, we design a detection precision penalty term in addition
to the traditional binary cross-entropy loss (LBCE) which is typically for MCE
aim for two classes of samples and without the need of decision threshold. The
detection precision penalty term is defined as

Ppenalty = y ·ReLU(θTrain
ptrain

− ŷ), (3)

where

• y is the label of the sample (the fake speech set to 1 and the genuine to
0) and ŷ is the model’s computing score.

• θTrain
ptrain

is the threshold obtaining Precision of ptrain calculated on the
training dataset through ThresholdSearch. Here ptrain is set to very
close to 100% for approaching the maximum precision aim.

• ReLU is Rectified Linear Unit which is an activation function in neu-
ral networks that outputs the input directly if it is positive, and zero
otherwise.

Such penalty term makes an extra penalization on the false prediction of target
samples (those with fake speech label of 1) under the condition of searched
threshold θTrain

ptrain
. If the computing score for fake speech samples is lower
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than the threshold, the penalty increases as the score deviates further below
the threshold. This term enhances attention to the target samples. And by
considering the decision threshold for the binarized output in the training, the
detection with the fixed decision threshold becomes more robust.

Then, the training loss function is

L = LBCE + λPpenalty, (4)

where λ is the penalty term parameter that controls the strength of the detec-
tion precision penalty and is set to a value greater than zero to produce the
desired effect.

Detectors for Fake Speech Artifacts

In BiMDM, the detectors are independently with each other. Each detector
can be configured with different inputs or computational structures, depend-
ing on the specific forgery clue that it is designed to capture. This flexibility
allows the detectors to be tailored for detecting various types of clues. Since
different fake speech generation algorithms introduce different forgery clues,
we follow the multi-path strategy [35, 5] to learn several individual detectors
respectively on fake speech of different generation algorithms.

Here, we consider artifacts from four kinds of domain, including spec-
trogram, frequency-time, phoneme, and time aspects, and applying different
computing model structures to capture them.

• Detector for spectrogram domain artifact (SA). Forgery clues of
fake speech can be observed in the spectrogram, including overly smooth
spectral patterns, where high-frequency details are often lacking, making
the speech sound muffled or unnatural. There may also be spectral gaps
or attenuation in different sub-band frequency ranges, affecting clarity
and sharpness. Additionally, the frequency bands may appear overly
focused or concentrated in specific ranges, especially during phoneme
transitions, unlike the broader distribution seen in genuine speech. We
extract log-linear filter bank (LLFB) features and a pre-trained ResNet-
18 [11] to represent the spectrogram information. The computing model
is two linear layers with a ReLU activation layer. This structure detail
is shown in Figure 3a.

• Detector for frequency-time domain artifact (FA). Forgery clues
of fake speech related to both the frequency and time domains include
mismatches or misalignments between the spectral and time components.
In genuine speech, the frequency components dynamically change in
sync with physiological pronunciation process. But in fake speech, cer-
tain frequency components may not synchrize with the time, appearing
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Figure 3: Detail structures of computation models for (a) spectrogram domain artifact,
(b) frequency-time domain artifact, (c) phoneme domain artifact. Here, the value of each
detector’s θopt is different.

at the wrong time or failing to appear when expected. We apply 2-
Dimensional Discrete Cosine Transform (2dDCT) which first performs
DCT in the time domain to extract the temporal characteristics of the
speech signal, and then another DCT in the frequency domain to com-
press the frequency redundancy within each column and extract features
related to the formant group. The computing model is CNN-based [6]
with detail in Figure 3b.

• Detector for phoneme domain artifact (PA). As forgery clues can
be found in phoneme pronunciation, which are the smallest meaning-
ful units of sound in speech. The clues include lack of subtle variation
that occurs in natural speech due to the complex coordination of the
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tongue, teeth, throat, airflow, and vocal cords. Fake speech often ex-
hibits a mechanical quality, especially in phonemes that require precise
oral adjustments or changes in airflow. This can lead to distorted or
blurry pronunciation, especially for certain consonants or vowels, which
may sound unnatural or imprecise. So we utilize XLS-R (Cross-Lingual
Speech Representation) [1], a powerful pre-trained model designed for ro-
bust speech recognition across multiple languages to generate representa-
tion of phoneme pronunciation. The computation model is CNN-based
with Multi-head Attention mechanism, the detail structure is shown in
Figure 3c.

• Detector for time domain artifact (WA). Forgery clues in fake
speech can be detected through irregularities in the distribution and
smoothness of the signal sampling points across time. Unlike genuine
speech, which maintains continuous with densely packed and smooth
sampling points reflecting natural vocal fluctuations, fake speech often
exhibits noticeable discretization and abrupt changes due to limitations
in generation algorithms, especially those based on neural network. We
utilize RawNet2 [30] model with SincNet [23] with 1024-sample filter
length as the computing model operating directly on raw audio data.

3.2 Decision Making Stage

To integrate the outputs from each detector, we employ a sequential structure
that mimics the process of human reasoning.

One strategy is to apply OR logic calculus to the detectors’ outputs of
binarized bool value, which represents the simplest simulation of the inference
process. In this method, if any forgery clue is detected, the inference decision
is made that the speech is fake.

Another strategy is to first categorize the detectors’ outputs according to
the types of artifact. That is, the detectors capturing the same artifact de-
tection trained with multi-path strategy belong to the same category. Within
the artifact category, the detectors’ outputs are organized in a decision tree,
which ensures that the decision-making process aligns with logical reasoning
and enhances explainability. As we employ four types of artifacts, there are
four decision trees in the decision-making process. The decision trees are
finally connected by OR logic calculus.
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4 Experiments

4.1 Dataset

The experiments were conducted on two publicly available datasets: the
ASVspoof2019 Logical Access (LA) dataset [34] and the ASVspoof2021 LA
dataset [18], which are both specifically designed for the speaker verification
spoofing caused by fake speech from TTS and VC techniques.

The ASVspoof 2019 LA dataset (19LA) includes clean speech data with
genuine speech from Voice Cloning Toolkit (VCTK) corpus [32] and nineteen
types of fake speech from TTS and VC techniques. It is divided into three
mutually exclusive subsets: the training set, which is used for model train-
ing; the development set, for hyperparameter tuning; and the evaluation set,
which serves for model validation. The spoofed speech in the training and
development sets is generated by six different generation algorithms (labeled
A01 to A06), while the evaluation set contains spoofed speech from the other
thirteen algorithms (labeled A07 to A19).

In contrast, the ASVspoof 2021 LA dataset (21LA) introduces additional
complexity by simulating more realistic conditions, such as signal encoding
and transmission distortions typically encountered in real-world communica-
tion environments. While the 19LA dataset contains clean speech data under
controlled conditions (without noise, reverberation, or channel distortions),
the 21LA dataset considers the effects of communication transmission and
encoding. Specifically, the 21LA dataset builds upon the 19LA dataset by
applying six types of distortions (labeled C2 to C7) to part of the data in the
evaluation set, which include distortions from Voice over Internet Protocol
(VoIP) and Public Switched Telephone Network (PSTN) environments. The
original clean speech data from 19LA is retained in 21LA and is labeled as C1
condition.

In our experiments, the models were trained on the 19LA training set,
with the 19LA development set used for threshold tuning. The evaluation
was conducted on both 19LA and 21LA evaluation sets.

4.2 Experimental Settings

During the training of the detectors, we employed the Adam optimizer with
a base learning rate of 10−4, coupled with cosine annealing for learning rate
decay. The batch size was set to 200, and the model was trained for 10 epochs.
In the case of our training set including six generation algorithms, a total of
24 detectors were trained in the experiments. For the MDP training process
of the detector, θTrain

ptrain
was initialized to 0.5, and ptrain to compute threshold

was set to 99%. The decision trees were implemented using the SKLearn
library, with Gini impurity serving as the criterion for splitting nodes.
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We compared our BiMDM with four competing systems including AASIST
[12], SSL [31], RawFormer-SE [17] and RawBMamba [2]. For AASIST and
RawBMamba, the results were obtained with the best pre-trained model that
their author provided. And for SSL and RawFormer-SE, we trained the model
from scratch under the settings mentioned above without fine-tuning for the
pre-trained model and data augmentation.

As our method produces a binary decision for fake speech detection, the
performance is measured with standard information retrieval metrics, includ-
ing Precision, Recall, F1Score and Accuracy, higher values of which indicate
better performance. The detection results of baselines are obtained with the
score thresholds that achieves the best Accuracy.

4.3 Results and Analysis

4.3.1 Final Detection Performance

The final detection performance comparison is conducted from two perspec-
tives including overall detection performance and breakdown detection perfor-
mance across different subset. The overall detection performance is calculated
across the entire speech dataset. Breakdown detection performance, in the
19LA evaluation set, is calculated separately across the thirteen kinds of fake
speech generated by different algorithms. In the 21LA evaluation set, it is
calculated separately across the seven kinds of signal distortion conditions.

The overall detection performance is presented in Table 1. The evaluation
metrics include F1Score and Accuracy(%), both of which are crucial for as-
sessing detection performance. On both 19LA and 21LA datasets, our method
outperforms the four competing baseline systems. On the 19LA dataset, we
achieves an F1Score of 0.9974, which is a notable improvement over AASIST’s
0.9884 and SSL’s 0.9662. Additionally, our method achieves an accuracy(%)
of 99.54, surpassing AASIST (97.95), SSL (94.14), RawFormer-SE(98.80) and
RawBMamba(99.13). On the 21LA dataset, the performance gap between our
method and the four baseline systems is even larger. Our method achieves
an F1Score of 0.9827, 0.0192 higher than AASIST, 0.0369 higher than SSL,
0.0036 higher than RawFormer-SE and 0.0041 higher than RawBMamba. And
the Accuracy(%) of our method is 96.84, 1.09 higher than AASIST and 3.07
higher than SSL, 0.66 higher than RawFormer-SE and 0.76 higher than RawB-
Mamba. These results shows the effectiveness of our new methods in solving
fake speech detection problems.

Regarding the breakdown detection performance, Figure 4 shows the re-
sults in terms of Recall on LA19 evaluation set across the thirteen kinds of fake
speech from A07-A19 algorithms. Here, since the prediction for genuine speech
remains consistent across different subset performance, we concentrated solely
on the value in terms of Recall to assess how well the fake speech from dif-
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Table 1: Overall detection performance comparison on 19LA and 21LA evaluation set.

19LA 21LA
Method F1Score Accuracy(%) F1Score Accuracy(%)
AASIST [12] 0.9884 97.95 0.9635 95.75
SSL [31] 0.9662 94.14 0.9458 93.77
RawFormer-SE [17] 0.9933 98.80 0.9791 96.18
RawBMamba [2] 0.9952 99.13 0.9786 96.08
Our BiMDM 0.9974 99.54 0.9827 96.84
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Figure 4: Breakdown detection performance in terms of Recall across fake speech from 13
algorithms (A07-A19) on LA19 evaluation set.

ferent generation algorithms can be detected. Compared with the baseline
system AASIST, SSLAug and RawFormer-SE, our BiMDM achieves higher
Recall values, nearing or reaching 1.0 for fake speech generated by 12 out
of 13 spoofing algorithms, with the exception of A18. The decrease in per-
formance for A18 can be attributed to missed forgery clues, suggesting that
further improvements could be made by developing new detectors specifically
designed to capture these clues. And the performance of our method is also
comparable with RawBMamba, which shows more performance degradation
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for A18. In addition, across the 17 subsets, our method obtains more stable
performance, which highlights that our method is capable of handling various
fake speech type.

The breakdown detection performance on 21LA evaluation set across seven
kinds of distortion conditions (C1-C7) is shown in Table 2. Here, the genuine
and fake speech are with the same signal distortion in each condition, and we
focus on the detection Accuracy(%) to evaluate the model’s robustness across
different distortion conditions. Although our BiMDM obtains the lowest Ac-
curacy(%) value with 94.16 under C7 condition, the performance in terms of
Accuracy(%) exceeds 95.00 under the other conditions. But for the four base-
line systems, the Accuracy(%) value less than 95.00 occurs under more than
one condition. And compared with the four baseline systems, our BiMDM
achieves less performance gap between the original clean speech condition
(C1) and the distortion conditions (C2-C7). These results indicate that our
BiMDM has superior generalization ability across a variety of signal distortion
scenarios.

Table 2: Breakdown detection performance in terms of Accuracy(%) across seven conditions
(C1-C7) on 21LA evaluation set.

Method C1 C2 C3 C4 C5 C6 C7
AASIST [12] 97.04 94.89 94.77 95.88 95.75 96.51 93.69
SSL [31] 95.08 92.90 91.93 93.92 93.62 94.29 92.05
RawFormer-SE [17] 98.10 92.80 94.88 96.97 97.52 95.11 92.58
RawBMamba [2] 98.10 96.99 92.19 98.08 97.07 92.82 97.33
Our BiMDM 98.13 97.81 95.42 97.91 97.79 96.62 94.16

4.3.2 Detectors’ Output of BiMDM

For the explanation of the detection results, we trace back to the detectors’
outputs. If a detector outputs the value of True, it is viewed as activated
and the corresponding clue appears in the detection process. Here, for the
13 types of fake speech data in 19LA evaluation set, we count the total times
that each of the 24 detectors is activated during the detection process based
on different types. The results are shown in Figure 5. For each type of
fake speech, several detectors are activated significantly more frequently than
others. For fake speech from A07 algorithm, the detectors of SA_4, PA_4 and
WA_1 are most frequently activated. For fake speech from A10 algorithm,
the detectors of WA_1, and WA_4 are most frequently activated. While for
fake speech from A17, A18 and A19 algorithm, the detectors of PA_6 are
most frequently activated. This aligns with our common sense that different
types of fake speech may contain different forgery clues. And by analyzing
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Figure 5: The total times that each of the 24 detectors (SA_1 to SA_6, FA_1 to FA_6,
PA_1 to PA_6 and WA_1 to WA_6) is activated during the detection process, according
to the 13 types (A07-A19) of fake speech data in the 19LA evaluation set.

which detectors are activated during the detection process, the detection result
obtains an explanation of which forgery clue information has been found,
leading to this outcome. For example, we trace back the detectors’ results for
detecting the audio in the name of LA_E_5246322, which is fake speech and
generated through algorithm A07. It is detected as fake speech in the final
result. The detectors of SA_4 and PA_4 is activated while the others are
not activated. Then the explanation of detection result with fake speech class
for this audio file is that the clues of SA_4 and PA_4 are discovered, which
exhibit characteristics similar to those of fake speech generated by the A04
algorithm in both the spectrogram and phoneme domains, and such discovery
is assumed to be valid according to the decision tree “if-else” reasoning.

In addition, in the Figure 5, we found some detectors like FA_2, WA_5
and WA_6 were least frequently activated. This situation does not indicate
that these detectors are useless and can be discarded. Since the results are
obtained on the 19LA evaluation set which does not include all the fake speech
in the world, the above mentioned detectors can also be retained for further
use.

4.3.3 Ablation Study

To assess the impact of the detection precision penalty term, we conduct
the ablation study with different λ values of penalty term. Here, the case
that λ = 0 means that no detection precision penalty is added. Table 3



16 Feng et al.

Table 3: Overall detection performance on 19LA and 21LA evaluation sets with different
penalty term λ. The case of λ = 0 means no detection precision penalty.

19LA 21LA
λ Precision Recall F1Score Accuracy Precision Recall F1Score Accuracy
0 0.9994 0.9910 0.9952 0.9914 0.9700 0.9950 0.9823 0.9678
1 0.9994 0.9937 0.9964 0.9936 0.9686 0.9966 0.9824 0.9680
2 0.9994 0.9943 0.9968 0.9943 0.9686 0.9970 0.9827 0.9684

Table 4: Detection performance on 19LA and 21LA evaluation sets with different decision
making strategies. The case of λ = 0 means no detection precision penalty.

19LA 21LA
Decision Type Precision Recall F1Score Accuracy Precision Recall F1Score Accuracy

OR 0.9990 0.9945 0.9967 0.9942 0.9481 0.9995 0.9732 0.9504
w/ decision trees 0.9994 0.9943 0.9968 0.9943 0.9686 0.9970 0.9827 0.9684

presents the overall detection performance on the 19LA and 21LA evaluation
sets. On the 19LA dataset, we observe an improvement of overall detection
performance in terms of F1Score and Accuracy with the increasing λ from 0
to 2. F1Score increases from 0.9952 to 0.9968 and Accuracy from 0.9914 to
0.9943. But on the 21LA dataset, such increase is minor with F1Score from
0.9823 to 0.9827 and Accuracy from 0.9678 to 0.9684. As there are seven
distortion conditions on the audios in the 21LA evaluation set, we also make
a breakdown detection performance comparison across these conditions. The
detail performance comparison in terms of Precision and Accuracy is shown in
Figure 6. In most conditions, the performance with and without the penalty
term is close and remains comparable to the original condition, except for C3
and C7. There are performance degradations under the two conditions, which
can be attributed to the increased degree of distortion. Even so, the method
with the detection penalty term (i.e. λ = 1 and λ = 2) shows less degradation
than that without the penalty term (i.e. λ = 0). This demonstrates that
the extra detection penalty term can enhance the detection robustness for
different audio transformation distortions.

For decision-making process, we compare the strategies of only OR logic
calculus and decision trees with OR logic. As the results shown in Table 4,
for 19LA dataset, the difference between the two decision-making strategies is
minimal. But for 21LA dataset, the strategy of decision trees shows clear im-
provements with F1Score (0.9732 to 0.9827) and Accuracy (0.9504 to 0.9684).
A simple OR logic to combine all detector outputs will cause an accumulation
of errors when the detectors make mistakes, where the mistakes on 19LA data
are not obvious, but they are more on 21LA data with signal distortion. On
21LA dataset, the strategy of decision trees achieves an improvement of 0.0205
in terms of Precision value, which demonstrates its ability of error tolerance
to detectors.
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Figure 6: For different penalty term λ, the breakdown detection performance in terms of
(a) Recall and (b) Accuracy, across seven distortion conditions (C1-C7) on 21LA evaluation
set.

5 Conclusion

This paper proposed a Brain-inspired Multi-Detector Machine (BiMDM) for
fake speech detection task. It contains multiple independent detectors, each
specialized in detecting specific forgery clues with the aim of Maximum Detec-
tion Precision (MDP), moving beyond the traditional classification perspec-
tive. Then the detectors’ binarazed results of bool type are integrated by
the decision-making module built upon Decision Trees and OR logic calculus.
Our experimental results showed the superior detection performance of our
BiMDM, comparing with the baselines. And the breakdown detector perfor-
mance according to different subsets demonstrates that our method is robust
across various fake speech types as well as speech signal distortion conditions.
Additionally, we traced the detection process back to the individual detec-
tor outputs, highlighting the potential for providing explanations of the final
detection result.

Overall, the proposed method offers a novel perspective on fake speech de-
tection by constructing global detection information from multiple individual
fake speech forgery clues. And the decision-making module of our BiMDM is
a sequential structure to integrate detector outputs, enabling the potential for
sequential learning of new knowledge. Our future work will focus on explor-
ing BiMDMs adaptability to new knowledge, in order to face the continuous
advancement of fake speech generation techniques and new attack types.
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