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ABSTRACT

Semantic segmentation is a vital task in the field of remote sensing
(RS). However, conventional convolutional neural network (CNN)
and transformer-based models face limitations in capturing long-
range dependencies or are often computationally intensive. Re-
cently, an advanced state space model (SSM), namely Mamba,
was introduced, offering linear computational complexity while ef-
fectively establishing long-distance dependencies. Despite their ad-
vantages, Mamba-based methods encounter challenges in preserv-
ing local semantic information. To cope with these challenges, this
paper proposes a novel network called Pyramid Pooling Mamba
(PPMamba), which integrates CNN and Mamba for RS seman-
tic segmentation tasks. The core structure of PPMamba, the
Pyramid Pooling-State Space Model (PP-SSM) block, combines
a local auxiliary mechanism with an omnidirectional state space
model (OSS) that selectively scans feature maps from eight di-
rections, capturing comprehensive feature information. Addition-
ally, the auxiliary mechanism includes pyramid-shaped convolu-
tional branches designed to extract features at multiple scales.
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Extensive experiments on three widely-used datasets, ISPRS Vai-
hingen, LoveDA Urban and WHU Buildings, demonstrate that
PPMamba achieves competitive performance compared to state-
of-the-art models. The source code will be made available at
https://github.com/KyotoSakura/PPMamba/.
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1 Introduction

The rapid development of remote sensing (RS) technologies has dramatically
transformed our understanding of time and space scales on the Earth. RS
technologies are extensively applied in agriculture [40], forestry [18], geology
[1] and environmental protection [42], enabling systematic analyses, assess-
ments, and predictions. Among these applications, semantic segmentation,
which assigns class labels to each pixel in an image, serves as a foundation
for many downstream geoscientific tasks, such as land cover classification and
urban expansion monitoring [7, 23].

In recent years, deep learning has significantly advanced the performance
of semantic segmentation in RS, primarily due to its ability to extract ab-
stract and hierarchically structured features from RS images [47]. Convolu-
tional neural network (CNN) and transformer are the most commonly used
techniques in state-of-the-art deep learning models. CNN-based models [13,
20, 41] excel at capturing local information through convolution operations,
while transformer-based models [27, 5, 8] leverage self-attention mechanisms
[35] to model long-distance dependencies. However, these methods still have
limitations in RS applications. CNN-based models struggle to capture global
context due to their restricted receptive fields, while transformers, although
capable of modeling long-range dependencies, face significant computational
challenges when handling high-resolution, large-scale RS data [8].

To overcome these challenges, Mamba, a novel state space model (SSM)-
based network, was introduced [11], offering a promising solution to effec-
tively capture long-distance dependencies with linear computational complex-
ity. Various SSM-based models have been successfully applied across differ-
ent domains, including Vmamba [21] and Vision Mamba [46] in computer
vision, as well as RSMamba [6] and RS3Mamba [25] in RS. Innovations such
as Mamba-in-Mamba [45] for hyperspectral image classification, Pan-Mamba
[15], and ChangeMamba [4] for RS pan-sharpening and change detection have
also emerged. Despite the advantages of these models, they struggle to char-
acterize local details, which is critical for accurate RS image segmentation.
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This paper proposes Pyramid Pooling Mamba (PPMamba), a novel net-
work designed to address the local information loss in existing SSM-based mod-
els for RS image semantic segmentation. Compared to natural images, RS im-
ages are characterized by large variations in object scale, complex appearance
changes, and extensive spatial coverage. As a result, RS tasks place higher de-
mands on models for effective multi-scale and spatio-temporal representation
learning. PPMamba consists of several layers of Pyramid Pooling-State Space
Model (PP-SSM) blocks, and each block constructs multi-branch convolution-
based blocks to assist the model in capturing features from each image patch.
Additionally, the auxiliary multi-branch convolution-based blocks are struc-
tured in a pyramid shape in order to capture features at different scales. Since
the land cover patterns in RS images are oriented in various spatial directions,
the model possesses an omnidirectional state space (OSS) block to maximally
establish long-distance dependencies. The structure of PP-SSM consists solely
of Mamba and convolution-based blocks, leading to the capability of learning
long-range dependencies with linear computational complexity. Extensive ex-
periments on three widely used datasets, ISPRS Vaihingen, LoveDA Urban
and WHU Buildings, validate the effectiveness of PPMamba. The results show
that PPMamba outperforms several state-of-the-art models, highlighting its
potential to address the unique challenges of RS image semantic segmentation.
The main contributions of this article can be summarized as follows:

1. A novel Mamba-based network, PPMamba, is proposed to effectively
model local and global relationships in RS images while maintaining
linear computational complexity. By integrating CNN-based pyramid
pooling and the Mamba model, PPMamba addresses the limitations of
existing methods in balancing fine-grained local feature extraction with
comprehensive global context modeling.

2. The core structure of PPMamba, the PP-SSM block, introduces a
pyramid-shaped convolutional module combined with OSS. This block
effectively fuses multi-scale local features, selectively scanned from eight
different directions, with global features, enhancing the model’s ability
to capture diverse land cover patterns in RS images.

The remainder of this paper is organized as follows. Section 2 reviews the
related works on architectures and techniques relevant to PPMamba, while
Section 3 details the proposed method. Section 4 presents the experimental
results and discussions, followed by the conclusion in Section 5.

Notation: Vectors and matrices are denoted by bold-face letters. Iy is
the N x N identity matrix while []T denotes the transposition of the enclosed
vector.
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2 Related Work

2.1 Remote Sensing Image Semantic Segmentation

Early approaches for RS image semantic segmentation primarily relied on
traditional image processing techniques and classical machine learning algo-
rithms. Methods such as pixel-level classification were widely adopted, with
techniques like the Maximum Likelihood Classifier (MLC) [31] and Support
Vector Machine (SVM) [28] being popular due to their simplicity and effective-
ness. However, these methods typically struggled to capture spatial informa-
tion and often underperformed when dealing with complex object categories
in high-dimensional data.

With the emergence of deep learning, CNN and transformer-based mod-
els have demonstrated significant potential in RS image segmentation [24, 26,
32]. CNN-based models, such as ResUNet-a [7], leverage hierarchical feature
extraction through convolutional layers and have been enhanced with tech-
niques like residual connections and pyramid scene parsing. However, CNNs
are limited by their local receptive fields, making it challenging to capture long-
range dependencies. To address this problem, transformer-based models, such
as GLOTS [22], have been introduced, utilizing self-attention mechanisms to
capture global context. Despite their strengths, transformers are computation-
ally intensive, leading to high resource demands for processing high-resolution
RS images [33]. These challenges highlight the need for new architectures that
balance segmentation accuracy and computational efficiency.

2.2 Mamba

The Mamba architecture was introduced as an alternative to transformers,
addressing their high computational complexity while capturing long-range
dependencies in visual data. Mamba is based on the structured state space
model (SSM), originally designed to handle continuous data with linear time
complexity [12]. The transition from SSM to structured state space sequence
models (S4) allowed for effective processing of discrete data [12]. More specif-
ically, we consider a continuous system that maps a 1-D function or sequence
z(t) € R — y(t) € R through a hidden state h(t) € RNX!. This process can
be described as a linear Ordinary Differential Equation (ODE) [12]:

(1)

where A € RVXYN denotes the state transition matrix while b € R¥*! and
c € RV>*1 are the projection parameters. Furthermore, h’(t) stands for the
derivative of h(t). To adapt the system to a discrete form, a zero-order hold
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(ZOHR) is required to convert all the parameters into their discrete counterparts,
as follows:

xp(AA),

(AA) Y exp(AA) — Iy) - Ab, (2)

o B
1

where A is a step size that denotes the input’s resolution, A and b are the
discrete version of the projection parameters A and b, respectively.

However, the S4 model faced challenges in optimizing computational effi-
ciency, which led to the development of the selective structured state space
model (S6) [11]. S6 forms the core of Mamba, introducing dynamic adjust-
ments to b, ¢, and A that depend on the input, enabling hardware-aware
optimizations and selective compression of information.

Recently, numerous SSM-based models have been applied across various
domains, including computer vision and remote sensing. In computer vision,
Vmamba and Vision Mamba have introduced innovative approaches leverag-
ing SSM-based architectures. Vmamba maintains linear complexity while pre-
serving global receptive fields by incorporating a Cross-Scan Module (CSM)
that traverses the spatial domain and transforms non-causal visual images
into ordered patch sequences [21]. Furthermore, Vision Mamba demonstrates
that self-attention is not necessary for visual learning by exploiting bidirec-
tional Mamba blocks with position embeddings to structure images and bidi-
rectional state space models for compression [46]. In remote sensing, RS-
Mamba presents an innovative architecture for image classification, introduc-
ing a dynamic multi-path activation mechanism to enhance Mambas capability
in modeling non-causal data [6]. Recently, Pan-Mamba was developed to per-
form cross-modal information exchange by integrating channel swapping and
cross-modal Mamba designs, enabling efficient fusion across modalities [15].
Additionally, Mamba-in-Mamba has shown strong performance in hyperspec-
tral image classification [45], while ChangeMamba pioneers the application of
the Mamba architecture for RS change detection tasks [4]. Despite these ad-
vancements, most of the above models are not explicitly designed for semantic
segmentation. To address this challenge, RS3Mamba was proposed as one of
the earliest SSM-based models tailored for RS image semantic segmentation
[25]. Following this, PyramidMamba introduced an adaptable decoder fea-
turing dense spatial pyramid pooling (DSPP) to capture multiscale semantic
features [38]. However, RS3Mambas complex architecture imposes significant
computational overhead, and PyramidMambas emphasis on pyramid pooling
in the decoder may lead to suboptimal multiscale feature extraction within its
encoder. AfaMamba [3] introduced a Mamba-based multiscale feature adap-
tive fusion module and a global-local Mamba block. HMAFNet [34] integrated
both channel and spatial attention mechanisms into the fusion pathway of
the Mamba module. While their fusion approach effectively captures spatial
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context through attention mechanisms, it remains relatively static and lacks
directional modeling. As a result, it struggles to precisely distinguish complex
object boundaries and heterogeneous textures. MLMamba [9], on the other
hand, proposed the pyramid Mamba structure and feature-guided semantic
modules for multi-label remote sensing scene classification, significantly en-
hancing the modeling of semantic associations among labels. However, its
design is primarily tailored for image-level classification tasks and lacks the
capacity for pixel-level spatial modeling.

2.3 Spatial Pyramid Pooling

Spatial Pyramid Pooling (SPP) was developed to address the rigid input size
requirements of early CNN architectures, enabling models to handle variable
input sizes without losing critical spatial information [14]. By introducing
multilevel pooling operations, SPP allows models such as AlexNet [17] and
VGGNet [30] to preserve spatial hierarchies while generating fixed-length out-
put vectors. This capability has proven essential in high-resolution image
tasks, where resizing can distort important features. In RS image segmenta-
tion, SPP has been widely adopted for multiscale feature extraction, provid-
ing flexibility in adapting to the diverse spatial patterns found in RS imagery.
Advanced architectures, such as Faster RCNN [10] and YOLO [29], have in-
tegrated SPP to enhance their object detection accuracy by better capturing
context across different scales. Despite these advances, current models often
emphasize either local detail (as in CNN-based approaches) or global context
(as in transformer-based models), leading to suboptimal performance in sce-
narios requiring a nuanced understanding of both. The challenge remains to
develop an architecture that effectively integrates multiscale local and global
features while maintaining computational efficiency.

3 Methodology

8.1 Proposed PPMamba

The proposed PPMamba architecture is illustrated in Figure 1. The input to
the model is an image with dimensions H x W x 3, processed through a UNet-
like encoder-decoder framework. The encoder reduces the spatial resolution
of the input while preserving essential features. Furthermore, the decoder
progressively upsamples the features to produce the final segmentation map.
In the encoder, the input image first undergoes a patch embedding operation,
converting it into feature maps of size % X % x C. These feature maps are then
passed through a sequence of patch merging operations and PP-SSM blocks.
The patch merging operations successively reduce the spatial resolution from
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Figure 1: The architecture of proposed PPMamba.

% X o= to 35 X E’ while increasing the number of channels to 16C. The stacked
PP- SSM blocks enable the model to capture both local and global context
information while maintaining computational efficiency. The decoder consists
of four stages of upsampling. Each decoder block fuses the upsampled features
with the corresponding encoder features and features from its previous decode
block, enabling the reconstruction of detailed spatial information. The output

is a high-resolution segmentation map with dimensions H x W x 3.

3.2 Proposed PP-SSM Block

Figure 2(a) shows the structure of a conventional visual SSM block in which
input is processed by visual state space (VSS) blocks followed by a layer nor-
malization (LN) block and a multilayer perceptron (MLP) block. However,
the VSS block suffers from many limitations in capturing global spatial fea-
tures from RS images.

In sharp contrast, the proposed PP-SSM block, shown in Figure 2(b), is
the core structure in our PPMamba model, utilizing a multi-branch auxiliary
methodology for RS image semantic segmentation. First, the input is sepa-
rated into four distinct parts along the channel dimension, namely @1, €2, €3
and x4, as shown in Figure 2(b). This separation allows the PP-SSM block
to independently capture different aspects of the local features using four
SPP branches. These SPP branches stack continuous convolutional layers
with different kernel sizes to capture the local features while maintaining the
input’s resolution the same way as the output to preserve the local spatial
information. Specifically, s, x3 and x4 are passed through two layers of con-
volutional blocks of kernel sizes 3 x 3, 5 x 5 and 7 x 7 respectively, followed
by ReLU activation functions. Finally, the resulting features together with x
are processed by 2D convolutional blocks of kernel size 1 x 1.

It is worth pointing out that employing various kernel sizes to process
xo,x3 and xy can form a pyramid structure, enabling the model to capture a
wider range of local features at different scales. The pyramid-shaped design
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Figure 2: The architectures of the conventional visual SSM block and the proposed PP-SSM
block. (a) The architecture of a conventional visual SSM block. (b) Proposed architecture
of PP-SSM Block.

is crucial for extracting comprehensive local features from the input image,
which is essential for accurate semantic segmentation. The output of each
convolution-based block will be passed through a ReLU activation that in-
troduces non-linearity into the model and enhances its capability to learn
complex patterns from the input data.

After processing through the convolutional layers, the PP-SSM block con-
catenates the outputs to form a unified feature map 44y with the same num-
ber of channels as the original input. After that, x,q4 is fed into an omni-
directional state space block (OSS) [43] to capture the global features of the
RS images. The OSS block performs selective scanning in multiple directions
to capture global dependencies and spatial relationships from various angles.
Detailed operations of the OSS will be elaborated in the next section. The
output of OSS, denoted as y, is first normalized before being processed by
an MLP block. The normalization block makes the training process converge
faster, while the MLP block can adjust the input dimensions.
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In summary, the PP-SSM block introduces four convolution-based
branches with various kernel sizes to collect local features. Furthermore, the
pyramid-shaped kernel sizes capture features across different dimensions.

3.8 Omnidirectional State Space Block (OSS)

As shown in Figure 3(a), the architecture of the proposed OSS block begins
with a layer normalization stage to stabilize the training process. Next, a
linear transformation adjusts the input dimensions before the data passes
through a depthwise convolution operation (DWConv) to extract spatial fea-
tures. The core structure of the OSS block, called the omnidirectional selective
scan module (OSSM), then selectively scans the features in forward and back-
ward directions across four different angles, i.e., eight scanning directions, as
depicted in Figure 3(b). Finally, the output is passed through a linear trans-
formation before the residual connections are applied to concatenate the input
features with the final output.

,/ 0SS Block

Figure 4

—‘i}—( Linear H[DWConv'—v OBsm — LN }—j@ Linear ch—-:

Linear

i

Figure 3: (a) The architecture of the proposed OSS block. (b) The illustration of the
selective scan directions of OSSM.

The operation of OSSM is illustrated in Figure 4. We denote by ¢,
and g, the input and output features of OSSM, respectively. The scanning
process can be described as follows:

i = expand(in,n),

O = W(n-1)//2)+1 - S6(¥5), (3)

_ 1 2 3 4 5 6 7 3
Pout = METGE(Dyr, Pirs Pins Pins Pans Pins Lans Pin)s

wheren € N = {1, 2,3, ..., 8} represents the eight different scanning directions.
Furthermore, expand(-) and merge(-) denote the scan expansion and merg-
ing operation, respectively. S6(-) is the selective scan space state sequential
model [11]. There are four adaptive weights wy, we, w3, wy. w; represents
the significance of “Z” shape and anti “Z” shape scanning methods. wy de-
notes the significance of “N” shape and anti “N” shape. wzandw, indicate the
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Figure 4: Illustration of the operation of the proposed oriented scanning module (OSSM).

significance of diagonal and anti-diagonal scanning methods. Since different
scanning methods may vary from shallow features to deep features, the values
of weights will change to adapt to different levels of images.

4 Experiments

4.1 Datasets
4.1.1 ISPRS Vaihingen

The Vaihingen dataset consists of high-resolution aerial images captured over
Vaihingen, Germany, as part of the German Association of Photogrammetry
and Remote Sensing (DGPF) benchmark. The dataset contains 16 true or-
thophotos, each of resolution 2500 x 2000 pixels. For our experiments, 12
orthophotos were used as the training set, and the remaining 4 orthopho-
tos were used for testing. The training set includes images with indices
1,3,23,26,7,11,13,28,17,32, 34, and 37, while the test set comprises images
with indices 5,21, 15, and 30. Each orthophoto contains three spectral bands:
near-infrared (NIR), red, and green (NIRRG). The ground sampling distance
is 9 centimeters, and the dataset is annotated with five foreground classes:
impervious surfaces, buildings, low vegetation, trees, and cars, along with a
background class.

4.1.2  LoveDA Urban

The LoveDA dataset [36, 37] provides high-resolution RS images, with 5987
samples in total, captured over three cities in China: Nanjing, Changzhou,
and Wuhan. For this study, we focus on the urban subset, which includes
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1833 images, each with a resolution of 1024 x 1024 pixels. The dataset is split
into 1156 training images and 677 testing images. The training set consists of
images indexed from No. 1366 to No. 2521, while the test set covers indices
from No. 3514 to No. 4190. The images are provided in three channels: red,
green, and blue (RGB), with a ground sampling distance of 30 centimeters.
The LoveDA Urban dataset includes seven land cover classes: background,
buildings, roads, water, barren land, forests, and agriculture.

4.1.3 WHU Building

The WHU Building dataset [16] originates from aerial imagery provided by
the New Zealand Land Information Services. To prepare the data for semantic
segmentation tasks, most of the aerial images were downsampled to a ground
resolution of 30 centimeters and subsequently cropped into 8188 tiles, each
with a size of 512x 512 pixels. The resulting ready-to-use dataset is partitioned
into three subsets: a training set containing 5732 images, a validation set with
1228 images, and a test set including 1228 images. The images are provided in
three channels: red, green, and blue (RGB) with two categories: background
and buildings.

4.2 FEwvaluation Metrics

Mean intersection over union (mlIoU) and mean F1l-score (mF1) were used to
evaluate the performance of the models. Besides, precision and recall were
used to calculate the F1-score. The definitions and equations for these metrics
are as follows:

TP
Precision TP+ FP’ (4)
TP
— - )
Recall TPLFN (5)

2(Precision - Recall)
Precision + Recall ’

1< 2(Precision - Recall)

F1 — score =

(6)

F1 =
m E+1 — Precision + Recall ’
TP
I =
V= ENTFP+ TP’

k

(7)

1 TP
I =
mlot k+1;FN+FP+TP’

where k is the number of categories, TP denotes true positives, F'P denotes
false positives, and F'N denotes false negatives.
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4.3 Loss Functions

In traditional semantic segmentation tasks, the loss function is typically based
on the cross-entropy-based segmentation loss:

Lossgeqg = — Z Z Y log P, (8)

H,W ceC

where Y € REXWXC and P € RT*WXC denote the ground truth and pre-
dicted output, respectively. C represents the categories of the ground objects
of the RS images.

To better preserve the continuity of pixels within objects and introduce
edge constraints, which are both important for improving segmentation accu-
racy, we adopt a composite loss function [23] defined as:

Losstotal = L05Sseqg + Ao L0SSon; + Ao L0SSpay, (9)

where Lossqp; is the object consistency loss and Losspqy is the boundary
preservation loss [2, 23]. A, and A, are weighting coefficients. This integrated
loss design helps guide the model toward more precise and structurally coher-
ent predictions during training.

4.4 Implementation Details

Stochastic gradient descent (SGD) was applied as the optimization algorithm
for training all models. The learning rate, momentum, and decaying coeffi-
cient values were set to 0.01,0.9, and 0.0005, respectively. The batch size
was set to 10, while the epoch size was set to 50. The number of PP-SSM
blocks at each stage is [2,2,9,2]. No pre-trained strategy is loaded in order to
confirm the effectiveness of the PPMamba architecture. Evaluation metrics
were calculated twice per epoch. The experiments were conducted on a server
node running Ubuntu 22.04.1 operating system, equipped with an NVIDIA
GeForce RTX 4090 GPU. The framework utilized in these experiments was
PyTorch 2.2.2.

4.5 Performance Comparison

To evaluate the effectiveness of PPMamba, we conducted comparative experi-
ments against nine state-of-the-art models. The baseline model used in these
experiments is RS-Mamba [43]. The comparison models include CNN-based
methods, ABCNet [20], MANet [19], and CMTFNet [41], transformer-based
methods, FTUNetFormer [39], hybrid CNN-transformer models, UNetFormer
[39], HST UNet [44], and TransUNet [5], and other Mamba-based models,
RS3Mamba [25].
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4.5.1 Performance Comparison on ISPRS Vaihingen

As shown in Table 1, PPMamba demonstrated significant improvement over
its baseline model, RS-Mamba. The primary evaluation metrics, mloU and
mF1, increased by 6.85% and 4.62%, respectively, confirming that RS-Mamba
has limitations in RS image semantic segmentation tasks, which PPMamba ef-
fectively overcame. Notably, PPMamba achieved the best performance across
all five foreground classes except for tree. For the impervious surface class, PP-
Mamba achieved an F1 score of 92.20%, nearly 1.30% higher than RS3Mamba,
underscoring its ability to distinguish between urban structures and other land
cover types. It also led in the building class, surpassing the baseline model
by 3.72% on F1 score. This superior performance suggests that PPMamba
excels at capturing complex building shapes and boundaries, which are often
challenging due to occlusions and shadows. In the low vegetation class, PP-
Mamba outperformed ABCNet by 1.22% and FTUNetFormer by 2.67% on F1
score, highlighting its accuracy in identifying and segmenting areas covered
by grass, shrubs, and other low-height vegetation. Furthermore, PPMamba
achieved the highest F1 score (83.86%) and IoU (80.10%) in the car category,
surpassing RS-Mamba by 11.66% and 15.86%. This improvement reflects its
enhanced ability to recognize local features, especially when detecting cars,
occupying only a small portion of the Vaihingen images. These results have
demonstrated the potential of PPMamba in effectively recognizing a wide
range of categories.

Table 1: The performance of PPMamba and other state-of-the-art models on the Vaihingen
dataset, where type C indicates CNN-based models, T indicates transformer-based models,
C-T indicates CNN&transformer-based models, and M indicates Mamba-based models. F1-
score and IoU are chosen as evaluation metrics. The accuracy of each category is presented
by F1/IoU. Bold font represents the best values.

Model Type impervious surface building low vegetation tree car mF1 mloU
ABCNet [20] C 89.68/90.45 93.72/93.90 77.93/75.52 89.81/91.07 73.46/63.16 84.92 74.57
MANet [19] C 90.28/91.74 94.28/93.07 78.95/79.26 89.85/89.76 77.58/70.76 86.19 76.32

CMTFNet [41] C 90.69/90.50 95.03/96.20 78.89/76.18 90.13/91.33 82.09/74.95 87.37 78.06
FTUNetFormer [39] T 90.78/90.37 94.54/94.88 76.48/73.59 89.15/91.83 75.28/66.49 85.25 75.09
UNetFormer [39] C-T 90.37/92.19 94.58/93.44 78.37/76.56 90.19/91.15 81.85/75.87 87.07 77.60
HST__UNet [44] C-T 91.27/91.34 95.36/95.43 78.44/77.27 90.04/91.02 83.61/79.07 86.62 78.67
TransUNet [5] C-T 91.24/90.31 94.82/96.63 78.85/74.71 90.54/92.79 83.77/78.97 87.84 78.78
RS3Mamba [25] M 90.87/89.99 95.26/95.59 78.49/75.74 90.20/91.93 81.83/74.10 87.33 78.04
RS-Mamba [43] M 88.37/87.73 92.52/92.08 76.31/75.68 89.14/90.14 72.20/64.24 83.71 72.77
PPMamba M 92.20/91.40 96.24/96.92 79.15/76.49 90.19/92.43  83.86/80.10 88.33  79.62

Figure 5 presents a visual comparison of segmentation results on the IS-
PRS Vaihingen dataset, including outputs from all models, the NIRRG image,
and the ground truth. The visual results have shown that PPMamba provided
more accurate and detailed segmentation, particularly in building boundaries,
tree and low vegetation regions. Notably, PPMamba correctly identified the
cars in the parking lot of the building in the left part of the image. Addition-
ally, PPMambas segmentation of buildings (blue areas) maintained continu-
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Figure 5: Performance comparisons on the ISPRS Vaihingen dataset with the size of 1024 x
1024. (a) NIRRG images, (b) Ground truth, (¢) ABCNet, (d) MANet, (¢) CMTFNet, (f)
UNetFormer, (g) FTUNetFormer, (h) HST UNet, (i) TransUNet, (j) RS3Mamba, (k) RS-
Mamba and (1) PPMamba.

ous and precise outlines at the bottom of the image, with building boundaries
seamlessly connecting to those of trees and low vegetation without any gaps.
In contrast, the blue areas produced by other comparison models, including
our baseline model, RS-Mamba, showed blurred and jagged edges. PPMamba
also excelled in distinguishing between low vegetation and tree classes, where
other models often suffered from over-segmentation.

4.5.2  Performance Comparison on LoveDA Urban

As shown in Table 2, experiments have been performed on the LoveDA Urban
dataset to further validate the performance of PPMamba. Similar to the re-
sults on the previous dataset, PPMamba achieved the highest mIoU and mF1
scores among the nine state-of-the-art models. It significantly outperformed
the baseline model, with an improvement of 8.69% in mlIoU and 8.47% in
mF1, due to its superior capability in capturing local features in RS images
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Table 2: The performance of PPMamba and other state-of-the-art models on the LoveDA
Urban dataset, where type C indicates CNN-based models, T indicates transformer-based
models, C-T indicates CNN&transformer-based models, and M indicates Mamba-based
models. Fl-score and IoU are chosen as evaluation metrics. The accuracy of each category
is presented by F1/IoU. Bold font represents the best values.

Model Type background  building road water barren forest agriculture mF1  mloU
ABCNet [20] C 51.79/66.54 67.87/70.66 64.94/56.57 67.56/58.12 45.94/35.23 54.02/77.60 28.93/19.09 59.62 43.05
MANet [19] C 51.42/63.92 70.55/74.98 65.37/64.73 70.17/64.60 48.33/40.67 52.69/84.92 5.22/2.81 61.17 44.72

CMTFNet [41] C 52.57/67.64  70.05/74.06  68.81/60.70  69.09/58.19  37.70/25.77  54.29/83.01  26.18/1659  59.64  43.60
FTUNetFormer [39] T 49.84/61.82 69.91/70.42 68.88/64.03 67.73/56.98 26.81/16.82 51.40/89.96 23.29/14.18 56.63 41.23
UNetFormer [39] C-T 51.57/64.48 69.10/70.94 64.40/61.48 67.07/65.24 44.49/34.20 54.23/82.87 16.99/9.95 59.32 42.82
HST_UNet [44] C-T  50.39/68.61  71.07/70.02  70.57/61.95  68.67/58.01  17.67/10.01  54.00/84.64  27.76/16.70  55.68  41.06
TransUNet [5] C-T 52.47/67.23 67.19/60.93 67.0: 6 73.68/63.13 40.59/31.84 43.75/85.72 0.00/0.00 60.19 44.07
RS3Mamba [25] M 51.03/67.73 69.98/70.53 68.86/63.39 70.51/61.57 41.52/28.46 58.20/85.67 23.59/14.50 60.38 44.25
RS-Mamba [43] M 48.83/64.63  60.62/55.34  50.64/53.95  67.92/54.16  35.36/26.26  47.85/90.74  3.51/1.80 5447  38.24
PPMamba M 54.94/6803 71.82/7186 73.28/67.41 70.91/63.20  43.75/31.70  52.83/88.17  24.87/15.11  62.94 46.93

compared to the baseline model, RS-Mamba. In particular, PPMamba exhib-
ited impressive performance in the background, building and road categories.
Specifically, PPMamba achieved an IoU of 68.03% and an F1 score of 54.94%
in the background class, ranking among the best performers across all models.
This highlights PPMambas ability to accurately capture background features
and effectively distinguish them from adjacent categories. In the building
class, our model also achieved the highest F1 scores (71.82%), demonstrat-
ing its strength in precisely segmenting building structures. For the road
category, PPMamba attained the top F1 score of 73.28%, outperforming the
second-best model, HST UNet, by 2.71%, and it also led in IoU with a score
of 67.41%. These results underscored PPMambas excellent ability to seg-
ment road areas. Additionally, PPMamba outperformed the baseline model,
RS-Mamba, by 21.36% in F1 score for the agriculture category, indicating
notable improvement in recognizing agricultural areas.

Figure 6 provides a visual comparison of the test results across all models,
along with the RGB image and the ground truth. In the top-right corner, a
square red area is clearly delineated by PPMamba, which accurately captured
the square building with clear and contiguous outlines, free from significant
errors. In contrast, the baseline model RS-Mamba and other state-of-the-art
models such as CMTFNet and UNetFormer struggled with this task. They
failed to clearly outline the square shape, with UNetFormer even misclassify-
ing parts of the building as roads. RS-Mamba also had difficulty in detecting
the yellow road area in the lower part of the image, leading to blurred bound-
aries between the road and building classes. This resulted in some road areas
being incorrectly classified as buildings (red). In contrast, PPMamba pro-
duced continuous and precise boundaries for road areas, clearly distinguishing
them from adjacent classes.
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Figure 6: Performance comparisons on the LoveDA Urban dataset with the size of 1024 x
1024. (a) RGB images, (b) Ground truth, (c) ABCNet, (d) MANet, (e¢) CMTFNet, (f)
UNetFormer, (g) FTUNetFormer, (h) HST_UNet, (i) TransUNet, (j) RS3Mamba, (k) RS-
Mamba and (1) PPMamba.

4.5.8 Performance Comparison on WHU Building

The WHU Building dataset is employed as a supplementary benchmark
to demonstrate that PPMamba maintains leading performance on non-
traditional RS semantic segmentation tasks, thereby enhancing the robust-
ness and generalizability of the proposed method. Figure 7 shows that the
RS images processed by PPMamba have clearer and more rectilinear build-
ing contours. Table 3 highlights the top two values for each metric in bold.
On the WHU Building dataset, TransUNet achieved the highest overall mloU
(92.05%) and mF1 (95.78%). However, its FLOPs and parameter count are
nearly five times greater than those of PPMamba. Given the substantial com-
putational complexity of TransUNet, a trade-off between performance and
efficiency becomes necessary. PPMamba emerges as a more balanced choice,
achieving the second-best mIoU (91.77%) and mF1 (95.62%), both closely
approaching TransUNet’s results. More importantly, PPMamba achieves the
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Figure 7: Performance comparisons on the WHU Building dataset with the size of 512 X
512. (a) RGB images, (b) Ground truth, (¢) ABCNet, (d) MANet, (¢) CMTFNet, (f)
UNetFormer, (g) FTUNetFormer, (h) HST UNet, (i) TransUNet, (j) RS3Mamba, (k) RS-
Mamba and (1) PPMamba.

highest ToU (91.76%) for the building category, underscoring its strong capa-
bility in recognizing specific geographical features.

In summary, the comparative results across three different datasets have
demonstrated the significant potential of PPMamba in RS image semantic
segmentation, which confirms that PPMamba is more competitive and effec-
tive than both its baseline model and other state-of-the-art models mentioned
in this study.

4.6 Feature Capture Capability Comparison

Mamba excels at capturing long-range dependencies [11], but its ability to
extract local features is less effective. This experiment aims to analyze the
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Table 3: The performance of PPMamba and other state-of-the-art models on the WHU
Building dataset, where type C indicates CNN-based models, T indicates transformer-based
models, C-T indicates CNN&transformer-based models, and M indicates Mamba-based
models. Fl-score and IoU are chosen as evaluation metrics. The accuracy of each category
is presented by F1/IoU. Bold font represents the top 2 values.

Model Type background building mF1 mlIoU
ABCNet [20] C 98.33/98.73 90.68/88.68 94.51 89.84
MANet [19] C 98.53/98.85 91.84/90.22 95.19 91.01

CMTFNet [41] C 98.58/98.82 92.14/90.91 95.36 91.32
FTUNetFormer [39] T 98.46/98.77 91.45/89.89 94.95 90.60

UNetFormer [39] C-T 98.50/98.79 91.70/90.26  95.10  90.86

HST__UNet [44] C-T  98.64/98.87  92.50/91.33  95.57  91.68

TransUNet [5] C-T  98.71/98.95 92.85/91.62 95.78 92.05

RS3Mamba [25] M 98.51/98.83 91.70/90.07  95.10  90.86

RS-Mamba [43] M 98.25/98.58 90.26/88.59  94.26  89.40
M

98.65/98.81 92.58/91.76  95.62 91.77

PPMamba

differences in local feature extraction between the baseline model RS-Mamba
and our enhanced model PPMamba using heatmaps. In Figure 8, the category
of the red pixel at coordinates [99, 49] is labeled as “buildings” in subimage (a)
and “impervious surfaces” in subimage (b). In these heatmaps, red indicates
a higher likelihood of predicting the designated category, while blue suggests
little to no correlation. In the last two rows of both (a) and (b) in Figure 8,
the feature maps with sizes [1, 768, 8, 8], [1, 384, 16, 16], and [1, 192, 32, 32] are
shown in the format [B, C, H, W] from left to right in each row. The NIRRG
images were taken from the ISPRS Vaihingen dataset, where a 256 x 256
window was slid across the images with a set stride, generating the NIRRG
images in the heatmaps.

Figure 8 compares the feature extraction capabilities of RS-Mamba and
PPMamba in two selected scenarios. In subimages (a3)-(as), RS-Mamba fre-
quently misclassified buildings and nearby low vegetation or impervious sur-
faces as similar features. As a result, large patches of red and yellow were scat-
tered across the subimage (a4). In contrast, PPMamba demonstrated superior
local feature extraction. In the last two subimages (a7) and (ag), PPMamba
delineated the contours of all buildings, highlighting them with prominent
red and yellow regions that closely aligned with the ground truth. In sce-
nario (b), RS-Mamba struggled to differentiate between impervious surfaces
and buildings. In subimage (bs), red and green regions erroneously covered
the building category. On the other hand, PPMamba exhibited better per-
formance in subimages (bg)-(bs), recognizing the shape of impervious surfaces
not only in the low-level feature map but also in the high-level one. Table 1
further supports this analysis, showing that PPMamba achieved the high-
est F1 scores for both buildings (96.24%) and impervious surfaces (92.20%)
among all state-of-the-art models. These heatmap comparisons have clearly
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Figure 8: The comparison of heatmaps of RS-Mamba and PPMamba. (a)(a1) the NIRRG
image, (a2) the ground truth, (as-as) three heatmaps from RS-Mamba, (ag-ag) three
heatmaps from PPMamba. (b) are organized in the same way. (a) Heatmaps of encoders
determine if a pixel belongs to buildings or not. (b) Heatmaps of encoders determine if a
pixel belongs to impervious surfaces or not. The selected NIRRG images and ground truth
are slid with a fixed window size from the ISPRS Vaihingen dataset.

demonstrated that PPMamba offers a more effective local feature extraction
capability than its baseline model, RS-Mamba.

4.7 Ablation Study

To validate the effectiveness of the proposed multi-branch auxiliary architec-
ture, pyramid-shaped convolutional blocks, adaptive weights and OSS block,
eight ablation experiments were conducted on both the ISPRS Vaihingen and
LoveDA Urban datasets. In Table 4, the first row for each dataset represents
the baseline model RS-Mamba, which does not include the multi-branch con-
volutional auxiliary architecture. The second row corresponds to a version
of PPMamba with four convolutional branches, but with all branches hav-
ing identical 1 x 1 kernel sizes. The third row represents the full PPMamba
model without adaptive weights, which combines the multi-branch auxiliary
structure with pyramid-shaped kernel sizes for the convolutional blocks. The
final row displays the result of multi-branch pyramid-shaped PPMamba with
adaptive weights. Table 5 presents the results of the two Mamba models
incorporating VSS and OSS blocks on the two datasets, respectively.

Table 4 presents the performance comparison across all four configurations.
PPMamba with four identical branches showed significant improvements in
evaluation metrics, increasing mIoU by 5.61% for Vaihingen and by 4.74% for
Urban, and mF1 by 3.84% for Vaihingen and by 3.91% for Urban. These sub-
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Table 4: The ablation study of PPMamba on ISPRS Vaihingen and LoveDA Urban dataset.
Bold font represents the best values.

Dataset Model MB! PS?2 AW? mF1 mloU
Vaihingen RS-Mamba 83.71  T2.77

Vaihingen ~PPMamba Vv 87.55  78.38
Vaihingen ~PPMamba vV v 87.80  78.81
Vaihingen ~PPMamba vV vV v/ 88.33 79.62
Urban RS-Mamba 54.47  38.24
Urban PPMamba 4/ 58.38  42.98
Urban PPMamba 4/ v 61.76  46.14
Urban PPMamba v vV v 62,94 46.93

1 MB: Multi-Branch
2 PS: Pyramid-shaped
3 AW: Adaptive Weights

Table 5: The ablation study of OSS block on ISPRS Vaihingen and LoveDA Urban dataset.
Bold font represents the best values.

Dataset Model VSS! 0SS? mF1 mlIoU

Vaihingen PPMamba 4/ 88.08  79.12
Vaihingen PPMamba v/ 88.33 79.62
Urban PPMamba 4/ 60.34  45.00
Urban PPMamba vV 62.94 46.93

1 VSS: normal visual state space block
2 0SS: omnidirectional state space block

stantial enhancements indicate that introducing a multi-branch convolutional
structure significantly strengthened RS-Mambas feature extraction capability.
Furthermore, by employing varying kernel sizes of 1 x 1, 3 x 3, 5 x 5, and
7 x 7 as part of the pyramid pooling operation, PPMamba can capture local
features at different scales in RS images. This resulted in further increases
in mIoU and mF1 by 0.43% for Vaihingen (3.16% for Urban), and 0.25% for
Vaihingen (3.38% for Urban), respectively. Moreover, after adding adaptive
weights to PPMamba, the mIoUs of Vaihingen and Urban are enhanced to
79.62% and 46.93%, respectively. We further compare the Mamba models
employing VSS (four-direction scanning) and OSS (eight-direction scanning)
blocks. The OSS module improves the mIoU of PPMamba by 0.5% on the
Vaihingen dataset and by 1.93% on the Urban dataset, clearly demonstrating
its significant contribution to performance gains. Overall, the combination of
the four-branch auxiliary architecture, pyramid-shaped convolutional blocks,
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adaptive weights and OSS block has made PPMamba highly effective and
competitive in the semantic segmentation of RS images.

4.8 Model Complexity Analysis

Table 6 presents the computational complexity analysis for all the models dis-
cussed in this paper. FLOPs, parameters, memory usage and FPS are used to
comprehensively assess the complexity of PPMamba compared to other state-
of-the-art models. FLOPs refers to the number of floating-point operations
required to run a network model, indicating the computational load during
inference. Parameters represent the number of model parameters that need to
be learned, serving as an important measure of model complexity. Generally,
models with more parameters have greater expressive power. Memory usage,
which refers to GPU memory consumption, is influenced by both model size
and batch size. In this analysis, the batch size is fixed at two, so only model
size affects GPU memory usage. FPS refers to frames per second, which indi-
cates the number of images processed per second. A higher FPS value implies
faster model inference speed.

Table 6: The computational complexity analysis. FLOPs and parameter were evaluated by
a random tensor with size [1, 3, 256, 256]. Memory was evaluated by NVIDIA-SMI when
running the process with batch size = 2. Bold font represents the best values.

Model FLOPs Parameter Memory FPS mloU
(G) (M) (MiB)  (img/s) (%)
ABCNet 3.91 13.39 1068 237.76 74.57
MANet 19.45 35.86 1744 141.02 76.32
CMTFNet 8.57 30.07 1728 100.77 78.06
UNetFormer 2.94 11.68 1074 194.79 77.60
FTUNetFormer 25.51 75.16 3156 44.16 75.09
HST_UNet 11.51 29.39 1926 41.93 78.67
TransUNet 88.29 311.23 5744 58.76 78.78
RS3Mamba 15.83 49.66 2204 53.92 78.04
RS-Mamba 9.45 40.73 2698 53.14 72.77
PPMamba 15.49 68.38 3280 26.53 79.62

From Table 6, several insights into the complexity of PPMamba can be
drawn. Firstly, PPMamba requires 15.49 G FLOPs, making it quite compet-
itive among the selected models. This indicates that the time complexity of
PPMamba is comparable to that of some CNN-based models, owing to the
fast inference speed characteristic of the Mamba architecture. This advantage
allows PPMamba to outperform many transformer-based models in terms of
computational efficiency. In terms of parameters, PPMambas count is slightly
higher at 68.38 M, primarily due to the local auxiliary mechanism, which uses
a four-branch pyramid-shaped structure. The pyramid-shaped convolutional
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blocks are designed to capture local features at multiple scales, adding to the
models complexity. While its parameter count is slightly higher than that of
MANet (35.86 M) and CMTFNet (30.07 M), it remains significantly lower
than models such as FTUNetFormer (75.16 M) and TransUNet (311.93 M).
Given its superior mIoU performance, PPMamba is considered an excellent
choice for RS image semantic segmentation tasks. Although the multi-branch
structure introduced in our model may result in a slower inference speed, it of-
fers a lower computational complexity compared to transformer-based models
while achieving superior performance. This trade-off highlights a promising
research direction. In future work, we plan to explore more efficient Mamba-
based architectures to further optimize both speed and accuracy.

5 Conclusion

This work has proposed a novel model called PPMamba, which integrates
CNN and Mamba to address RS image semantic segmentation tasks. To miti-
gate the issue of local information loss, the core architecture of PPMamba, the
PP-SSM block, is proposed and incorporated into the encoder. Endowed with
the OSS model, the proposed PP-SSM block selectively scans feature maps
in eight different directions, with a pyramid-shaped convolutional auxiliary
mechanism to extract both local and global features from input images. This
innovative design allows PPMamba to achieve competitive performance while
maintaining linear computational complexity. To validate the effectiveness of
PPMambas architecture, comprehensive experiments were conducted on three
widely used RS datasets, ISPRS Vaihingen, LoveDA Urban and WHU Build-
ings. The results have confirmed that the proposed semantic segmentation
model can substantially outperform conventional models.
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