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ABSTRACT

A flexible recommendation and retrieval system requires music sim-
ilarity in terms of multiple partial elements of musical pieces to
allow users to select the element they want to focus on. A method
for music similarity learning using multiple networks with indi-
vidual instrumental signals is effective but faces the problem that
using each clean instrumental signal as a query is impractical for
retrieval systems and using separated instrumental signals reduces
accuracy owing to artifacts. In this paper, we present instrumental-
part-based music similarity learning with a single network that
takes mixed signals as input instead of individual instrumental sig-
nals. Specifically, we designed a single similarity embedding space
with separated subspaces for each instrument, extracted by Condi-
tional Similarity Networks, which are trained using the triplet loss
with masks. Experimental results showed that (1) the proposed
method can obtain more accurate embedding representation than
using individual networks using separated signals as input in the
evaluation of an instrument that had low accuracy, (2) each sub-
embedding space can hold the characteristics of the corresponding
instrument, and (3) the selection of similar musical pieces focusing
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on each instrumental sound by the proposed method can obtain
human acceptance, especially when focusing on timbre.

Keywords: Music similarity, music information retrieval, music recommenda-
tion, representation learning

1 Introduction

Today’s music market is proliferating, with digital products and online services
at its core. In 2023, sales from music streaming services increased by 10.4%
from the previous year to 19.3 billion dollars, and streaming services account
for 67.3% of the music industry’s sales share [32]. The number of musical
pieces available on music streaming services is about 100 million today [1].
Subsequently, it is impossible for users to listen to all of them to find their
favorite music. Therefore, Music Information Retrieval (MIR) technologies,
such as music recommendation systems, are needed to help users find their
favorite music efficiently.

Research in the field of MIR involves several tasks, mainly the retrieval,
recommendation, and estimation tasks to obtain information useful for the
retrieval or recommendation, such as tagging, genre classification, melody ex-
traction, and cover song identification. Among these tasks, our focus in this
study is to help users find new favorite musical pieces given the background
described above. Within the retrieval task, research aimed at such a purpose
is ill-defined because it does not have an objective answer unlike cover song re-
trieval or version retrieval. Hence, various approaches are possible depending
on the criteria considered to retrieve or recommend music.

The most common way to access music online today is through text-based
metadata retrieval. However, metadata retrieval has limitations in expressive-
ness when using objective information such as the artist name and publication
year [5]. On the other hand, music recommendation is a typical technique
for users to efficiently discover new favorite music. There are several main
approaches in music recommendation [52]: an approach using user informa-
tion [35, 15], a content-based approach [39, 45, 17], and a combination of
the two [6, 62, 44]. Many studies have been conducted using users’ listening
history, and one of the most representative approaches is using collaborative
filtering [20]. In collaborative filtering, it is assumed that users who have sim-
ilar ratings or the same behavior toward a certain content will have similar
ratings toward other contents. This enables the prediction of the ratings of
unknown tracks on the basis of the ratings of other users who have engaged
in similar behavior. However, a limitation is that newly released music may
receive few recommendations until a certain amount of listening history has



Learning Separated Representations for Instrument-based Music Similarity 3

been recorded. Another problem is that less well-known music may not be
recommended as often since popular music generally receives more ratings.

The content-based approach has the potential to avoid the problems of
metadata-based retrieval and collaborative filtering-based recommendation,
which uses the features of the content itself for recommendation and retrieval.
Content-based methods for recommendation, retrieval, and related MIR tasks
have been investigated for a long time [5] and have traditionally included
signal processing, handcrafted features, and classical machine learning meth-
ods [18, 54, 38, 57, 21]. Fujishima [18] applied pattern matching to acoustic
features, Logan and Salomon [38] applied clustering to acoustic features, and
Tzanetakis and Cook [54] introduced several handcrafted features for genre
classification. Whitman and Rifkin [57] proposed the query-by-description
method using a classical machine learning method, and Gémez [21] presented
a method to extract a tonal description from audio signals. With the ad-
vent of deep learning, data-driven embedding extraction has been shown to
be effective in improving the performance of MIR systems [23, 16, 33, 11].
Hamel and Eck [23] showed that using the embeddings extracted from Deep
Belief Networks is better than using the Mel-Frequency Cepstrum Coefficient
(MFCC) in the classification tasks, and Elbir and Aydin [16] also showed that
deep learning methods outperform classical machine learning methods in ac-
curacy for genre classification tasks. Furthermore, the effectiveness of using
Convolutional Neural Networks (CNNs) was shown [45, 37, 27, 9, 10, 40, 13,
51, 47, 8, 48, 58]. These studies include a method for a recommendation sys-
tem [45], an automatic musical instrument identification method [37, 40, 58],
an autotagging method [10, 8], a music classification method [27, 13, 51, 8], a
representation learning method [47, 48], and analysis of mechanisms [9].

One effective method for content-based music recommendation or retrieval
is to define similarities between musical pieces and use the user’s favorite piece
as a query for retrieval or recommendation. This method requires designing
suitable similarity criteria for calculating music similarity, and many MIR re-
searchers discussed this issue [17, 44, 38, 47, 48, 2, 46, 4, 55, 22, 50, 60, 59, 41,
12, 7, 19]. Aucouturier and Pachet [2] introduced similarity measures based
on a Gaussian model of the cepstrum coefficient. Cheng et al. [7] showed
some acoustic features related to human perceptions. Moreover, several meth-
ods based on machine learning and algorithmic approaches were proposed: a
method based on classification [46], string matching [4], learning binary codes
for music representations [50], and a path-based music similarity measure [19].
Urbano et al. [55] analyzed the reliability of the results in the evaluation of
music similarity. Some data-driven methods for calculating similarity were
proposed: using a classification model [17, 22], the metric learning [44, 60,
12], and transfer learning [22, 59]. McFee et al. proposed a training method
with sampling using collaborative filter data [44]. Furthermore, some methods
were proposed to learn embedding representation by deep metric learning us-
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ing labels or tags [47, 41, 48]. In these methods, music similarity is calculated
by evaluating a mixture of various sounds using a single criterion. However,
music has a complex structure with various significant elements, and what
users focus on when listening to music varies from user to user. The MIR
system with music similarity regarding multiple partial elements in musical
pieces enables users to select the element they want to focus on and flexibly
search for music.

We previously proposed a music similarity learning method based on each
instrumental part, where networks are trained for each instrument using single
instrumental signals with deep metric learning [24]. One limitation of this
method is the need for individual instrumental signals not only in training
but also in inference, where clean instrumental signals in the query piece the
users want to input are usually not publicly available. We also investigated
the use of instrumental signals separated from mixed signals, but using the
separated signals resulted in lower accuracy than using the clean instrumental
signals owing to artifacts.

Another potential approach is to extract an embedding representation for
each instrumental part directly from the musical piece. Several methods have
been proposed to extract several different conceptual representations from a
single input [3], for example, to disentangle the speaker identity and noise
in the speech domain [30, 29], timbre and pitch information in the music do-
main [31, 61, 53], and so on. Veit et al. [56] proposed Conditional Similarity
Networks (CSNs) in the image domain, which learn embeddings differenti-
ated into semantically distinct subspaces that capture the different notions of
similarities. Lee et al. [36] applied CSNs to the music domain and designed
an embedding space such that each subspace represents the four similarity
metrics: genre, mood, instrumentation, and tempo.

In this paper, we propose a method for calculating an instrumental-part-
based music similarity in one network using musical pieces as input by em-
ploying CSNs. The proposed network is trained with deep metric learning
to embed musical pieces into a differentiated embedding space, where each
subspace selected by a binary mask represents a musical feature when fo-
cusing on a particular instrumental part. To successfully train the network,
we implement new ideas for the training, such as the use of pseudo musi-
cal pieces, a norm loss, and pre-training. In the experiments, we investigate
whether more accurate embedding representations can be obtained using our
proposed method than using conventional methods, whether each subspace
holds the characteristics of the assigned instrument sounds, and whether the
learned similarity criterion matches human perception. The position of the
proposed method is shown in Figure 1.



Learning Separated Representations for Instrument-based Music Similarity 5

Practical settings

w4 b

&l

& il

Mixed signal & Ml

/ Musical piece A}‘z‘? ||||||| .

Clean instrumental signals (not publicly available)

N Conentcni mono: SRR - ... o S :
| i} e (ol o e | SEE
i e ¢ =y
| il Oy (o [ioae ] =8
g o =y |
| |48 ~{odei} mmafy | = |
; Separated instrumental signals Embeddings i § i

Figure 1: An overview of limitations in practical settings and the respective approaches of
the conventional method and the proposed method. The individual instrumental signals
used to create a musical piece (referred to as clean instrumental signals) are not available
publicly in general. In the previous study, estimated individual instrumental signals using
the source separation model (referred to as separated instrumental signals) were used as
input instead of clean instrumental signals, and individual embedding models were trained
for each. In this paper, we propose a method for extracting embedding representations
based on individual instruments by inputting mixed signals (equal to musical pieces).

2 Related Work

2.1 Instrumental-part-based Similarity with Individual Networks

In deep metric learning with a triplet loss [28], a distance metric is trained
with a triplet of samples, where one is considered as an anchor, and the other
two are considered as positive and negative samples. Here, the positive sample
should have a higher similarity to the anchor than the negative one does. Lee
et al. [36] proposed an unsupervised learning method for music similarity using
track information; temporal segments of the same musical track as the anchor
are defined as positive samples, and those of different musical tracks from the
anchor are defined as negative samples.

To achieve a highly flexible MIR system, we proposed a music similarity
learning method that focuses on each instrumental part [24]. In this method,
metric learning with triplet loss is applied to individual instrumental signals
such as drums, bass, piano, and guitar. We introduced an unsupervised learn-
ing approach similar to [36], where positive and negative samples are sampled
using track information as a substitute for similarity labels for individual
instruments. Different networks are separately trained for individual instru-
mental sounds. This method requires individual instrumental signals not only
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in training but also in inference, although clean instrumental signals in the
query musical piece the users want to input are usually not publicly avail-
able. Thus, we applied instrument signals separated from the mixed signals
through a music source separation method [26] to this method for evaluation
in practical use.

Letting xga), ml(-p), and xgn) denote embedding representaions of i-th anchor,
positive sample, and negative sample, respectively, we constructed the i-th
triplet as a set of {xga),xgp),xgn)}, where 7 = 1,...,I denotes the index of
training samples. The triplet loss is defined as

Etriplct (xga) ) xgp) ) xfn) )

= max{d(z\”, ™) — d(=™, 2") + 5,0}, (1)

(2

where d is a distance function for measuring the distance between two em-
bedding representaions, such as the Fuclidean distance, and ¢ is a margin
value, which defines the minimum distance between the positive and negative
samples.

2.2 CSNs

To measure the similarity between images considering multiple notions of sim-
ilarity, Veit et al. [56] proposed CSNs that learn embeddings differentiated
into semantically distinct subspaces that capture the different notions of sim-
ilarities. In the example where the input is an image of a shoe, the notions
of similarity are, for example, the height of the shoes heels and the suggested
gender of the shoes.

In this method, a network extracting an embedding representation is
trained by the triplet loss using masks. For the triplet loss, samples z(®,
z®) and 2™ are selected according to condition ¢ that is defined as a certain
notion of similarity. Namely, in the notion corresponding to condition ¢, z(P)
is more like 2(® than z(™. To differentiate the embedding space, a mask is
applied to all dimensions except the dimension corresponding to the notion to
be considered in the triplet loss calculation. The network is given by function
f(©), and m, is a mask that activates only the dimension corresponding to
condition c¢. The masked distance function between two images x; and z; is
given by

d(z, x5;5me) =[] f(z)me — f(z;)me ||z . (2)
Thus, the triplet loss can be written as

Ltriplet (Jj(a) 5 x(p) 3 x(n) 5 C)

= max{d(z®,z®;m,) — d(z®,2™; m,) + 4,0}. (3)
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Lee et al. [36] proposed the disentangled multidimensional metric learning
for music similarity using CSNs. They used musical genre, mood, instrument,
and tempo for the notions of similarity.

3 Proposed Method

3.1 Triplet Loss with Mask

In this study, the CSNs described in Section 2.2 are used, with each notion of
similarity defined as each instrumental-part-based similarity. We define ¢ as
the condition where ¢ = 0,1, 2, 3,4 represent the similarity based on drums,
bass, piano, guitar, and others, respectively, to differentiate the embedding
space into subspaces that each represent similarities based on individual in-
strumental sounds. Letting D be the number of dimensions of a subspace
assigned for one instrumental part, the subspace of the embedding assigned
to condition ¢ is f(z)[cD : (¢ + 1)D — 1], where f(x) is an output of the
network. The following formula defines each element of a (5 x D)-dimensional
vector m, as a mask that keeps the subspace corresponding to ¢ and sets the
other dimensions to 0, with k being the dimension index.

|1, (eDSk<(c+1)D)
Mek = { 0, (otherwise). (4)

The triplet loss in CSNs shown in Equation 2 is used for training with the mask
described above. An overview of the proposed method is shown in Figure 2.

3.2 Norm Loss

In our method, it is required to prevent any leakage of features of the in-
strumental parts to the unassigned subspaces. When the input music does
not contain some instrumental parts, we add the constraint to output a value
close to a zero vector in the subspace corresponding to those instrumental
parts. This constraint at least ensures that if the input does not contain some
instrumental parts, the corresponding subspaces do not contain any values
calculated from other instrumental parts’ signals.

We use the Binary Cross Entropy Loss (BCELoss) to satisfy this constraint.
The input of the BCELoss is a five-dimensional vector p;, whose values are
calculated from the norm of each subspace for x;. Each value of p;j;, (j =
0,1,2,3,4) is calculated by taking the logarithm to the norm of the masked
embedding f(z;)m., (¢ = j) and then adding a learnable parameter b;:

pij = o(log(||f(z:)myl|2) + b;), (5)
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Figure 2: Overview of the proposed method. z(®, 2(P), and 2(") denote the anchor, positive,
and negative samples, respectively. “Dr.,” “Ba.,” “Pi.,” “Gu.,” and “Ot.” are drums,
bass, piano, guitar, and others, respectively. This figure shows an example of setting the
condition to ¢ = 3, i.e., similarity focusing on the guitar part, where an anchor sample z(?)
and a positive sample z(®) are similar, and an anchor sample z(® and a negative sample
z(™ are dissimilar when focusing on the guitar part. From each sample, the embedded
representation is extracted by the network and is masked so that the subspace to which the
guitar is assigned only validates in the triplet loss calculation.

where o(z) = H% The target is a five-dimensional multi-hot vector q; that
is set to 1 if each instrumental sound is included in the input and 0 if not:

)L (Pavg(z4i5) > threshold)
%=1 0, (otherwise),

(6)

where P,,, means a time average power of the signal, and z;; is a clean
individual instrumental signal contained in x;, where the subscript represents
each instrument. When p; computed from the i-th anchor :cga) is denoted as
pga), and in the same way for a positive sample and a negative sample, the
formulation of the norm loss is as follows.
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Enorm (xga) ) fﬂgp) ) xgn) )

]' a a
= S {BCE®”.q/")
+ BCE(P o)
+BCE(p"” ,q/")},

BOB(p,a) = £ Y {a;logr; + (1 — 0;)log(1 — py)) @
=0

This procedure is shown in Figure 3. Note that we use not only the observed
silent sections for each instrumental part but also the created silent sections,
i.e., we arbitrarily mix only some instruments from the instruments contained
in a musical piece to equalize the total time of each instrumental sound in-
cluded in the train data.

mask mask mask mask mask

L2 norm L2 norm

[® 0,0 8, 0]
log — +b — sigmoid
output  [Po» P1, P2, D3, P4l
I Binary Cross Entropy Loss
target [1,0,1,1,0]

Figure 3: Procedures for calculating norm loss. This is an example of when a sound
containing only drums, piano, and guitar is input, where the bass’s subspace and other’s
subspace are trained to be close to the zero vector.

3.3 Training Network

The final loss function £ is as follows, where A is the hyperparameter that
weights the loss function Lyom. Note that this loss function is averaged
within the mini-batch.

L= L:triplct + )\Enorm (8)
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3.4 Pseudo Musical Piece

As mentioned in Section 3.1, we need to sample triplets for each notion of
similarity, i.e., a similar/dissimilar pair focusing on each instrumental part.
However, there is no label that evaluates whether musical pieces are similar
to each other focusing on each instrumental part. Therefore, we use the un-
supervised learning method similar to the previous methods. However, using
the track information as a label, as illustrated in Figure 4, is not appropriate
to obtain distinct representations for each notion of similarity. This is be-
cause the labels used for training the respective subspaces are the same over
all subspaces for a single input, even though the goal is to represent multiple
distinct representations from one input.

positive +

anchor +

e b —NIM

Figure 4: How to create a triplet using track information with the dataset musical pieces
instead of pseudo musical pieces. We show the example of combining only some instruments
for the calculation of the norm loss.

To successfully train the separated subspaces, we propose a method to
create a pseudo musical piece for input by mixing instrumental signals in
different musical pieces. For example, when the drum sound contained in
piece A is called drum sound A, a pseudo musical piece can be created by
mixing the drum sound A with other instrumental sounds from another piece
B. We denote this piece’s label as (A, B)(@¢5¢) and also call this piece with
the drums label A. By this method, we can create a pair such as one that has
the same drum label but different guitar labels. To distinguish the pseudo
musical pieces, we refer to the original musical pieces included in the dataset
as dataset musical pieces throughout this paper.

3.4.1 Basic Triplet

Considering that musical pieces with the same label for a particular instru-
ment are similar to each other on that instrument, a triplet sample can be
created. We can say that segment 1, randomly extracted from the musi-
cal piece with label (A, B)(dr’else), and segment 2, randomly extracted from
the musical piece with label (A,C)(dr’else)7 are similar in drum sounds but
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dissimilar in sounds other than drums. On the other hand, segment 1 and
segment 3 with label (D, B)(de1s¢) are dissimilar in drum sounds but similar
in other sounds. Therefore, segments with label {(A, B)(drelse) (A (C)(dr.else)
(D, B)(drelse)1 can be used as an anchor, a positive sample, and a negative
sample in learning with condition ¢ = 0. We can also sample the triplets for
other conditions ¢ = 1,2,3,4 in the same way. The triplets extracted in this
way are called the basic triplets.

3.4.2 Additional Triplet

We further add triplets of interchanged positive and negative samples under a
condition other than that of the basic triplet to allow each subspace to explic-
itly learn a different similarity criterion. The anchor and the negative sam-
ple in the above example, the segments from pieces with labels (A, B)(dr’else)
and (D, B)(dn‘alse)7 are dissimilar in drum sounds but similar in instrumental
sounds other than drum sounds. Thus, samples with label {(A,B)(dr.else)
(D, B)(drelse) (A C)(drelse)l can be used as an anchor, a positive sample, and
a negative sample in learning with condition ¢ # 0. By randomly selecting
¢ from those that are different from the basic triplet, an additional triplet is
created for each basic triplet.

An example of these triplet extraction processes is shown in Figure 5.
Note that negative samples in the basic triplet are selected in such a way
that additional triplets can be constructed. Specifically, in this example, the
instrumental sounds other than drums share the same labels as those of the
anchor.

3.5 Pre-training

We introduce pre-training to start training from a better initial value than a
random value, enabling the above learning methods to be effective. We train
the network with the Mean Squared Error Loss (MSELoss) using the output of
the individual instrumental-part-based similarity network [24] as the ground
truth for each subspace. Namely, the concatenation of g;(z;;) is the target
of pre-training, where g;(-),(j = 0,1,2,3,4) are denoted as the individual
networks corresponding to drums, bass, piano, guitar, and others. For the
same reasons explained in Section 3.2, the ground truth sub-embedding is set
to the zero vector if the input musical piece does not contain the corresponding
instrumental sound. Figure 6 shows a way of creating the target embeddings.
x;; is the clean instrumental segment of instrument j contained in the i-th

the dataset musical piece’s segment z;. y—Hz is the target embedding for the

lly:
network training, which is created by concatenating embeddings extracted

from z;;,(j = 0,1,2,3,4) using the individual networks and divided by the
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Figure 5: How to create the basic triplet and the additional triplet with pseudo musical
pieces. Each color represents an ID in the dataset musical piece, and four musical pieces are
randomly selected from the same tempo class in the train set, and pseudo musical pieces
are created using the individual instrument signals in them. When these triplet samples
are input, two losses are calculated: a loss where the upper sample is calculated to be close
to the anchor in the drum space, and a loss where the lower sample is calculated to be close
to the anchor in the piano space.
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Figure 6: Procedures for pre-training. The network f is trained so that its output is close
to the target by the MSE loss. The input of the network is the segments of the dataset
musical pieces. The target is the concatenation of embeddings extracted from the individual
networks.

norm. The formulations of the loss function of pre-training £, and the target
embedding are as follows:

Epnta) = (1) - y)

i ll2
Yiv = 95 (@ij)k, (G0 = k < (5 + 1)D). (9)

This loss function is averaged within the mini-batch.
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4 Experimental Evaluation

4.1 Ezxperimental Conditions
4.1.1 Dataset and Input Features

The dataset we used is Slakh2100 [43], which contains non-vocal musical pieces
and their stems. Following Slakh’s recipe, individual instrumental sounds,
namely, drums, bass, piano, and guitar sounds, were created from their stems,
and the stems that did not fit into any of the four instruments were mixed as
“others.” We used the reduz subset of Slakh2100, which is created by omitting
some tracks so that each MIDI file only occurs once. The redux subset has a
total of 1710 tracks: 1289 in train, 270 in validation, and 151 in test.

We used the 200 dataset musical pieces and their clean instrumental sounds
in the training set in pre-training, both for training the proposed network with
Lore and training individual networks [24]. Moreover, the pseudo musical
pieces for training were created with the instrumental sounds contained in
the 1200 musical pieces in the training set for training with Liyipiet. The 270
musical pieces in the validation set were used to crerate the pseudo musical
pieces for validation. The Slakh test set was used for testing, but musical
pieces with the shortest non-silent sections in individual instrument sounds
were excluded one by one until 10% of the musical pieces were removed, after
which 136 pieces were used.

When creating the pseudo musical pieces, the dataset was classified into 36
classes according to tempo, and the instrumental sounds contained in musical
pieces belonging to the same tempo group were allowed to be mixed together
to preserve the music-like nature of the music. Under this rule, multiple
different pseudo musical pieces containing the same instrumental sound were
generated. The 5000 triplet pseudo musical pieces were randomly created
every epoch using 1200 musical pieces for metric learning with Lriplet-

Both the dataset musical pieces and pseudo musical pieces were divided
into three-second segments for pre-training and training with 50% overlap,
three-second segments without overlap for validation, and 3-, 5-, and 10-
second segments without overlap for testing. All segments were converted
to dB-scaled mel-spectrograms with 2048 window length and 512 hop length,
normalized, and used as input for the training, validation, and testing.

4.1.2  Network

We used the network shown in Figure 7, which had 10 convolutional layers
with batch normalization and ReLLU, and Max pooling applied every two con-
volutional layers. The encoder portion of U-Net [49, 34] was referenced. This
network was trained to extract a 640-dimensional embedding vector from a
mel-spectrogram as embedding representations. The 640-dimensional embed-
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Figure 7: Network architecture. “chl” and “ch2” denote the channel number, and “xk” and
“s” denote kernel size and stride, respectively. “Conv” and “FC” denote the convolutional
and fully connected layers, respectively. “Time Ave.” means to take an average in the time
direction. The numbers above input, output, and “FC” are their sizes. “t” is calculated by
multiplying the number of seconds by the sampling rate and dividing it by the hop length.

ding representation was aimed to have 128-dimensional subspaces assigned to
each of the five instruments. The subspaces were assigned to drums, bass,
piano, guitar, and others in order of increasing dimensions.

4.1.8  Pretraining Conditions

For each instrument, a Convolutional Network was trained as an individual
network as in the previous study [24]. Then, we pre-trained the network
shown in Figure 7 using the segments of the dataset musical pieces as inputs
and the concatenations of outputs of individual networks as targets. We used
the clean instrumental sound segments as input for the individual networks
both in training and inference to create the target embeddings.

4.1.4  Training Conditions

The weighting parameter A between two losses Liyiplet and Lyorm Was set to
0.1. The margin of the triplet loss function, the number of epochs, and the
batch size were set to 0.2, 1000, and 32, respectively.

4.1.5 Baseline Model

We used our conventional method [24] as the baseline model. In our previous
study, we tried using both clean instrumental signals and separated instru-
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mental signals as input, but in order to make the conditions the same as in
this study, where mixed signals are used as input, we used the method of
using separated instrumental signals as the baseline. Following the previous
study, we used the Spleeter [26] for the sound source separation method and
used the separated signals as input for both training and inference.

4.2 FEvaluation Method

We conducted experimental evaluations to investigate whether the following
purposes of this study were achieved: (P1) to learn an embedding representa-
tion in which similar pieces are close and dissimilar pieces are far from each
other more accurately than the conventional method, (P2) to output the sim-
ilarity focusing on each instrumental part in the subspace assigned to each
instrument, (P3) to ensure that the constraints imposed to be satisfied during
training are also satisfied during inference, and (P4) to learn similarity criteria
corresponding to human perception.

4.2.1 Accuracy of Embedding Representation

In the evaluation on P1, we used the accuracy of music ID prediction with the
dataset musical pieces in the same manner as the evaluation in the previous
study [24]. This evaluation was based on the assumption that instrumental
sounds that consist of different time segments of the same musical piece should
be more similar than those of different musical pieces. Note that subjective
evaluation experiments later confirmed whether this assumption fits the hu-
man senses. Specifically, we used the K-nearest neighbor (kNN) method to
predict the music IDs of the test segments’ representations. Let the segment
to be predicted be called the target, and the music IDs of all test segments’
representations except the target were assumed to be known. We predicted
the music ID of the target by a majority vote using the IDs of the top five
nearest test segments’ representations, and this was done for all musical pieces
in the test set. To evaluate each instrument’s representation, we extracted it
by using only the corresponding subspace with masking, inputting the dataset
musical pieces with our proposed method. For the evaluation of the conven-
tional method, the same musical pieces were inputted into the source sep-
aration model [26] according to the previous study [24], and the separated
signals were input into each individual network to extract each instrument’s
representations.

4.2.2  Capability to Represent Separated Embeddings

We evaluated the accuracy of the embedding representation of each subspace
in Section 4.2.1 but did not evaluate whether each subspace is separated by
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the instrument. The inputs in the evaluation in Section 4.2.1 had the same
label for all instruments because they were the dataset musical pieces. For
example, if a piano feature leaked into the drum space, we were still able to
predict the correct drum label using that feature.

In the evaluation on P2, the pseudo musical pieces were created using
the musical pieces in the test set by the same method as described in Sec-
tion 3.4. The kNN-based label prediction by the same method as described
in Section 4.2.1 was conducted for the test pseudo musical pieces, where
not only the target but also other segments divided from the same pseudo
musical piece as the target were removed from the reference. For exam-
ple, in the evaluation of the drums subspace, the test musical pieces with
the same drum label and different other instrument labels were created, as
{(A7 B)(dr,else), (A’ C)(dr,else)’ (A7 D)(dr,else), (A, E) (dr,else)’ (F7 G)(dr,else)’
(F,H)(drelse) 1 The correct drum label of a target, a segment from the
musical piece with the label (A,B)(dr’dse), is “A” but other segments from
the musical piece with (A, B)(dr¢15¢) cannot be referred. Hence, only when
segments from (A, C)(drelse) or (A D)Arelse) op (A E)(drelse) were close to
the target (even though they have different labels except for drums), the pre-
diction works well. If the drum subspace contains the piano’s feature, the
prediction is affected by that and can be wrong. This is because segments
that are similar on the piano to the target but have different drum labels
come close to the target. This can detect the leak and correctly evaluate the
capability to represent separated embeddings. We created 40 pseudo musical
pieces with 10 labels for each instrument; in other words, four different pseudo
musical pieces per label, and divided them into segments.

4.2.3 Instrumental Sound Identification Accuracy

To confirm that the training with the norm loss described in Section 3.2 was
successful (P3), we evaluated it with the instrumental sound identification
task. We performed this to verify that the subspace corresponding to instru-
mental sounds not included in the input was close to the 0 vector, i.e., that
the information for each instrumental sound did not leak into the subspace to
which it did not correspond.

When a clean instrumental signal was input, a five-dimensional vector was
calculated such that the j-th element had the norm of the masked embedding
f(z)m;, and the index with the largest value of the vector was denoted as
the prediction of the type of instrumental sound for that input. We made the
above predictions using the clean instrumental signals of the musical pieces
in the test set and calculated the percentage of correct answers for all instru-
ments.
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4.2.4  Correlation Between Distance Matrices

In our method, f(z;;), the output when inputting the instrumental sound
x;j, and f(z;)m;, the masked embedding when inputting a musical piece
x; containing that instrumental sound x;; should represent the same feature.
We confirm whether our model had a correlation between these embeddings
focusing on similarity relationships between musical pieces (one of P3). We
calculated the two distance matrices between representations of all segments
of the test set (the dataset musical pieces) for f(z;;) and f(z;)m;. Then, we
flattened them to single vectors and calculated the correlation between them.

In contrast to the above, a very high correlation between different sub-
spaces may have resulted in a meaningless space that expresses the same
feature in all of them when inputting the mixed sound. Correlations between
two subspaces when inputting the mixed sound were also calculated to ver-
ify the difference between similarity criteria in subspaces (one of P3). Each
distance matrix was calculated using f(z;)m;, and the correlations between
distance matrix pairs were calculated in the same manner as above.

4.2.5 Subjective Evaluation

Subjective evaluation experiments through a listening test [25] were conducted
to confirm whether each subspace represented a similarity criterion such that
the distance between sounds was small enough that humans would perceive
them to be similar when listening to each assigned instrumental sound (P4).
The procedure of the listening test is as follows.

Subjects were presented with three audio tracks of instrumental sounds, X,
A, and B, and listened to all of them. They chose A+ if they perceived A to
be more strongly similar to X than B, A— if slightly, B+ if they perceived B
to be more strongly similar to X than A, and B— if slightly, on the basis of the
following four perspectives: timbre, rhythm, melody, and overall similarity.

In each answer, they can select N/A from up to two perspectives except
for overall. The following instruction was provided with the subjects: “You
can select N/A if A and B are similar/dissimilar to X of equal degree, or the
presented instrumental sound has no element corresponding to the perspective;
e.g., drums have no melody.”

We prepared two types of sample sets, test 1 and test 2. For test 1, we
randomly selected three different musical tracks {x;,a;, 8;} and randomly
captured five-second segments from each instrumental sound contained in the
three tracks, respectively. Then we obtained one sample set for each instru-
ment, {X, A, B}={x;;’s segment, «;;’s segmant, /3,;’s segment}. The subscript
j represents each instrument (j =0, ...,4), with 0 representing drums, 1 bass,
2 piano, 3 guitar, and 4 others. For example, XEO) means the drum sound
contained in the musical piece y;. This selection was repeated four times
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(i=0,...,3), and 20 sample sets were created. For test 2, we used the same X
as in test 1, and one of the other two samples was taken from a different time
frame of the same song as X. Namely, we randomly selected ; from the test
music tracks excluding x; and replaced «;, 8; with x; and v; (in no particular
order). The process was repeated in the same way, and 20 sample sets {x;;’s
segment 1, x;;’s segment 2, ~;;’s segment} were created. It was randomly
determined whether this set was {X, A, B} or {X, B, A}. Thus, a total of 40
sample sets were created, and these were used as one listening test set.

This procedure was repeated with a random selection of sample sets, creat-
ing a total of 60 listening test sets. Experiments were conducted by recruiting
participants through CrowdWorks [14]. The valid answers from a total of 632
subjects (281 unique subjects) were obtained, and for all 60 sets, valid answers
from at least six different subjects were obtained.

We calculated whether A or B was closer to X using our proposed model
for the same set as that used in the listening test and then calculated the
matching rate between the model’s results and the subjects’ results. The
model’s results were obtained as follows: The music tracks originally contain-
ing the instrumental tracks (A, B, and X) used in the listening test were input
into the model, and then the distance was measured by applying a mask that
leaves only the subspace corresponding to the target instrument. Then, the
result was the one with the smaller distance from A or B to X. On the other
hand, the subjects’ results were obtained as follows: A+ and A— were treated
as the same answer, A. The same applied to B. Sample sets with less than
80% agreement among subjects were eliminated in the evaluation because the
sample set with a low agreement rate among the subjects may be equally
similar/dissimilar to X for both A and B. If N/A accounts for the largest
percentage (even over 80% agreement), that sample set was also eliminated.
All answers to the remaining sample set, A or B, were used as the subjects’
results.

4.3 Results
4.8.1 Accuracy of Embedding

The accuracy of the predicted music IDs is shown in Table 1. The table
shows the results when 3, 5, and 10 s of data were used as input for infer-
ence. Each row represents the instrument to focus on. The column for the
proposed method shows the results of inference using only the subspace to
which the focused instrument sound is assigned. In contrast, the column for
the baseline shows the results of inputting the separated instrument signals
to the individual networks.

It can be seen that the baseline using separated instrumental signals is
affected by sound quality degradation due to separation, and the accuracy
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Table 1: kNN-based classification accuracy using each embedding representation. The
lines “proposed” and “baseline” show the results using the proposed method and using the
separated signals as input to the individual networks of the conventional method [24].

Input: 3 s of data Input: 5 s of data Input: 10 s of data
instrument | proposed[%] | baseline[%] | proposed[%] | baseline[%] | proposed[%)] | baseline[%)]
drums 84.73 94.00 86.84 95.24 88.91 94.62
bass 51.01 51.78 59.20 61.54 64.87 70.32
piano 77.21 39.40 82.00 43.27 84.30 45.30
guitar 76.50 - 80.18 - 82.70 -
others 82.84 - 83.34 - 82.20 -

Table 2: kNN-based classification accuracy using the pseudo piece. The baseline is our
conventional method [24]. The “norm,” “psd,” “basic,” “add,” and “pre” mean using the
norm loss, the pseudo musical pieces, the basic triplets, the additional triplets, and the
pre-training, respectively. xWhen learning without the pseudo musical pieces, the basic
triplet sampling method is shown in Figure 4, and the additional triplet cannot be created.
Only the results of the five-second segment are shown.

Method Instrument|%]
baseline norm psd basic add pre || drums | bass | piano | guitar | others
v 90.19 |40.00 | 41.28 -

v || 84.31 | 34.65 | 33.72 | 41.46 | 71.06
v ox 83.54 | 17.88 | 24.87 | 29.12 | 26.14
VoK 88.99 |19.54 | 26.99 | 32.18 | 31.63
vOox V' || 90.19 | 14.66 | 26.73 | 31.26 | 42.55
v 92.64 | 55.69 | 56.09 | 38.00 | 65.95
v 92.43 |60.47 | 64.04 | 54.27 | 76.28
v 95.91 | 63.08 | 58.97 | 52.25 | 80.74
v 95.80 | 61.91 | 67.37 | 57.32 | 80.69
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of embedding representation degrades, especially on piano with low separa-
tion accuracy [24]. In contrast, the proposed method shows stable accuracy
regardless of which instrument is focused on. An example of the subspace
is shown in Figure 8. It can be seen that segments from the same musical
piece constitute a cluster and that the subspace can be learned with different
distance relationships between the musical pieces.

4.8.2  Capability to Represent Separated Embeddings

Table 2 shows the evaluation results for each subspace using pseudo musical
pieces. We can see that our proposed method, including pre-training, creating
the pseudo musical pieces, and training with the additional triplets, is effective,
and using a combination of these methods can lead to higher scores than
conventional methods.

The result (b) shows that the pre-trained model performed better than
random prediction but worse than the conventional method. The results (c)—
(e) show that the models trained without the pseudo musical pieces (Figure 4)
did not work well even when used with the norm loss and the pre-training.
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Figure 8: Examples of visualized embedding representations extracted from five-second
segments in the test set of the dataset musical pieces. We used t-SNE [42] to compress the
640-dimensional embedding representations to two-dimensional representations. Different
time frames from the same musical piece are plotted with the same color.

Considering that only the drum score is high, these results suggest that all
subspaces represent the drum’s feature, which is consistent with the concern
raised in Section 3.4 that all subspaces might be learned on the same criteria.
We can see that the models trained with the pseudo musical pieces work
well as shown in the results (f)—(i), and the additional triplet can improve the
accuracy as shown by comparing (f) and (g); the pre-training also can improve
the accuracy as shown by comparing (f) and (h), especially in low-accuracy
instruments. These results mean that these methods can help separation for
each subspace.
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All five-second segments divided from the 40 pseudo musical pieces used in
the test are plotted and visualized in two dimensions in Figure 9 and Figure 10.
It can be seen that the pieces with the same instrumental sound labels are
close to each other.
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Figure 9: Examples of visualized embedding representations extracted from five-second
segments in the test pseudo musical pieces. In each instrument, the same color represents
the same instrument label. A set of segments plotted in the same color for one instrument
includes segments with different labels for other instruments. For example in (a), a segment
with label (A, B)(d¢15€) and a segment with label (A, C)(dr:e15) are plotted with the same
color as they have the same drum label. This also includes segments with exactly the same
label, such as (A,B)(drelse) and (A, B)(drelse) which are different time frames from the
same musical piece. We can see in Figure 10 the visualization when different colors are
assigned to segments that have the same instrument label but different labels for other
instruments.
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Figure 10: These are the same results as in Figure 9 but the color coding is different, where
only segments with the same label for all instruments are plotted in the same color. For
example in (a), a segment with label (A, B)(dr:¢1s¢) and a segment with label (A, C)(drelse)
have the same drum label but are plotted with different colors. The color map in this figure
denotes such labels with A-1, A-2, etc. When evaluating by kNN using the pseudo musical
pieces in Section 4.2.2, the same color in Figure 9 was regarded as the same label, but
segments with the same color in this figure were not used for reference.
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4.8.8 Instrumental Sound Identification Accuracy

Table 3 shows the results of instrumental sound identification accuracy. The
pre-training is effective for making the unsounded instruments’ subspaces zero
vector. Using the norm loss can also improve the accuracy. We can see
that only the corresponding subspace retains the values when inputting the
individual instrumental sound as in Figure 11.

Table 3: Instrumental sound recognition rate when each individual instrument sound is
input. “wo/pre” means using pre-training, and “wo/norm” means using norm loss. Each
line name can be rephrased corresponding to the results in Table 2 as follows: “wo/pre,
wo/norm,” to psd+basic+add, “w/pre, wo/norm,” to psd+basict+add+pre, and “w/pre,
w/norm,” to norm+psd+basic+add+pre.

drums (%) bass (%) piano (%) guitar (%) others (%)

wo/pre, wo/norm 40.27 0.39 67.00 10.10 10.75
w/pre, wo/ norm 67.94 76.89 78.65 67.01 95.66
w/pre, w/ norm 84.48 96.04 90.27 76.85 92.24

4.8.4  Correlation Between Distance Matrices

Table 4 shows the correlation between the distance matrix when an individual
instrument sound is input and the distance matrix when a mixed sound con-
taining that instrument sound is input and masked. It can be seen that the
correlation is higher when pseudo musical pieces were used, which suggests
that using pseudo musical pieces can help each subspace represent the target
instrumental feature. A visualization of the two distance matrices is shown in
Figure 12 taking the drums as an example. We can see a similar pattern in
the similarity between the musical pieces both when the instrumental signals
are input and when the mixed signals containing them are input and masked.

Table 4: Correlation between distance matrices in the same subspace with individual in-
strumental sound input and with mixed sound input. Each line name can be rephrased
corresponding to the results in Table 2 as follows: “wo/psd” to norm+basic+pre, and “w/
psd” to norm+psd-+basic+add+pre.

drums  bass piano  guitar  others
wo/ psd 0.6418 0.2357 0.1651 0.3777 0.2743
w/ psd 0.6159 0.4782 0.3608 0.4115 0.3243

Table 5 shows the correlation between pairs of distance matrices across
the subspaces. The results with the individual network with clean individual
instrumental sound input, shown for reference, show low correlations, indicat-
ing that the correlation of embedding for each instrument should inherently
be low. However, without the pseudo musical pieces, the correlation between
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Figure 11: For each instrument, absolute values are taken for the output embeddings (with-
out masking) when inputting five-second segments of the individual instrument sounds in
the test set, and stacked vertically. The vertical axis is the index of segments, and the
horizontal axis is the index of dimensions.

subspaces is high, indicating that all spaces are learned with the same criteria.
The correlation for the proposed method using the pseudo musical pieces is
low, which suggests that the proposed method using the pseudo musical pieces
can learn the instrument-dependent features in each subspace.

4.8.5  Subjective Evaluation

The matching rate with the answers on overall was high for rhythm and
melody, but low for timbre. In other words, different labels were assigned
to the same sample set when focusing on timbre compared to focusing on
overall. Therefore, we evaluated the model using these two types of answers.

The results are shown in Table 6, and the number of answers for each
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Table 5: Correlation between pairs of distance matrices across the subspaces. The “wo/psd”
and “w/psd” represent the same mean as Table 4.

w/ individual clean sound (reference)

drums bass piano guitar others
drums - 0.000112 0.0133  0.0509  0.0123
bass - - 0.0320  0.0567  0.0531
piano - - - 0.135 0.209
guitar - - - - 0.156
others - - - - -
wo/ psd
drums bass piano guitar others
drums - 0.610 0.359 0.224 0.226
bass - - 0.444 0.323 0.434
piano - - - 0.304 0.460
guitar - - - - 0.246
others - - - - -
w/ psd
drums bass piano guitar others
drums - -0.0298  -0.100  -0.00900 -0.0929
bass - - -0.0488  0.0309 0.0315
piano - - - -0.170 0.0697
guitar - - - - 0.00354
others - - - - -

1.00
0.75
0.50
0.25
-0.00

(a) Using the drums subspace representa-
tion with drums sound input

(b) Using the drums subspace representa-
tion with mixed sound input

Figure 12: Distance matrices between the representations of segments from musical pieces
in the test set. Here, we show an example of 10 musical pieces. This is the result of the
model trained using the pseudo musical pieces; “w/psd”.

instrument on the two perspectives are shown in Table 7. We can see from
Table 7 that there is more agreement among subjects in their answers in test
2 than in test 1. Moreover, there are fewer answers for timbre than for overall
because the subjects cannot select N/A for overall, but they can for timbre,
and here, N/A (after taking agreement) is omitted from the evaluation.
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Table 6: Matching rate between the model’s results and subjects’ results focusing on overall
and timbre, respectively. The baseline is our previous method [24].

Evaluation with answers on overall (%)
drums bass piano guitar others

test 1
baseline | 56.5+3.3 56.0£3.2 58.44+3.4 - -
proposed | 56.74+3.3 68.3+3.1 57.7+3.4 61.7+3.2 60.0+3.1

test 2
baseline | 95.5+1.0 83.8+£1.8 74.1£1.9 - -
proposed | 95.74+1.0 89.14+1.5 88.7+1.4 93.0+1.2 92.5+1.3

Evaluation with answers on timbre (%)
drums bass piano guitar others

testl
baseline | 61.6+4.6 55.0£4.9 59.1£5.5 - -
proposed | 66.1+4.5 69.3+4.7 70.6+£5.2 73.844.5 64.7+4.8

test 2
baseline | 96.24+1.0 81.7£1.9 74.5+1.9 - -
proposed | 96.5+0.9 87.44+1.6 89.4+1.4 93.7+1.2 93.6+1.2

Table 7: Number of answers using results with 80% agreement among subjects focusing on
overall and timbre, respectively.

Evaluation with answers on overall
drums bass piano guitar others
test 1 912 949 836 925 977
test 2 | 2143 1792 2082 2096 1926

Evaluation with answers on timbre
drums bass piano guitar others
test 1 463 420 330 412 414
test 2 | 1926 1745 2044 1993 1892

As shown in “set 2” in Table 6, different time segments within the same
piece are perceived by humans as similar to each other, and their distances
are also small in the distance metric learned by the proposed method.

Compared with the baseline [24], the matching rates of the proposed
method for the drums and bass are comparable, and that for the piano is
better.

Although test 1 is less accurate than test 2, accuracy is improved in drums,
piano, and guitar in the evaluation using answers focusing on timbre com-
pared with using answers focusing on overall. This suggests that the model
is trained to represent similarity mainly focusing on timbre. There are two
possible reasons for this. First, since the model is trained using different tem-
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poral segments of instrumental sounds from the same musical piece as positive
examples, it may learn to minimize the distance between segments with dif-
ferent melodies. This suggests that the model potentially learns to ignore
melodic information. Second, the embeddings of relatively short segments,
i.e., three seconds, are temporally averaged, which likely discards the sequen-
tial structure of the melody. Additionally, rhythmic information may also
be lost during this process. As a result, the model tends to capture timbral
characteristics that remain consistent in the time direction of features. We
consider that if we can design a model that captures the structure of the time
direction so that melody and rhythm can be considered, it will be possible
to obtain a music similarity that is also compatible with human perception
when focusing on the overall similarity.

5 Conclusions

In this paper, we proposed a method of computing similarities focusing on
each instrumental sound using mixed signals as input in one network, which
extracts a single similarity embedding space with separated dimensions for
each instrument using CSNs. To successfully train the network, we imple-
mented new ideas for the training, such as the use of pseudo musical pieces, a
norm loss, and pre-training. Experimental results showed the effectiveness of
our strategies and that the selection of similar musical pieces focusing on each
instrumental sound by the proposed method can obtain human acceptance,
especially when focusing on timbre. Future work is to design a model that
captures the structure of the time direction so that melody and rhythm can
be considered.
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