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ABSTRACT
With the increasing application of deep neural networks (DNN) in
personal and property security-related scenarios, ensuring the in-
terpretability and trustworthiness of DNN models is crucial. Con-
cept Bottleneck Models (CBMs) improve interoperability by pre-
dicting human-understandable concepts in the hidden layer for the
final task, but they face challenges in efficiency and interpretabil-
ity in multi-label classification (MLC) of concepts, such as ignor-
ing concept correlations or relying on complex models with limited
performance gain. To address the challenge of massive parameters
and limited interpretability in the concept MLC problem, we pro-
pose a novel Visual-Projecting CBM (ViP-CBM), which re-
formulates the MLC of concepts as an input-dependent binary clas-
sification problem of concept embeddings using visual features for
projection. Our ViP-CBM model reduces the training parameter
set by more than 50% compared to other embedding-based CBMs
while achieving comparable or even better performance in concept
and class prediction. Our ViP-CBM also provides a more intuitive
explanation by visualizing the projected embedding space. Addi-
tionally, we propose an intervention method for our ViP-CBM,
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which is shown to be more efficient than other embedding-based
CBMs under joint training by experiments.

Keywords: Concept bottleneck models, multi-label classification, visual pro-
jection

1 Introduction

As deep neural networks (DNNs) are increasingly used in scenarios concerning
personal and property security, such as healthcare, automatic driving, and
financial services, the trustworthiness and interpretability of DNNs have been
increasingly significant, bringing explainable AI (XAI) to the forefront.

Recent advances in XAI have increasingly focused on concept-based ap-
proaches, which aim to enhance the interpretability of DNNs by leverag-
ing human-understandable concepts. These researches follow two routines:
post-hoc explanation techniques and human-interpretable modeling strategies.
Post-hoc methods, such as LIME [33] and SHAP [25], focus on interpreting
already-trained black-box models by identifying the most crucial features of
the input data that support the model’s decision. Network Dissection [2] went
further in post-hoc methods, attempting to interpret image classification by
examining features in all intermediate layers of convolutional neural networks
(CNNs). Testing with Concept Activation Vectors (TCAV) [16] generates acti-
vation vectors for concepts of interest using a Support Vector Machine (SVM)
to classify the feature vectors in the hidden layer of a pretrained DNN and
provide concept-based explanations by quantifying the sensitivity of model
predictions to the concepts according to the CAVs. However, there are fun-
damental limitations in fully explaining end-to-end DNNs through post-hoc
explanations alone [34]. These methods cannot align these features extracted
by end-to-end trained black-box models perfectly with human cognition [16],
leaving a gap in achieving comprehensive interpretability.

In contrast, human-interpretable modeling seeks to construct DNNs with
inherent interpretable inference processes based on concepts. These models
are trained to provide supportive information in the intermediate layers with
additional supervision. Concept-based models have emerged as a popular ap-
proach within this category, providing explanations of the model’s decisions
through high-level concepts. Concept Whitening [6] performs affine transfor-
mations in the latent space to align axes with concepts of interest. Pan and
Zhang [29] propose assigning specific concepts to different layers of a CNN,
progressing from low-level features (e.g., colors, textures, etc) to high-level
semantics (e.g., objects). While these methods provide layer-wise concept ex-
planations, they often require massive annotation, incur significant training
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costs, and suffer from scalability issues due to quadratic parameter growth
with concept numbers [51].

In this work we focus on a pivot concept-based framework interpretable im-
age classification, the Concept Bottleneck Model (CBM) [19]. CBMs decouple
the inference process into two phases: (1) predicting human-understandable
concepts from the input images and (2) utilizing these concepts exclusively
for final class prediction. CBM is a simple and useful interpretable deep
model since it enables humans to understand the decisions of the model with
concept predictions and allows test-time intervention to improve accuracy in
downstream tasks by correcting false concept predictions.

However, conventional CBMs face critical limitations when scaling to com-
plex multi-concept scenarios. As the bottleneck of CBM, concept prediction in
conventional CBMs typically employs independent binary classifiers for each
concept and neglects the correlations in concept semantics, leading to sub-
optimal accuracy and compromised interpretability when dealing with large
concept sets. To address this issue, recent researches employ sophisticated ar-
chitectures to capture inter-concept dependencies. Havasi et al. [9] propose an
autoregressive architecture inspired by the classifier chain [32] in multi-label
classification (MLC) to capture correlations among concepts, which improves
concept accuracy and task accuracy significantly. Xu et al. [46] employs an
energy-based probabilistic graph to learn the relevance of concepts through
inferences with gradient descent. However, the above methods involve more
parameters and more complex model structures and require extensive calcula-
tions in gradients and samplings but achieve only limited performance gain.

To improve the efficiency and interpretability of the MLC problem in
concept prediction, we propose Visual-Projecting Concept Bottleneck
Models (ViP-CBM). Inspired by [47], our work uniquely employs visual
features extracted from input images as projecting matrices on the concept
embedding space. The projected embedding vectors of the concepts are bi-
nary classified as activated or not by a unified linear classifier, as is shown
in Figure 1. Through the visual-projecting (ViP) module in ViP-CBM, we
convert the MLC problem in concept prediction into an input-dependent bi-
nary classification problem, which intuitively explains the classification with
the projection mechanism and attains better interpretability. Our ViP-CBM
reduces the parameters in concept prediction to that of a scalar-CBM where
the hidden layers directly represent the concept’s activation probability.

The contributions of our work are as follows:

• We propose an interpretable ViP module for image multi-label classifi-
cation to convert MLC problems into binary classification problems in
the embedding space of labels.

• We propose ViP-CBM, which reduces the number of training parame-
ters to that of the minimal scalar CBM, which is less than 50% of that of
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Figure 1: Our ViP-CBM converts multi-label classification of concepts to unified binary
classification of concept embeddings projected by visual features of input images. ψ(·)
denotes the visual feature extractor.

other embedding-based CBMs. Our ViP-CBM achieves similar perfor-
mance in both concept prediction and class prediction when compared
to other CBMs.

• Experiments on interpretability and intervention show that compared to
other embedding-based CBMs, our ViP-CBM can be better explained by
visualizing the projected concept-embedding space, and is more efficient
for intervention under joint training.

2 Related Works

In this section, we first briefly introduce the three paradigms in research in
Explainable Artificial Intelligence (XAI). Then we review related works in
Concept Bottleneck Models (CBMs) and visual-Semantic embedding that in-
spire our work.

2.1 Explainable Artificial Intelligence (XAI)

Research on XAI can be categorized into three main paradigms: concept-
based, model-based, and causal-and-reasoning-based. Concept-based para-
digm focuses on defining and evaluating interpretability from a human cogni-
tion perspective by linking model outputs or intermediate variables to human-
understandable concepts, providing explanations in decision rules [52], feature
importance [33, 25] and hidden layer semantics [16, 19, 6, 29]. Model-based
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paradigm focuses on designing models with inherent interpretability, empha-
sizing transparency in the structures and functions of its components, includ-
ing creating sparse connections in neurons [44, 11], encouraging disentangle-
ment upon inputs [12], and inventing modules based on conventional signal
processing approaches [27]. However, this type of research brings difficulty
in building models and may struggle to achieve performance comparable to
black-box models in complex tasks. Causal-Reasoning-based paradigm focuses
on the causal relationships between variables and the reasoning mechanisms.
Following the pioneer thoughts by Pearl and Mackenzie [31], causal infer-
ence has been developed to analyze and learn causal effects between variables
through causal graphs [35]. Other efforts in revealing the reasoning process
lie in prototype learning [3, 22] which extracts typical instances to explain the
model’s decision, the self-explaining method [1, 20, 21, 39] which produces
explanations simultaneously with predictions. With the development of large
language models (LLMs), prompt learning can also be applied to causal in-
ference [53, 23] besides providing explanations for reasoning. These methods
provide more profound and essential explanations but suffer from high com-
plexity and computational costs.

2.2 Concept Bottleneck Models

Concept Bottleneck Models (CBMs) [19] consist of two parts: the concept
predictor and the class predictor. The concept predictor generates human-
specified concepts from input images, while the class predictor uses these
concepts for final classification. Earlier studies in CBMs directly employ each
variable in the concept learning layer as probabilities for each concept’s exis-
tence, which we refer to as scalar CBMs in the rest of this paper. Assuming
that the incompleteness of the concept set prevents CBMs from achieving
higher task accuracy, Havasi et al. [9] introduced side channels to represent
undiscovered binary concepts to enhance model performance and mitigate in-
formation leakage. Subsequent works like Coop-CBM [38] add a side branch
before the concept prediction layer for immediate task prediction to improve
accuracy in concept prediction. Post hoc CBM [49] suggests a new framework
to convert any pretrained black-box models into CBMs while maintaining
task accuracies by predicting concepts by projecting extracted features on
Concept Activation Vectors trained from other supporting datasets by SVM
or multimodal models. Building upon this model, Label-free CBM [28] further
employs GPT-3 [4] for concept annotation to eliminate the need for densely
annotated data. However, these models fail to provide exact predictions of
concepts.

Recent studies have focused on improving CBM efficiency and flexibility
while preserving interpretability. Editable CBM [14] addresses scalability by
three levels of data removal, including labeling level, concept level, and data
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level, to eliminate the need for full retraining. Similarly, Incremental Residual
CBM [37] tackles concept incompletement by complementing missing concepts
with a set of optimizable vectors and incrementally discovering new ones from
the candidate concept bank. To address annotation scarcity, Semi-supervised
CBM [13] leverage pseudo-labeling, jointly train on both labeled and unlabeled
data, and then align the unlabeled data at the concept level. These approaches
reduce reliance on costly annotations and retraining overhead and align with
CBM’s lightweight interpretability goals.

To improve the expressivity of concepts in the model, embeddings are in-
troduced in the concept-bottleneck frameworks. Concept Embedding Model
(CEM) [50] learns a pair of positive and negative embeddings for each con-
cept from the input to extend feature representations to higher dimensions.
ProbCBM [17] and Energy-based CBM [46] use individually trained concept
embeddings for concept prediction through their relationship with features ex-
tracted from the original input, the former using Euclidean distance in space
and the latter constructing probabilistic graphs via Boltzmann energy models.
Stochastic CBM [41] explicitly models concept correlations and allows single
interventions to propagate corrections across related concepts, which improves
effectiveness in CLIP-inferred settings. Additionally, Coarse-to-Fine CBM [30]
introduces the notion of concept hierarchy to uncover and exploit more gran-
ular concept information in patch-specific regions of the image scene, which
outperforms classical CBM architectures. However, the above methods intro-
duce more parameters or even other large models and additional data to attain
higher concept and task accuracy, which makes model structures and training
complicated increases training costs, and deviates from the original intent of
achieving interpretability on basic small models by feature supervision.

2.3 Visual-semantic Embeddings Models

Visual-semantic embedding is a powerful paradigm for image-text matching
problems, which bridges vision and language modalities by mapping visual fea-
tures into an embedding space of labels based on their textual semantics. The
pioneering work Deep Visual Semantic Embedding (DeViSE) [8] is typically
proposed for image classification with extreme labels and outperforms conven-
tional models that treat labels as mutually independent entities by exploiting
correlations in label semantics. The DeVisE model leverages a pre-trained
word2vec [26] model to embed words into vectors with semantic information
preserved such as synonymy and use a pre-trained convolutional neural net-
work (CNN) to extract feature vectors with the same dimensionality of the
label-text embedding space from input images. In this paradigm, classifying
an input image is to assign the most relevant label based on the similarities
between the image and labels, which is measured by a generalized dot prod-
uct of the visual features and concept embeddings in the embedding space
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with a trainable metric matrix. The DeViSE framework is also extended to
sentence-level problem such as image description generation in [18, 15], and
are generalized for zero- and few-shot learning due to the continuity of visual
space and the use of unannotated text in [40, 5].

For MLC of images with extreme labels, which is most relevant to the chal-
lenges in CBM research, Yeh and Li [47] adapt DeViSE’s scoring mechanism
and reformulate the compatibility between images and labels as the norms
of the projected label embedding vectors with the extracted visual features
working as the projecting matrices. This framework suggests a classification
rule that the visual features always project embeddings of the positive labels
closer to 0, and is trained with Triplet Loss [36]. However, this model can
only predict the k most possible labels from the highest k matching scores
and does not provide predictions on the entire set of labels.

In summary, all the above visual-semantic embedding models depend on
extensive textual corpora for learning label embeddings from semantic rela-
tions and syntactic components. Furthermore, since these semantic embed-
dings are generated by the pretrained language model, they are fixed for the
final class predicting task. Thus, the performance of the model relies entirely
on the training of the visual part, while the concept part is not involved in
improving performance.

There are also other attempts to include trainable concept representations
when bridging visual-textual information in the concept-bottleneck paradigm.
For example, BotCL [43] learns a visual-semantic concept bottleneck in SENN
[1] with nonsemantic embeddings of implicit concepts where concept embed-
dings are learnable during training. However, due to self-supervised implicit
concepts in SENN that are not understandable to humans, BotCL lacks cred-
ibility compared to CBM and does not support intervention. In comparison,
our ViP-CBM represents concepts as trainable vectors without restrictions on
semantics and assigns definite labels to each concept for the class predicting
step, which addresses the above weaknesses.

3 The Proposed ViP-CBM Framework

3.1 Notations

As a variant of CBM, our ViP-CBM requires a fully supervised dataset de-
noted as D =

{
x(i), c(i), y(i)

}N
j=1

with N data points, K binary concepts
and M classes, where the i-th data point consists of the input x(i) ∈ X , the
concepts c(j) ∈ {0, 1}K and the label y(j) ∈ {1, . . . ,M}.
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3.2 Motivation

Traditional approaches to MLC in concept prediction in CBMs [19, 50, 17]
treat concept classification as isolated binary tasks, neglecting the correlations
between concepts and resulting in shortcomings in interpretability. Introduc-
ing embeddings in CBM yields limited performance benefits while significantly
increasing the number of parameters. To address this challenge, we propose
a visual projecting (ViP) method to reduce the number of parameters and
enhance interpretability while leveraging the rich semantics of embeddings.

Our key thoughts and innovation lie in rethinking MLC of concepts in
CBMs as a bipartition problem in the concept embedding space, where a par-
tition surface separates the embeddings of positive and negative concepts for
each input image. To unify this input-dependent partition problem, we sup-
pose an input-dependent projection operator ψx(·) (where x denotes the input
image) on the concept embedding space Rd that project the partition surface
into a unified hyperplane S for every image x in the projected space Rm, and
projected embeddings of positive and negative concept are also separated by
the hyperplane S. In conclusion, we propose converting the learning of a
multi-label concept classifier in CBMs into training a linear binary classifier
on the input-conditioned projected embeddings for each concept.

We construct the projection operator utilizing the powerful fitting capacity
of CNN by employing visual features extracted from images by the same
CNN backbone as projecting matrices for original concept embeddings, which
simplifies our model structure to be similar to scalar CBMs [19], and ensure
low-parameter properties in our model. Our design extends beyond the multi-
label DeViSE method [47] by implementing clear classification distinctions
and removing the dependency on word embedding models and backup corpus
for concept embedding generation, which address the problems discussed in
Section 2.3. We refer to this method as the visual-projecting (ViP) method,
which will be detailed in the following section.

3.3 Model Structure

Figure 2 shows the general prediction flow of our ViP-CBM. Our ViP-CBM
includes concept embeddings the visual projecting (ViP) module, the concept
predictor, and the task predictor, which we will introduce one by one.

3.3.1 Concept Embeddings and the ViP Module

To exploit the rich semantics and ensure the effective utilization during model
training of concept embeddings, we represent all K concepts {c1, . . . , cK} as
trainable vectors {v1, . . . ,vK} ⊂ Rd. Given an input image x, a backbone
CNN ϕ(·) extracts visual features as a matrix Z = ϕ(x) ∈ Rm×d. We introduce
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Class prediction

Concept prediction

Figure 2: Model structure of our ViP-CBM.

a nonlinear projection uk = θ(Zvk) ∈ Rm, k = 1, . . . ,K, by adding a non-
parametric nonlinear function θ(·) on a simple linear projection. In this work,
we propose the nonlinear projection function as

uk,j = ReLU

(
z⊤
j vk +

z⊤
j

∥zj,·∥2
vk

)
, j = 1, . . . ,m, (1)

where zj ∈ Rd, j = 1, . . . ,m denotes the j-th row of the matrix Z and uk,j
denotes the j-th element of uk. This projection function uses ReLU as the
activation function and introduces “normalized linear projections”, which is
the latter term of the inputs of the ReLU function, to increase the nonlinearity.

3.3.2 Concept Predictor

As is discussed in Section 3.2, our ViP-CBM proposes to convert MLC in
concept prediction into a unified binary classification in projected concept
embeddings u1, . . . ,uK . We propose a linear classifier with a pair of anchor
points for the concept predictor. Define a pair of unified and trainable anchor
points u+,u− ∈ Rm, each concept ck is classified as activated and inactivated
according to the Euclidean distance from its corresponding projected embed-
ding uk to the two anchors: projections of positive concepts are closer to u+

and negative concepts are closer to u−. Such classification rules add nonlin-
earity to a conventional linear model with the computation of the Euclidean
distances. Inspired by Triplet Loss in [36], the probability of the concept ck
being activated, i.e., the prediction of the real concept ĉk = 1, is

p(ĉk = 1|Z, {vi}Ki=1) = σ (a (∥uk − u−∥2 − ∥uk − u+∥2 −mck)) , (2)

where σ(·) represents the sigmoid function, a > 0 is a learnable scaling pa-
rameter, and mck ≥ 0 is an optional decision margin depending on true label
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ck. For example, we can set mck to a positive constant m to penalize false
positives. To encourage the model to project both activated and inactivated
concepts closer to the corresponding anchors for inputs from each class, we
set the margins as

mck = 1(ck=1)m+ 1(ck=0)(−m),m > 0, (3)

where 1(·) is the instructional function. We refer to this setting as the symmet-
ric margins, which will be further discussed through experiments in Section
5.1.

3.3.3 Class Predictor

To minimize the number of model parameters, we employ a simple linear
classifier for predicting the M final classes. Different from conventional CBMs,
we use the K projected concept embeddings [u1, . . . ,uK ] as inputs of the
class predictor instead of concept predictions p(ĉk = 1|Z, {vi}Ki=1), to improve
model’s performance and smooth the training process by leveraging the richer
information in embeddings.

3.3.4 Training Strategy and Loss Function

Since we calculate concept and task probabilities with the model, we apply
Binary Cross-Entropy (BCE) loss to concept prediction and Cross-Entropy
(CE) loss to class label prediction. In this work, we employ the joint CBM
training strategy, which is to train both concepts and labels simultaneously
by minimizing a weighted sum of the two losses:

L = E(x,c,y) [LCE(y, ŷ) + αLBCE(c, ĉ)] . (4)

3.4 Parameter Reduction in ViP-CBM

Our ViP-CBM reduces parameters mainly in concept prediction. Consider
a minimal CBM with the same backbone CNN as our ViP-CBM, in which
binary concepts are predicted from extracted visual features Z ∈ Rm×d by a
simple linear model:

p(ĉk = 1|Z) = σ
(
w⊤z̄+ b

)
, (5)

where z̄ ∈ Rmd represents the flattened vector of matrix Z, and the parameters
of the linear model are (w, b) ∈ RKmd ×R. In comparison, the parameters in
the concept predictor of our ViP-CBM are ({vi}Ki=1,u+,u−) ∈ RK×d×Rm×
Rm. Therefore, the number of training parameters in the concept predictor in
our ViP-CBM is approximately m times less than that in the minimal scalar
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CBM, and m×d′ times less than embedding-based CBMs where d′ represents
the dimension of embeddings.

We now dig further into the mechanism of our ViP module for concept
prediction. The concept predictor in (2) without margins is equivalent to a
linear classifier in the final decision. With a linear classifier of the form

p(ck = 1|uk) = σ
(
w̃⊤uk + b̃

)
, w̃ ∈ Rm, b̃ ∈ R, (6)

we can rewrite the concept predicting step as follows, neglecting the nonlin-
earity in projection:

p
(
ĉk = 1|Z, {vi}Ki=1

)
= σ(w̃⊤(Zvk) + b̃) = σ

(
tr[(vkw̃

⊤)Z] + b̃
)
, (7)

which is similar to (5) with the weight matrix vkw̃
⊤ of rank 1. This reveals

that our model reduces the concept prediction module to a rank-1 classifier
while using the two-anchor mechanism to encourage the separation of the
positive and negative samples, and the nonlinear function θ(·) to preserve the
performance.

Despite the parameter reduction in the concept layer, our ViP-CBM uses
projected embeddings for class predicting instead of probabilities, which makes
the number of parameters of the class predictor in our ViP-CBM m times
larger than that in the minimal CBM that predicts classes from scalars. These
increases and reductions in parameters collectively lead to the total number
of training parameters being comparable to the minimal scalar CBM. Never-
theless, due to the parameter reduction in concept predicting, our ViP-CBM
has only less than half as many training parameters as the minimal CEM and
ProbCBM. We compare the number of training parameters with examples in
experiments in Table 1.

Table 1: Comparison of the number of training parameters for the CUB dataset.

Model scalar-CBM CEM ProbCBM ViP-CBM (ours)

Training Params # 254296 744681 746185 289625

3.5 Intervention

CBMs are trustworthy models since they predict concepts before performing
downstream tasks so that we can perform intervention on the concept layer
to correct misclassified concepts to correct the downstream class prediction
results. Compared to CEM and ProbCBM, our ViP-CBM classifies all the con-
cepts by measuring the distance between the projected concept embeddings
to 2 unified and fixed anchors.
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We propose an intervention method for our ViP-CBM as follows: for a
mistakenly predicted concept ck, we replace its corresponding projected em-
bedding uk with the anchor point u+ or u− according to the correct label.
Since our ViP-CBM is trained jointly, we keep the projected embeddings of
other correctly predicted concepts to ensure that maximum label-irrelevant se-
mantics contained in concept embeddings are maintained for the subsequent
class predictor to attain better performance after intervention.

4 Experimental Setup

In this section, we introduce the datasets, the detailed setup for our ViP-CBM
and the baseline models, and the metrics for evaluation for our experiments.

4.1 Datasets

CUB-200-2011
The Caltech-UCSD Birds-200-2011 Dataset (CUB-200-2011) [42] contains
11,788 images of 200 subcategories belonging to birds annotated with 312
binary concepts. We use the preprocessed dataset in [19] where the
number of concepts is reduced to K = 112 and concepts are denoised
to class-level, which means images from the same class share the same
concept annotations. Concept labels in CUB-200-2011 are of the form
“{general_concept}::{detail}” so that we can naturally group concepts
into 28 groups based on the general concepts, with the largest group having
6 concepts.

AwA2
Animals with Attributes 2 Dataset (AwA2) [45] contains 37,322 images of 50
categories of animals with 85 binary attributes, e.g., color, stripe, etc. AwA2
provides a category-attribute matrix that contains concept labels for each
category so that concepts are also class-level. We artificially summarize these
85 concepts into 30 groups of color, pattern, habit, etc., with the largest group
having 14 concepts.

CelebA
CelebFaces Attributes Dataset (CelebA) [24] contains 202,599 celebrities’ face
images, each with 40 binary attribute annotations of facial features, e.g.,
beard, hair color, etc. Following Zarlenga et al. [50], we select the 8 most
balanced binary attributes to generate 28 = 256 artificial classes for down-
stream class prediction and select the 6 most balanced attributes as concepts
to mimic the circumstances where the concept bottleneck is narrow and inad-
equate to cover all the classes.
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4.2 Experimental Setup

4.2.1 Data Preprocessing

We apply data augmentation on CUB and AwA2 datasets to artificially in-
crease the diversity of the training data to improve the model’s generalizability.
We first perform color jittering and random horizontal flipping on the images,
then resize them to 256× 256. We randomly crop the images with a scale of
(0.8, 1.0) and resize images from CUB to 224×224 and images from AwA2 to
256 × 256. For the CelebA dataset, we downsample each human face image
to 64× 64 and normalize each entry of the pixels with a mean value of 0 and
a standard error of 0.5. Since the original CelebA dataset is large and the
experiments do not intend to obtain high performance for real applications,
we randomly select a subset of 1/12 of the entire dataset for each run in our
experiment.

4.2.2 ViP-CBM Settings

The structure of the visual feature extractor of our ViP-CBM is shown in
Figure 3. We use a ResNet34 [10] pre-trained on ImageNet-1k [7] as the
backbone and extract outputs of the layer before the global average pooling
with a size of (512, l, l) where l denotes the side length of the feature map.
We then use a 1× 1 convolution layer with d channels and flatten the outputs
to get a feature representation of size (d, l2), where d is the dimension of
concept embeddings. Then we use a Fully Connected (FC) layer to reduce
the l2-entry inputs to m entries to get the feature matrix Z ∈ Rm×d. The
settings of the concept and class predictor follow the descriptions in Section
3.3. We set symmetric margins following (3) with m = 0.1 to study the effects
of margins.

Figure 3: Detailed structure of the visual feature extractor in ViP-CBM.
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4.2.3 Baselines

We compare our ViP-CBM with typical and conventional CBMs such as joint
scalar CBM [19], CEM [50], and ProbCBM [17] with equivalent parameters.
For all baseline models, we use the same pre-trained ResNet34 and 1 × 1 d-
channel convolution layer to get a feature representation of size (d, 7, 7) and
flatten it to a 49d dimensional vector. For baseline CBM, we use a 2-layer
MLP for the concept predictor with a hidden layer size of 128 and apply
ReLU as the activation function. We use a linear model to predict class labels
directly from concept predictions as the class predictor.

For baseline CEM, we use a simple linear model to predict the positive and
negative d-dimensional embeddings of each concept to align the dimensions
with our model. We use a shared scoring function and linear class predictors
as in [50].

For baseline ProbCBM, we use a linear model to generate K visual embed-
dings of d dimensions from the original features of size (d, l, l), and learn K
pairs of positive and negative anchors for concept prediction in the embedding
space of d dimensions. Since our only concern is the model’s performance, we
omit the sampling step and refine the class predictor to a simple linear model
where the inputs are the K visual embeddings for this work.

4.2.4 Hyperparameters Settings

We set the weight between the two losses α = 5 for the CUB and AwA2
datasets, and α = 1 for the CelebA dataset. We use an SGD optimizer with
a learning rate of 0.01 for the CUB dataset, 0.002 for the AwA2 dataset, and
0.005 for the CelebA dataset, all with momentum of 0.9 and weight decay
of 5 × 10−4. We train 400 epochs on the training split for the CUB dataset
and the CelebA dataset, and 250 epochs for the training split of the AwA2
dataset.

4.3 Metrics

We use class accuracy as the criterion of the model’s task performance. Denote
the k-th concept prediction of the i-th sample as c(i)k ∈ {0, 1}. For the MLC
of concepts, we define two metrics as follows.

• To evaluate the model’s accuracy on each concept individually, we use
the Hamming score (HS):

HS =
1

NC

N∑
i=1

K∑
k=1

1
(ĉ

(i)
k =c

(i)
k )
. (8)
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• To evaluate the model’s ability to predict all concepts correctly, we use
the exact match ratio (EMR):

EMR =
1

N

N∑
i=1

1(ĉ(i)=c(i)). (9)

We also introduce group EMR to evaluate the model’s performance on each
concept group. In summary, we use the Hamming score to measure the indi-
vidual concept accuracy, EMR for all concepts to represent the overall concept
accuracy, and the minimum group EMR to evaluate concept prediction in the
hardest group.

5 Experimental Results

5.1 Model Performance

We set the original concept embedding dimensions d = 32 and the dimension
of the projected space m = 12 for the experiments. We add additional abla-
tion studies of margins and nonlinearity, denoting ViP-CBM with symmetric
margins as (3) as “+margin” and ViP-CBM using linear projection uk = Zvk

in ViP module as “LP”. As is discussed in Section 3.4, the concept predictor
of the “LP” version of ViP-CBM is equivalent to a rank-1 linear classifier, and
thus we directly employ a linear layer as (6) to substitute the concept predic-
tor for simplicity. We conduct experiments with 5 different random seeds on
each dataset to compute the average scores and standard errors, marked as
“mean ± std” in our results. All models are trained on an entire NVIDIA
GeForce RTX 2080Ti.

Table 1 shows that our model has only 40% of the training parameters of
other embedding-based CBM, which is comparable to the scalar-CBM, with
experiments in the CUB dataset as an example. For all models trained with
a batch size of 128, the GPU memory usage is 5,826MB and the training time
per epoch is approximately 15 seconds. Thus, our model does not increase
the computation cost.

Table 2 shows the performance in concept and class prediction of our ViP-
CBM and other baseline models. For each metric, we mark the highest score
in bold, the second highest in purple, and the third highest in green. Note
that we directly use the output of the backbone CNN of size (d, l, l) as the
visual features for the baseline models as described in Section 4.2, which is
larger than the visual features used in our ViP-CBM, suggesting that we are
comparing with larger CBMs than we proposed in Section 3.4.

For the experiments on the AwA2 dataset with few concept and class labels
and a large amount of data, our ViP-CBM model ranks third in individual
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Table 2: Performance of our ViP-CBM in comparison with other baseline CBMs for CUB,
AwA2, and CelebA datasets. The starred results indicate training instability, with more
than half of the experiments failing by gradient explosion.

Model CUB (112 concepts, 200 classes)
Hamming Score Overall EMR Min Group EMR Class Accuracy

scalar-CBM 0.9529±0.0004 0.4270±0.0069 0.7819±0.0027 0.7197±0.0033
CEM 0.9506±0.0003 0.3887±0.0078 0.7651±0.0026 0.7186±0.0048
ProbCBM 0.9517±0.0010 0.4032±0.0132 0.7743±0.0058 0.7268±0.0113
ViP-CBM (ours) 0.9496±0.0009 0.3784±0.0223 0.7646±0.0037 0.7169±0.0048

+margin 0.9500±0.0013 0.3898±0.0090 0.7670±0.0053 0.7115±0.0075
LP 0.9398±0.0014* 0.3647±0.0148* 0.7248±0.0337* 0.6462±0.0463*

Model AwA2 (85 concepts, 50 classes)
Hamming Score overall EMR Min Group EMR Class Accuracy

scalar-CBM 0.9708±0.0006 0.7816±0.0040 0.8288±0.0020 0.8782±0.0046
CEM 0.9696±0.0007 0.7646±0.0035 0.8288±0.0020 0.8794±0.0028
ProbCBM 0.9704±0.0008 0.7798±0.0084 0.8366±0.0049 0.8822±0.0026
ViP-CBM (ours) 0.9702±0.0010 0.7857±0.0055 0.8403±0.0047 0.8818±0.0031

+margin 0.9701±0.0009 0.7906±0.0071 0.8431±0.0047 0.8807±0.0037
LP 0.9692±0.0006 0.7741±0.0037 0.8335±0.0050 0.8801±0.0024

Model CelebA (6 concepts, 128 classes)
Hamming Score overall EMR Min Concept Acc Class Accuracy

scalar-CBM 0.8789±0.0018 0.4882±0.0103 0.7598±0.0080 0.3609 ±0.0084
CEM 0.8828±0.0021 0.4952±0.0096 0.7612±0.0062 0.3660±0.0077
ProbCBM 0.8872±0.0028 0.5100±0.0142 0.7687±0.0092 0.3774±0.0055
ViP-CBM (ours) 0.8830± 0.0013 0.4918 ± 0.0067 0.7730±0.0032 0.3733±0.0081

+margin 0.8851±0.0018 0.4961±0.0038 0.7697±0.0050 0.3796±0.0124
LP 0.8834±0.0011* 0.4987±0.0043* 0.7771±0.0052* 0.3728±0.0010*

concept accuracy and second in all other metrics, and outperforms CEM by
over 0.02 in concept overall accuracy and over 0.002 in class accuracy. The
“+margin” version of ViP-CBM ranks highest in overall concept accuracy and
group overall concept accuracy.

For the experiments on the CelebA dataset with very few concepts and
inadequate concept bottleneck, our ViP-CBM and its variants rank in the top
3 on every metric among all models. Note that the “LP” version tends to get
better results than the original ViP-CBMs due to the very small number of
concepts since embeddings of 6 concepts in a R12 space are easier for linear
separation.

For the experiments on the CUB dataset with a larger concept set and
a smaller amount of data, due to the reduction of parameters and rank in
concept prediction, our ViP-CBM model underperforms CBM significantly in
overall concept accuracy, but is comparable to CBM in individual concept
accuracy and class accuracy with a loss of less than 0.003. Our ViP-CBM
achieves comparable or slightly superior performance to CEM with low embed-
ding dimensions and slightly inferior performance to ProbCBM by less than
0.015 in overall concept accuracy and class accuracy. Compared to CEM
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which learns 2K embeddings in total for each input image and ProbCBM
which requires 2K concept anchors in total with K individually extracted vi-
sual features of d dimensions to embed in each concept space, our ViP-CBM
learns only K concepts embeddings independent to inputs and the dimension
of projected space m is much smaller than K. Thus, our ViP-CBM improves
the efficiency of concept learning with concept representations of the same
dimensions.

The ablation study for margins shows that symmetric margins in ViP-
CBM enhance the overall accuracy for concepts and the stability for different
initializations, consistent with our intent to penalize projected embeddings
close to the classifying surface. In the ablation study of nonlinearity in visual
projection, we mark a “*” on some of the results of the “LP” model to indicate
that more than half of the experiment failed due to gradient explosion in
training, and the metrics are computed from fewer experiments. These results
reveal that nonlinearity in visual projection also allows higher learning rates,
which increase the convergence speed and stability in training. Besides, the
results of the successful experiments in the CUB and AwA2 datasets also
prove that nonlinearity is necessary to bridge the performance gap due to the
reduction of parameter numbers.

5.2 Sensitivity to Dimensions of the Representation Spaces

To reveal the impact of the choices of the anchors and representations, we
experiment with our ViP-CBM under different settings in the dimension of the
projected space m = 6, 12, 24 and original concept dimension d = 16, 32, 64.
Table 3 shows all metrics for the CUB dataset, where we underline the highest
scores for the same m and mark the globally highest scores in boldface. The
results show that larger m and d lead to overfitting, while smaller m and d
lead to underfitting. Our parameter selection in Section 5.1 is empirically
optimal.

Table 3: Performance of our ViP-CBM with different m and d for the CUB dataset.

m d Hamming Score Overall EMR Min Group EMR Class Accuracy

6
16 0.9475 0.3690 0.7604 0.7106
32 0.9376 0.3963 0.7109 0.6348
64 0.9491 0.3678 0.7568 0.7123

12
16 0.9470 0.3583 0.7546 0.6999
32 0.9505 0.3819 0.7724 0.7176
64 0.9463 0.3495 0.7503 0.7057

24
16 0.9448 0.3478 0.7377 0.6947
32 0.9500 0.3638 0.7711 0.7156
64 0.9177 0.2075 0.6253 0.5373
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5.3 Interpretability

To study the interpretability of our ViP module proposed for MLC on a certain
label set, we look into the spatial distributions of the visual features and the
projected concept embeddings. With the hypothesis of the continuity of visual
feature space [48], the visual features and the projected embeddings should
cluster by class regardless of concept labels. For AwA2 dataset with class-level
concepts, we select 3 concepts “black”, “white” and “blue” and 2 classes “cow”
and “dophin”, where “black” and “white” are positive for “cow” and “white”
and “blue” are positive for “dophin”.

5.3.1 Explaining Class Prediction via Latent Feature Visualization

We first visualize the spatial distributions of the extracted visual feature repre-
sentations of images from both 2 classes in the test split of the AwA2 dataset
for all embedding-based CBMs using a 2-dimensional t-SNE plot in Figure
4. Visual feature representation in our ViP-CBM is defined as Z ∈ Rm×d in
Section 3.3, and is defined as the combination of all concept representations
extracted from the input images in CEM and ProbCBM. As is shown in Figure
4, all models generate two clear clusters of visual feature representations for
the 2 class labels. Figure 4d further shows that visual feature clusters in our
ViP-CBM with nonlinear projection are the most compact with a significant
gap between the two classes.

5.3.2 Explaining Concept Prediction via Concept Representations Visualization

To compare the interpretability in concept prediction, we visualize the rep-
resentations of the 3 selected concepts using t-SNE in Figure 5. The con-
cept representations in our ViP-CBM are the projected concept embeddings
u = θ(Zv) ∈ Rm, while in baseline models are d-dimensional vectors directly
extracted from the input images. Comparing Figure 5c and Figure 5d, the pro-
jected embeddings of inactivate concepts (blue and grey dots) and activated
concepts are clearly separated on both figures, but ViP-CBM with nonlinear
projection can form clear and compact clusters in the projected space. Fo-
cusing on Figure 5d, projected embeddings of each concept for inputs in the
same class (represented by points with labels in each column of the legend)
are clearly separated from each other, indicating the separation in original
concept embeddings v. Clusters of common activated concept “white” (green
and purple dots) overlap significantly, indicating that the ViP module gathers
the same concepts in the projected space for all input images containing the
concept.

Next, we compare the explainability in the concept embedding space of
our ViP-CBM with CEM and ProbCBM. In Figure 5a, embeddings for each
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Figure 4: t-SNE plot of the original visual features Z in vector space for CEM, ProbCBM
and our ViP-CBM.

concept in CEM from the same class also form separated clusters, but there
is no explainable spatial relationship between concepts of the same activation
state (concept “white” in this case). For ProbCBM, we mark the positive and
negative anchor points c+k , c

−
k for each concept with stars and triangles in Fig-

ure 5b. As is shown in Figure 5b, the concept representations of the commonly
activated concept “white” from the two classes “cow” and “dolphin” are sepa-
rately close to c+white and c+white, which is contrary to the design of ProbCBM.
Also, the distances from the representations of concept “black” of the two
classes to the two anchors are significantly further than the distance between
two anchors, and the postive and negative anchors for the commonly activated
concept “white” are close to each other, indicating that the concept predictor
of ProbCBM doesn’t work exactly as designed under joint training. In sum-
mary, the concept representations of our ViP-CBM can be better explained via
visualization after dimension reduction compared with CEM and ProbCBM.
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Figure 5: 2D t-SNE plot of the concept representations in the embedding space for CEM,
ProbCBM, and our ViP-CBM.

5.4 Intervention

In this section, we compare the intervention efficiency of our ViP-CBM and
other baseline models. Following the paradigm in Koh et al. [19], we correct
the entire concept group during each intervention step and perform interven-
tion group by group until all concepts are corrected. We apply the original
intervention method on scalar-CBM, CEM, and ProbCBM as described in
their original works [19, 50, 17]. For the “LP” version of our ViP-CBM, since
we use a simple linear layer for concept prediction as is described in Section
5.1, we change our intervention method to modify the projected embedding
uk of each predicted concept ck to its symmetric point of the classification
surface in (6):

u′
k = uk − 2

w̃⊤uk + b̃

∥w̃∥22
w̃. (10)
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Note that all models in our experiments are jointly trained, meaning that the
task predictor may not attain correct results with all correct concept inputs,
since concept predicting loss works as an auxiliary loss in (4). Thus, the class
accuracy with full intervention cannot be guaranteed to reach 100%.

Figure 6 shows the increasing curves of downstream classification accuracy
w.r.t. the intervened concept ratio of different models in different datasets.
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Figure 6: Effects of intervention for different models in CUB, AwA2, and CelebA.

For all three datasets, the efficiency of intervention of scalar-CBM is higher
than all embedding-based CBMs. Since intervention in scalar-CBM directly
modifies the concept probabilities, which are the inputs of its task predictor,
intervening concept prediction in scalar-CBMs is more likely to correct class
labels.

Figures 6b and 6c show that our ViP-CBM’s efficiency of intervention is
higher than other embedding-based CBMs. Compared to other embedding-
based CBMs, our ViP-CBM introduces a uniform binary classification of con-
cepts in the projected space, and projects embeddings of the same concepts of
the same activate state to the same region in space as is shown in Figure 5d
in Section 5.3. Thus, our intervention method on the projected space benefits
from the interpretability in the latent space and is more efficient.

In Figure 6a, the efficiency of intervention of our ViP-CBM is close to CEM
and still higher than ProbCBM, but all embedding models are significantly
inferior to scalar-CBM in the efficiency of intervention for the CUB dataset.
For complex tasks with a large number of concepts and classes, more label-
irrelevant concept semantics are fed to the class predictor because of the
higher dimension of its input due to larger K. Therefore, correcting concept
embeddings leads to more changes in the input of the class predictor, resulting
in worse intervention performance compared to scalar CBMs.

For all three datasets, ProbCBM has the lowest efficiency of intervention
under joint training. ProbCBM provides positive and negative anchors for
each concept in the embedding space, and each visual embedding extracted for
each concept contains much more semantics besides label information. The
class predictor of ProbCBM is trained with the noisiest inputs, and thus
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the model has very little response to intervention. In summary, our ViP-
CBM provides a more efficient intervention method than the selected typical
embedding-based CBMs while keeping the same simplicity in implementation.

5.5 Robustness and Trustworthiness and Generalization

In this section, we discuss the robustness, trustworthiness, and generaliza-
tion of our ViP-CBM detailedly through experiments with sparse, noisy, or
incomplete concept supervision.

5.5.1 Robustness under Noisy or Missing Concepts

In real-world applications, concept annotations are often imprecise, containing
random errors or even missing information. For instance, in the CUB dataset,
some bird images may provide ambiguous or incomplete information about
certain conceptsfor example, an image showing only the head of a bird might
offer no data about its back color, while light and shadows could confound
color recognition. In addition to the data augmentation done in Section 4.2.1,
we perform an experiment on the CUB dataset with the original annotations.
To address noisy or missing concepts, we incorporate the 4-degree certainty
annotations via non-expert crowdsourcing from Wah et al. [42] by weighting
the concept prediction loss with the normalized certainty scores, and compare
the performance against class-level concept annotations in Table 4, where the
metrics are colored and bolded following the description in Section 5.1. Exper-
imental results show that our ViP-CBM-margin is still comparable to baseline
models as analyzed in Section 5.1. All models experienced a slight degrada-
tion in performance on the concept EMR metric. However, the magnitude of
these decreases is comparable across models, and our ViP-CBM-margin model
exhibits the smallest drop. This suggests that the robustness of our model is
at least comparable to that of the original model.

Table 4: Model performance of our ViP-CBM in comparison to baseline models in the CUB
dataset with uncertain concepts. The up-arrows and down-arrows denote the differences in
performance with all known concepts.

Model Hamming Score Overall EMR Min Group EMR Class Accuracy

scalar-CBM 0.9525 (↓0.0004) 0.4035 (↓0.0235) 0.7801 (↓0.0018) 0.7216 (↑0.0019)
CEM 0.9501 (↓0.0004) 0.3612 (↓0.0275) 0.7653 (↑0.0002) 0.7294 (↑0.0108)
ProbCBM 0.9516 (↓0.0001) 0.3840 (↓0.0192) 0.7756 (↑0.0013) 0.7276 (↑0.0008)
ViP-CBM (ours) 0.9483 (↓0.0013) 0.3507 (↓0.0277) 0.7561 (↓0.0085) 0.7114 (↓0.0055)

+margin 0.9487 (↓0.0013) 0.3776 (↓0.0008) 0.7553 (↓0.0117) 0.7069 (↓0.0046)
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5.5.2 Trustworthiness under Concept Sparsity

In addition to the experiments with the CelebA dataset in Table 2, we perform
experiments on the CUB dataset with 25%, 50%, 75%, and 100% of the 28
concept groups known to study the robustness and trustworthiness under
inadequate concept sets. Figure 7 shows the minimum group EMRs and class
accuracies of different models with different known concept ratios.
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Figure 7: Minimum group EMR and class accuracy of different models under 25%, 50%
,75% and 100% concept groups known in the CUB dataset.

We explain the results through the view of information leakage [9], which
describes the phenomenon that jointly-trained CBMs tend to achieve bet-
ter task performance with additional information in concept prediction other
than the existence of the concepts. Figure 7b shows that baseline joint mod-
els (scalar-CBM, CEM, and ProbCBM) achieve similar task accuracy in dif-
ferent concept sparsity, while the class accuracy in our ViP-CBM and its
variant “margin” increases significantly as the number of known concepts
grows. Thus, our ViP-CBM achieves less information leakage through the
uniform binary concept classification in the projected space under joint train-
ing. Besides, Figure 7a shows that the minimum group EMR of our model
also increases significantly with more known concepts, indicating that more
knowledge of concepts leads to more precise prediction in each concept group.
The performance of the “LP” version of our ViP-CBM is remarkably high
with few concepts, but drops with the increase of known concepts, indicating
that nonlinear projection could better separate the concept embeddings in
the projected space. In summary, our ViP module alleviates the information
leakage in jointly-trained CBMs with increased interpretability, which makes
our model more trustworthy.
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Taken together, these results suggest that ViP-CBM not only improves
interpretability but also maintains strong generalization performance under
varying levels of concept completeness and quality, indicating its potential
suitability for real-world applications.

6 Conclusions

We present ViP-CBM, a parameter-efficient concept bottleneck architecture
that simultaneously addresses model complexity and interpretability in multi-
label concept learning. Experimental results show that our ViP-CBM, whose
number of training parameters is comparable to a minimal scalar CBM,
achieves competitive performance to conventional CBMs, and outperforms
CEM in concept learning with low embedding dimensions. By visualizing the
projected concept embedding space, our ViP-CBM provides more convincing
explanations for concept learning than other embedding-based CBMs. The
intervention experiments reveal that our ViP-CBM is more sensitive during
intervention with joint training than baseline models, indicating less trade-off
in our embedding representation. Experiments with sparse and noisy or miss-
ing concepts further demonstrate the trustworthiness and robustness of our
ViP-CBM. In conclusion, our ViP-CBM is a low-parameter substitution for
embedding-based CBMs with more interpretability and better intervention
efficiency.
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