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ABSTRACT
This paper proposes music similarity representation learning
(MSRL) based on individual instruments (InMSRL) utilizing mu-
sic source separation (MSS) and human preference without requir-
ing clean instrument stems during inference. We propose three
methods that effectively improve performance. First, we intro-
duce end-to-end fine-tuning (E2E-FT) for the Cascade approach
that sequentially performs MSS and music similarity feature ex-
traction. E2E-FT allows the model to minimize the adverse effects
of a separation error on the feature extraction. Second, we propose
multi-task learning for the Direct approach that directly extracts
disentangled music similarity features using a single music similar-
ity feature extractor. Multi-task learning, which is based on the
disentangled music similarity feature extraction and MSS based
on reconstruction with disentangled music similarity features, fur-
ther enhances instrument feature disentanglement. Third, we em-
ploy perception-aware fine-tuning (PAFT). PAFT utilizes human
preference, allowing the model to perform InMSRL aligned with
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human perceptual similarity. We conduct experimental evalua-
tions and demonstrate that 1) E2E-FT for Cascade significantly
improves objective InMSRL performance, 2) the multi-task learn-
ing for Direct is also helpful to improve disentanglement perfor-
mance in the feature extraction, 3) PAFT significantly enhances
the perceptual InMSRL performance, and 4) Cascade with E2E-
FT and PAFT outperforms Direct with the multi-task learning
and PAFT.

Keywords: Music information retrieval, music similarity representation, music
source separation

1 Introduction

Recently, the number of musical pieces available online has already exceeded 1
billion1 and further market expansion is expected.2 Therefore, the demand for
music recommendation and retrieval systems has been increasing. Methods
utilizing listening histories of users [3, 50] have been widely used in these
systems although these methods cause several limitations, for example, it is
hard to handle musical pieces with fewer listening records. One approach
to avoid this problem is to extract content features from a musical piece and
utilize them for music recommendation and retrieval. Music feature extraction
models based on classical methods [51, 20, 29], such as using features like mel-
frequency cepstral coefficients [13] and fluctuation patterns [41, 43], modeled
using methods like k-means clustering [31] and Gaussian mixture modeling [30,
1], have been investigated. Recently, methods based on deep learning have
attracted attention due to their high precision of music feature extraction.
Many studies utilize a convolutional neural network (CNN) [40, 7, 32, 11, 5,
44] and have demonstrated their high performance on their tasks.

In particular, music similarity representation learning (MSRL) with unsu-
pervised, self-supervised or semi-supervised learning methods have gained pop-
ularity since it can handle previously unseen data and can be applied to various
downstream tasks such as music tagging, genre classification, and key detec-
tion [27, 28, 38]. Artist labels [42] or music tags [6] have been used for training
with triplet loss [14, 12], and their positive impact on a downstream music
classification task or zero-shot performance has been demonstrated. Further-
more, contrastive learning approaches that assume “segments within the same

1https://go.pardot.com/l/52662/2023-10-23/ljk7xt/52662/169805013966KGzgtB/
Spotify_2023_Culture_Next_Report_JP_v3.pdf.

2https://www.ifpi.org/wp-content/uploads/2020/03/Global_Music_Report_2023_
State_of_the_Industry.pdf.

https://go.pardot.com/l/52662/2023-10-23/ljk7xt/52662/169805013966KGzgtB/Spotify_2023_Culture_Next_Report_JP_v3.pdf
https://go.pardot.com/l/52662/2023-10-23/ljk7xt/52662/169805013966KGzgtB/Spotify_2023_Culture_Next_Report_JP_v3.pdf
https://www.ifpi.org/wp-content/uploads/2020/03/Global_Music_Report_2023_State_of_the_Industry.pdf
https://www.ifpi.org/wp-content/uploads/2020/03/Global_Music_Report_2023_State_of_the_Industry.pdf
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song are similar to each other” [36, 38], which is called S4 in this paper, or uti-
lize data augmentation [48, 37] have demonstrated the strong effectiveness on
several tasks [53], despite not requiring any labels. Moreover, HuBERT-style
[21] masked language modeling [33], which estimates the tokens corresponding
to masked parts of the input, has also achieved outstanding effectiveness on
many downstream tasks [53] by utilizing teacher labels obtained from k-means
clustering [27], the EnCodec model [9] or the data2vec-styled [2] approach [28].
Additionally, approaches utilizing the intermediate layer outputs of music gen-
eration models [10, 4] and text-music contrastive learning methods [22] have
been established as techniques for acquiring music representations.

Although MSRL produces a single, general-purpose feature representation
for each musical piece, which is sufficient for many downstream tasks, music
recommendation and retrieval scenarios often require multiple, complemen-
tary descriptors in order to accommodate the diversity of individual user pref-
erences. MSRL based on individual instruments (InMSRL) [17, 15] addresses
this limitation by producing distinct feature vectors for each instrument within
a musical piece, thereby furnishing a multi-dimensional representation of the
musical piece. These instrument-specific embeddings (e.g., piano-only, drum-
only, guitar-only) enable users to steer recommendation and retrieval results
based on individual instruments. If an initially recommended musical piece is
perceived as dissimilar to the query musical piece, the listener can, for example,
request alternatives that more closely match the querys piano sound. Con-
ventional InMSRL models have been trained with the similarity assumption
S4, which has also been demonstrated to be effective in MSRL [36, 38]. This
approach is advantageous in that it does not require any labels for training,
especially since such labels for individual instruments are rarely available. To
further obtain the music similarity representation for each instrument from the
musical pieces that multiple instrument sounds are mixed, we have proposed
three main approaches: Clean [17], Cascade [17], and Direct [15, 16]. Clean,
which inputs clean individual instrument stems into the corresponding mu-
sic similarity feature extractors, has been demonstrated its high performance
in the music similarity feature extraction per each instrument stem. While
Clean requires clean individual instrument stems as a searching query during
inference, such stems are generally not publicly available, making it practi-
cally impossible to utilize it in general-purpose music recommendation and
retrieval systems. Therefore, research on the InMSRL model that can input
musical pieces themselves during inference and accurately obtain the music
similarity representation per individual instruments has progressed, leading
to the proposal of Cascade and Direct. Cascade sequentially performs music
source separation (MSS) [19] and music similarity feature extractions. With
this feature extraction strategy, the model is expected to clearly disentangle
the individual instrument features from musical pieces. On the other hand,
Direct extracts disentangled music similarity features using a single music
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similarity feature extractor, with the goal of learning a disentangled feature
space consisting of different subspaces for the individual instruments, similar
to [52, 26]. With this architecture, the model can reduce the computational
costs for feature extraction compared to Cascade and avoid artifacts from the
preceding model (e.g., MSS models in Cascade) in feature extraction.

However, in Cascade, since the MSS model and music similarity feature
extractors are independently trained, separation errors are likely to cause
adverse effects on the music similarity feature extraction. Furthermore, in
Direct, learning disentangled feature representation is not straightforward, and
InMSRL performance tends to degrade for certain instruments, such as bass,
piano, and guitar. Additionally, although Clean, Cascade, and Direct employ
the S4-based training and successfully earn the music similarity representation
between the same musical pieces, there is no guarantee that this training
approach captures similarity between different musical piecesor corresponds
to human perceptual similarity. Indeed, the previous study [18] has shown that
while the music similarity representation from S4-based models between the
same musical pieces has exhibited a strong correlation with human perception,
the music similarity representation from models between different musical
pieces has shown an insufficient correlation with human perception.

In this paper, we propose InMSRL methods utilizing music source sepa-
ration and human preference aiming to construct a universally applicable In-
MSRL model and acquire a music similarity representation reflecting human
perceptual similarity. For Cascade, we propose Cascade-FT that performs
end-to-end fine-tuning (E2E-FT) of the MSS model and the music similarity
feature extractors using an auxiliary separation loss. For Direct, we propose
Direct-Reconst that uses multi-task learning based on the disentangled music
similarity feature extraction and MSS based on reconstruction (Reconst) with
the disentangled music similarity features. Furthermore, to allow the model
to perform InMSRL aligned with human perceptual similarity, we introduce
perception-aware fine-tuning (PAFT) utilizing a small amount of human pref-
erence labels. We conduct experimental evaluations and demonstrate that
1) the E2E-FT for Cascade significantly improves objective InMSRL perfor-
mance, 2) the multi-task learning for Direct is also helpful to improve dis-
entanglement performance in the feature extraction, 3) PAFT significantly
enhances the perceptual InMSRL performance, and 4) Cascade with the E2E-
FT and PAFT outperforms Direct with the multi-task learning and PAFT.

The rest of this paper is organized as follows: In Section 2, we describe the
previously proposed InMSRL methods. In Section 3, we provide the details of
our proposed method. In Section 4, we evaluate the proposed method through
experimental evaluation. Finally, in Section 5, we present our conclusion.
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2 Related Works

2.1 Conventional InMSRL Methods: Clean and Cascade

Hashizume et al. [17] proposed two InMSRL methods: one inputting clean
individual instrument stems into the corresponding music similarity feature
extractors (Clean) and the other inputting individual instrument stems sep-
arated by the pre-trained MSS model of Spleeter [19] into those extractors
(Cascade).

The music similarity feature extractors of Clean and Cascade are trained
using a triplet loss [14, 12]. In the i-th triplet, three types of sample segments,
anchor x

(a)
i that serves as the basis, positive x

(p)
i defined as similar to the

anchor and negative x
(n)
i defined as dissimilar to the anchor, are used. By

denoting a distance function as d(·), a loss function can be formulated as
follows:

Ltriplet = max{0, d(x(a)
i ,x

(p)
i )− d(x

(a)
i ,x

(n)
i ) + δ} (1)

where δ is a margin that defines the minimum distance between the anchor-
positive and anchor-negative pairs. To perform label-free learning, assuming
S4 condition, a triplet is constructed as follows:

• Anchor: Extracted from a randomly selected musical piece

• Positive: Extracted from the same musical piece as that of the anchor

• Negative: Extracted from a different musical piece from that of the
anchor.

In Cascade, it is inevitable to cause separation errors in MSS. The previ-
ous studies [17] have confirmed that the performance of Cascade significantly
degrades compared with Clean. Therefore, it is crucial to optimize the MSS
model for the instrument-dependent music similarity feature extractors.

2.2 A Conventional InMSRL Method: Direct

Hashizume et al. [15] also proposed the other InMSRL method to extract a
disentangled music similarity feature with a single feature extractor, where
the disentangled music similarity feature consists of subspaces for individual
instrument-dependent music similarity features, e.g., the first to 128-th dimen-
sional components of the 640-dimensional feature vector are used to represent
the music similarity focusing on drums.

The training process first involves pre-training. In this training, the single
disentangled music similarity feature extractor is trained using a target dis-
entangled feature formed by concatenating the instrument-dependent music
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similarity features extracted by Clean. Next, similar to Cascade, the disentan-
gled music similarity feature extractor is further updated by using the triplet
loss as shown in Equation 1.

However, unlike Cascade, it is not straightforward to train such a fea-
ture extractor. To develop the disentangled music similarity feature extractor
working reasonably, the following two approaches are used.

• Conditioning the output of the disentangled music similarity feature
extractor

• Using pseudo-musical-pieces as inputs.

Conditioning process conducts a masking operation inspired by other disen-
tangled representation learning methods [52, 26]. For example, when focusing
on the bass feature, we leave only the dimensional components corresponding
to a subspace for the bass feature and masks the other dimensional compo-
nents to 0. By partially masking the feature vector, each subspace can model
the music similarity feature depending on a specific instrument.

The use of pseudo-musical-pieces is intended to prompt the model to ex-
tract only the target instrument features from the musical piece. Figure 1
shows an overview of the pseudo-musical-pieces. In Figure 1, a musical piece α
and a musical piece β are similar to each other in drums but dissimilar in the
other instruments. In contrast, the musical piece α and a musical piece γ
are dissimilar in drums but similar in the other instruments. In the triplet
loss-based learning, by using the musical piece α as the anchor, the musical
piece β as the positive, and the musical piece γ as the negative, the model
can focus only on the drum features. By treating this triplet setting as the
basic triplet data, a previous study [15] further introduced additional triplet
data. Specifically, the additional triplet data are constructed by swapping the
positive and negative samples in the basic triplet data, and, during training
with the additional triplet data, a different instrument from that in the basic
triplet data is targeted.

However, it is still challenging to accurately disentangle a musical piece
into the instrument-dependent subspace features, because the signals of dif-
ferent instruments overlap within the mix, making it hard to isolate the char-
acteristics of single instrument. Consequently, the performance of InMSRL
based on Direct tends to be insufficient.

2.3 Perceptual Music Similarity Representation Performance of a Con-
ventional Method

Hashizume et al. have collected a large-scale dataset of human preference
labels and have analyzed the human perception of similarity between indi-
vidual instrumental stems within musical pieces [18]. Specifically, they have
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Figure 1: Overview of pseudo-musical-pieces. Instruments of the same color and the same
ID indicate sample segments extracted from the same musical piece. This figure illustrates
an example of the pseudo-musical-pieces created for learning focusing on drums.

conducted an ABX test with 586 participants, where each participant was
asked to answer the question: “Which of A or B is more similar to X?”, given
three segments of musical pieces (X, A, and B). In constructing the ABX
dataset, they defined the following two conditions for comparison:

• All-Diff: X, A, and B are extracted from entirely different songs

• One-Shared: Either A or B is extracted from the same song as X

The ABX dataset included drums, bass, piano, guitar, residuals, and mix
tracks, with 240 pairs for each, totaling 480 pairs of ABX data. Here, residuals
refer to all sounds in a musical piece except for drums, bass, piano, and guitar,
while mix represents the full audio mix of the musical piece. Furthermore,
in the experiment, each participant is given the clean stems of the target
instruments from the musical pieces. Each pair of ABX data was evaluated
by at least three participants, resulting in a total of 26,898 valid responses.

In addition, an experimental evaluation about the perceptual InMSRL
performance of the conventional InMSRL model trained in S4 condition [15]
have been conducted in [18]. The evaluation results showed that for the One-
Shared condition, there was a strong correlation between human perceptual
music similarity and music similarity by the S4-based model. Since, in the
One-Shared condition, either A or B can satisfy S4 assumption, it is inferred
that the S4 criterion aligns to some extent with human perceptual music
similarity, and the conventional InMSRL model can represent the similarity
between the same musical piece. However, in the All-Diff condition, only
a weak correlation has been observed between the human perceptual music
similarity and the music similarity by the S4-based model. This indicates
that the conventional InMSRL model is inadequate to represent the music
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similarity between segments from different musical pieces. Given that S4-
based training successfully captures similarity aligned with S4, it is possible
that this approach is not effective in learning similarity between different
musical pieces that do not conform to the S4 criterion.

2.4 Research Using Human Preference Labels for Learning

In various research domains, efforts have been made to incorporate human
preference labels into training in order to align learned embedding spaces with
human subjectivity. In the field of speech quality prediction, contrastive learn-
ing using human-assigned Mean Opinion Scores has been introduced [46, 23].
In the domain of speaker embeddings, a learning method has been proposed
in which a similarity matrix is constructed based on collected perceptual sim-
ilarity ratings, and the model is trained to predict a dimensionality-reduced
representation of that matrix [47]. Furthermore, in the field of music infor-
mation retrieval, approaches that construct similar/dissimilar triplets based
on human perceptual judgments of artist similarity and apply them to learn-
ing [39] have been proposed in the area of artist similarity representation.
The application of human preference labels to training is expected to be also
an effective approach for achieving InMSRL that reflects human perceptual
similarity.

3 Proposed InMSRL Methods Leveraging Multi-task Learning and Hu-
man Preference

3.1 Cascade-FT

To address the issue of Cascade, we propose Cascade-FT to optimize the MSS
model by performing end-to-end fine-tuning (E2E-FT).

3.1.1 Network Architecture

The network architecture of Cascade-FT consists of the MSS model and the
instrument-dependent music similarity feature extractor connected in series
as shown in Figure 2. The MSS model is based on the U-Net [45, 24] structure,
similar to the Spleeter [19] used in Cascade. The network outputs a separa-
tion mask and the separated instrumental stem is generated by Hadamard
product of the input music spectrogram and the separation mask. In this
paper, we develop the instrument-dependent MSS models to separately esti-
mate the separation masks for individual instrument stems. The instrument-
dependent music similarity feature extractor is based on the U-Net encoder
structure additionally using time-averaging and flattening operations and a
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Figure 2: Overview of Cascade-FT model.

fully-connected layer to output a 128-dimensional feature vector for each in-
strument.

3.1.2 Training

The training procedure consists of three stages: training of the MSS models,
training of the instrument-dependent music similarity feature extractors and
E2E-FT. First, the MSS models are trained in the same manner as proposed
by Jansson et al. [24]. The separation loss for each instrument stem (denoted
as LMSS in Figure 2) is calculated as the L1 loss between the output separated
instrument amplitude spectrogram and a clean target instrument amplitude
spectrogram. Next, the music similarity feature extractors are trained us-
ing the triplet loss given by Equation 1 (denoted as Ltriplet in Figure 2) in
the same manner as in Cascade. During the training, the MSS models are
frozen and their parameters are not updated. The L2 norm is employed as
the distance function d(·) in the triplet loss. Finally, in the E2E-FT stage,
all parameters of the cascaded network consisting of the MSS models and
the instrument-dependent music similarity feature extractors are updated by
using a combined loss function given by the triplet loss for the instrument-
dependent music similarity feature extractors and the separation loss for the
MSS models as an auxiliary loss. Note that three inputs (anchor, positive, and
negative) are required to compute the triplet loss, the auxiliary separation loss
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for the MSS models during fine-tuning is calculated for all three inputs. In
the training, the pseudo-musical-pieces segments (shown in Figure 1) are also
used as in Direct. Besides, we implement the data augmentation as described
in Section 3.2.3.

3.2 Direct-Reconst

To address the issue of Direct, we propose Direct-Reconst incorporating MSS
based on the reconstruction (Reconst) with the disentangled music similarity
features for the training of the disentangled feature extractors.

3.2.1 Network Architecture

Figure 3 shows the network architecture of Direct-Reconst. The Direct-Reconst
network consists of three parts: the disentangled music similarity feature ex-
tractor, a reconstruction network to reconstruct each instrument stem from
output sequences of the disentangled music similarity feature extractor, and
time-averaging and flattening operations and fully-connected layer to gener-
ate the disentangled music similarity feature vector from the output sequences.
The disentangled music similarity feature extractor has a similar structure to
the encoder of U-Net [24], and the reconstruction network has a similar struc-
ture to the decoder of U-Net [24]. Each layer of the disentangled music similar-
ity feature extractor and those of the reconstruction network are connected by
skip connections. The instrument-dependent reconstruction networks are de-
veloped for individual instruments. As in the MSS models, the reconstructed
instrument stem is generated by Hadamard product of the input music source
spectrogram and the output separation mask.

3.2.2 Training

The training procedure consists of two stages: pre-training of the music simi-
larity feature extractor and multi-task learning of the music similarity feature
extractor and the instrument-dependent reconstruction network. In the pre-
training of the music similarity feature extractor, we follow the same training
procedure as in Direct [15]. We use 31 out of the 25 possible combinations of
5 musical instrument sources (drums, bass, piano, guitar, and residuals) as in-
put, excluding the silent pattern. The training loss for the multi-task learning
is a combination of the triplet loss given by Equation 1 (denoted as Ltriplet in
Figure 3) for the disentangled music similarity features and the reconstruction
loss (denoted as LMSS in Figure 3) for the output reconstructed instrument
stems. The distance function d(·) in the triplet loss for the disentangled mu-
sic similarity features is defined as the L2 norm. The reconstruction loss is
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Figure 3: Overview of Direct-Reconst model. The same color of inputs and outputs of the
networks indicate the segments extracted from the same musical pieces.

defined as the L1 loss between the output instrument amplitude spectrogram
from the reconstruction network and the clean instrument amplitude spectro-
gram in the same manner proposed by Jansson et al. [24]. As in Direct, we
use the conditioning operation and the pseudo-musical-pieces.

3.2.3 Disentanglement Enhancement

To enhance the disentangled music similarity feature extractor, we modify the
conditioning process and utilize pseudo-musical-pieces. The modified condi-
tioning process applies the masking operation to not only the output of the
time-averaging and flattening operations and fully-connected layer (Condi-
tioning1D in Figure 3) but also the input of the reconstruction network (Con-
ditioning3D in Figure 3). Conditioning1D is the same as the conditioning
process used in Direct. Conditioning3D is its extension to apply the masking
operation to a feature sequence. By Conditioning3D, the reconstruction net-
work can focus only on the features corresponding to each target instrument.
For the pseudo-musical-pieces, we further introduce data augmentation (DA).
While Direct generates a fixed set of triplet data of the pseudo-musical-pieces
beforehand and use it in the training, Direct-Reconst introduces a process of
randomly generating triplet data of the pseudo-musical-pieces each time to
construct a mini-batch during training.
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3.3 Fine-tuning Utilizing Human Preference

For improving the perceptual InMSRL performance, we propose a
Perception-Aware Fine-Tuning (PAFT) which utilizes few human preference
labels obtained from ABX test [18] as described in Section 2.3. The training
with PAFT follows a two-step process. First, the training with triplet loss
of each InMSRL model (described in Section 2.1, 2.2, 3.1.2, and 3.2.2) is
conducted as pre-training. Then, PAFT fine-tunes these models using the
human preference data obtained from ABX test. For the loss function for
PAFT, the triplet loss given by Equation 1 is used. The data setting for the
triplet loss is defined as follows:

• Anchor: The reference data in ABX test (denoted as X in Section 2.3)

• Positive: The segment (A or B) that is determined to be more similar
to X in the ABX data

• Negative: The segment (A or B) that is determined to be less similar to
X in ABX data

For Clean, the clean individual instrument stems are used for the inputs of
models during PAFT. For Cascade and Direct approach, the pseudo-musical-
pieces are used during PAFT. Here, the pseudo-musical-pieces during PAFT
are defined using only the ABX data for the target instrument, while the non-
target instruments are defined in the same manner as described in Section
2.2. During PAFT of Cascade, Cascade-FT, Direct, and Direct-Reconst, only
the feature extractors are trained and the other parts of the model are frozen.
With PAFT, the model can acquire the music similarity representation that
aligns with human perceptual music similarity.

4 Experimental Evaluations

4.1 Dataset

The dataset used for evaluation was Slakh [35], which was also used in the
previous study [17, 15]. The dataset consisted of MIDI-generated musical
pieces and their instrument stems. Following previous studies [17, 15], we
focused on four instrument classes: drums, bass, piano, and guitar. Since
Slakh dataset provided finer-grained stems within these broad instruments
(e.g., Electric Guitar (clean)), we followed the official Slakh recipe to mix
all stems corresponding to each class, treating the resulting mixtures as the
“drums,” “bass,” “piano,” and “guitar” sources, respectively. All remaining
stems that did not fit into these four instruments were combined into a single
track and labeled “residuals.”
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The dataset consisted of 2100 musical pieces containing multiple groups
of musical pieces generated from the same MIDI file. In this experiment, we
excluded musical pieces generated from the same MIDI file, resulting in 1200
musical pieces used for training, 270 musical pieces used for validation, and
136 musical pieces used for evaluation.

4.2 Evaluation Metrics

As an evaluation metric, we used music ID estimation accuracy and percep-
tual similarity agreement as used in the previous studies [17, 15, 18]. Here,
for music ID estimation accuracy, we used the following two metrics, a music
ID estimation score on normal-test-musical-pieces (MES-Normal) and a music
ID estimation score on pseudo-test-musical-pieces (MES-Pseudo). Addition-
ally, to facilitate a deeper discussion of the models behavior, we introduce
visualization of the output music similarity feature vectors.

4.2.1 Music Estimation Score on Normal-test-musical-pieces (MES-Normal)

To evaluate the performance of the feature representation, we used the accu-
racy of the music ID estimation with a simple method using the feature rep-
resentation, following the approach of previous studies [17, 15]. Specifically,
assuming that all test segments were embedded into the learned feature space
beforehand and the music IDs of all segments were known except for a test
segment to be estimated, we used the 5-nearest neighbors (5NN) method to
estimate the music IDs of the test segments. In the evaluation for each instru-
ment, we only used feature dimensions corresponding to the target instrument
in 5NN distance calculation while masking the other feature dimensions. The
entire test dataset (136 musical pieces) was used to calculate the music ID
estimation accuracy.

In MES-Normal, high accuracy indicates that the feature vectors of seg-
ments from the same musical piece are closely clustered around each other.
In other words, MES-Normal evaluates the representation performance of S4-
based music similarity.

4.2.2 Music Estimation Score on Pseudo-test-musical-pieces (MES-Pseudo)

The proposed method aimed to learn the music similarity feature represen-
tations focusing on individual instruments. However, in MES-Normal, the
ground truth label for the 5NN method was the same over all instruments
as shown in the top part of Figure 4. Therefore, it was essentially hard
to evaluate the disentanglement performance of the learned representations
by MES-Normal. To investigate the disentanglement performance, we used
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Figure 4: Difference between MES-Normal and MES-Pseudo. The top part of the figure
shows MES-Normal, and the bottom part shows MES-Pseudo. This is the example of
evaluation for the drums. Instruments of the same color and the same ID indicate segments
extracted from the same musical piece.

pseudo-test-musical-pieces in MES-Pseudo. In MES-Pseudo, the ground truth
label was different between the target instrument and the others; e.g., the la-
bel of the target instrument (i.e., drums label) was different from the others
as shown in the bottom part of Figure 4.

The pseudo-musical-pieces used for the test were generated as follows (the
process is also showed in Figure 5): 1) 10 musical pieces were selected from the
test dataset to be used for the target instrument stems, 2) those 10 musical
pieces were removed from the test dataset, 3) for each of those 10 target
musical pieces, 3 musical pieces were further selected from the remaining test
dataset, and they were used for the non-target instrument stems, and 4) each
of the 10 target musical pieces and the corresponding 3 non-target musical
pieces were mixed to generate 30 pseudo-musical-pieces in total. The entire
test data for MES-Pseudo was constructed by using those 30 pseudo-musical-
pieces as well as the 10 normal musical pieces used for the target musical
pieces, consisting of 40 musical pieces in total. In the test, we excluded all
segments extracted from the same musical-piece as that of each test segment
to prevent the music ID estimation focusing on the non-target instruments;
i.e., when using a segment within one of the 30 pseudo-musical pieces as a test
segment, only segments within 2 pseudo-musical pieces and 1 normal musical
piece had correct music ID labels; on the other hand, when using a segment
within one of the 10 normal musical pieces as a test segment, only segments
within 3 pseudo-musical-pieces had correct musical ID labels.
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Figure 5: Data preparation process for MES-Pseudo. The same color indicates segments
extracted from the same musical piece.

4.2.3 Perceptual Similarity Agreement

Although MES-Normal and MES-Pseudo had been used as evaluation metrics
for assessing the performance of Cascade and Direct, they were limited to
evaluating the representation performance of S4-based music similarity. To
evaluate similarity not only between same musical pieces but also between
different musical pieces, we used a perceptual similarity agreement utilizing
ABX data obtained from previous research [18]. Specifically, the accuracy
was calculated by comparing human responses and model predictions for the
question, “Which of A or B is more similar to X?”, given three segments of
musical pieces (X, A, and B). The details of ABX data are described in Section
2.3. The ABX data used for evaluation included only the data where more
than 75% of participants consistently selected one of the two options, either
A or B, as the segment most similar to the reference segment X. The number
of ABX data samples and subject responses are shown in Table 1.

Table 1: The number of ABX data and subject responses.

Method drums bass piano guitar
The number of ABX data
all data (All-Diff) 240 240 240 240
all data (One-Shared) 240 240 240 240
above 75% (All-Diff) 115 112 106 105
above 75% (One-Shared) 214 194 215 213
The number of subject responses
all (All-Diff) 2421 2429 2424 2425
all (One-Shared) 2408 2422 2425 2412
above 75% (All-Diff) 1163 1128 1083 1085
above 75% (One-Shared) 2163 1959 2159 2134
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4.2.4 Visualization of Music Similarity Feature Vectors

To gain a deeper insight into the performance of each InMSRL method, partic-
ularly its disentangling performance, we introduced the visualization of music
similarity features. During visualization, pseudo-musical-pieces were used as
inputs of models. The used pseudo-musical-pieces were constructed as follows
(see Figure 6). First, 10 musical pieces were selected. They were used for both
the target instrument and non-target instruments to determine the pseudo
musical pieces. Consequently, 100 pairs of the target musical piece and the
non-target musical pieces were used in total to generate the pseudo musical
pieces. Next, 10 segments were retrieved from each musical piece. Finally, 10
pseudo-segments were constructed for each of those 100 pseudo-musical-pieces
by randomly selecting target and non-target segments from those retrieved 10
segments of the corresponding musical pieces and mixing them. Note that
although 10 out of those 100 pseudo musical pieces were equivalent to the
normal musical pieces, the constructed pseudo-segments were usually differ-
ent from normal ones because of these mixing process using the randomly
selected segments. In total, 1,000 pseudo-segments were used to visually in-
vestigate which instruments the model focused on.

Step1: 10 musical pieces 
were selected

Test Data

+ + + +

+ + + +

・
・
・

♪
♪

♪

・・・

+ + + +

+ + + +

・
・
・
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・
・
・

♪

♪

♪

・
・
・

♪

♪
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・
・

♪

・
・
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+ + + +

・
・
・

+ + + +

+ + + +

Step2: constructed 100 pseudo musical 
pieces by treating the selected 
10 tracks as target and 
non-target musical piece Step3: From each track, 10 segments were extracted 

and randomly paired across target and non-target track, 
yielding a total of 1,000 pseudo-musical pieces.

Figure 6: Data preparation process for visualization of music similarity feature vectors. The
same color indicates segments extracted from the same musical piece.

To further deepen the analysis of the visualized distributions, MES-Pseudo
was calculated for both the target and non-target music IDs. A higher MES-
Pseudo value for a target music ID suggests that the model is successfully
focusing on the features of the target instruments. Conversely, a lower MES-
Pseudo value for a non-target music ID indicates that the model is effectively
suppressing features associated with non-target instruments.
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4.3 Experimental Conditions

Music segments used in the experiments were cut into 3-second segments for
training based on S4 similarity, 5-second for PAFT and perceptual similarity
agreement, and 10-second segments for validating and MES-Normal and MES-
Pseudo. The training data and test data for PAFT were split from the ABX
data obtained in ABX test [18] at a 7 : 3 ratio. The music segments where
the target instrument was silent were excluded. The sampling rate was set to
44,100 Hz, and a window size of 2,048 and a frame shift of 512 were used for
the short-time Fourier transform (STFT). The number of mel-frequency bins
for the log mel-spectrogram used as input to the Cascade-FT music similarity
feature extractors was set to 259.

Cascade and Direct-Reconst, when the encoder and decoder were regarded
together as a complete source-separation model, share the same U-Net-style
architecture as the network proposed in [24]. Both the encoder and the de-
coder comprised six convolutional layers. Each convolution was followed by
batch normalization and a leaky ReLU activation with a negative slope of 0.2.
In the decoder, a dropout layer with a probability of 0.5 was appended to the
end of each of the first three layers. The feature extractors used in Cascade,
and Direct (the encoder in Direct-Reconst) adopted an architecture identical
to the encoder of the U-Net in [24]; thus, their structure was equivalent to the
encoder detailed above. In these feature extractors, the final layer omitted
batch normalization and leaky ReLU activation applied elsewhere. The convo-
lutional output of the feature extractor was temporally averaged, smoothing
the channel and frequency axes, and subsequently passed through a single
linear layer that projects it to 128 dimensions for Cascade approach, and to
640 dimensions for Direct approach.

The learning rate in Cascade-FT was set to 5×10−5 for training based on
S4, 1×10−5 for fine-tuning, and 5×10−5 for PAFT. The learning rate for the
pre-training of Direct-Reconst and the multi-task training of the disentangled
music similarity feature extractor and the reconstruction network was set
to 1 × 10−4. The batch size was set to 64 for both the Cascade and Direct
approaches. Adam [25] was used to train both models. The maximum number
of epochs was set to 400 except for PAFT, and training was terminated if the
minimum value of the loss function on the validation data was not updated
over 100 epochs. In PAFT, the number of epochs was set to 100. The model
was trained and evaluated with one NVIDIA TITAN RTX, RTX 3090, RTX
2080 Ti, or RTX 3090.

4.4 Experimental Results

Evaluation results of MES-Normal and MES-Pseudo are shown in Table 2 and
Table 3, respectively. We also show an evaluation result of MSS accuracy for
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Table 2: Evaluation results of MES-Normal (%). The evaluation scores of Clean [17],
Cascade w/ Spleeter [17] and Direct [15] are respectively quoted from [17] and [15]. In
w/o pseudo-musical-pieces, the music similarity feature extractors are simply trained with
normal musical pieces. Excluding ablation, the best results are highlighted in bold. “Gray”
text indicates the scores used in the ablation study.

Method drums bass piano guitar residuals
Clean [17] 98.04 94.60 98.14 96.35 -
Cascade w/ Spleeter [17] 88.91 63.87 50.34 - -
Cascade w/o pre-trained MSS 90.98 73.39 80.77 79.53 -

w/o pseudo-musical-pieces 92.71 90.20 93.62 90.90 -
w/ E2E-FT (Cascade-FT ) 93.03 74.96 81.96 82.78 -

w/o pseudo-musical-pieces 94.89 95.63 96.21 94.40 -
Direct [15] 89.69 84.45 85.70 86.27 84.86

w/ DA 89.33 71.09 79.74 81.75 85.67
w/ DA, Reconst (Direct-Reconst) 91.14 81.30 84.76 85.17 88.84

Table 3: Evaluation results of MES-Pseudo (%). The evaluation scores of Direct [15] are
quoted from the previous study [17]. In w/o pseudo-musical-pieces, the music similarity
feature extractors are simply trained with normal musical pieces. Excluding ablation, the
best results are highlighted in bold.“Gray” text indicates the scores used in the ablation
study.

Method drums bass piano guitar residuals
Cascade w/o pre-trained MSS 98.68 93.02 91.73 92.19 -

w/o pseudo-musical-pieces 95.09 77.30 81.02 77.60 -
w/ E2E-FT (Cascade-FT ) 98.91 94.80 93.55 93.89 -

w/o pseudo-musical-pieces 95.96 71.54 69.59 77.40 -
Direct [15] 85.5 37.1 31.3 44.7 74.7

w/ DA 97.93 68.22 69.22 63.24 89.99
w/ DA, Reconst (Direct-Reconst) 98.25 77.74 79.20 82.47 94.62

Table 4: Evaluation results of the MSS accuracy for the output separated stem in Cascade.
SDR (Signal-to-Distortion Ratio) was used for the evaluation. The results of Cascade w/
Spleeter [17] are quoted from the previous study [17]. Museval [49] was used for calculation
of SDR. The best results are highlighted in bold

SDR
Method drums bass piano guitar residuals
Cascade w/ Spleeter [17] -13.7 -15.5 -14.7 −
Cascade w/o pre-trained MSS 15.50 10.54 7.81 6.94 −
Cascade-FT 15.44 10.88 7.62 7.08 −
Direct-Reconst 14.17 9.10 5.45 6.26 8.51

the output separated stems in Cascade approach and Direct-Reconst in Table 4.
Additionally, the results of perceptual similarity agreement are shown in Table
5.
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Table 5: Evaluation results of perceptual similarity agreement. The “w/o PAFT” columns
show the scores of models only trained with S4 similarity, and The “w/ PAFT” columns
show the scores of models trained with PAFT. [∗, ∗] represents the 95% confidence interval
calculated using the Clopper-Pearson method [8], and ∗

±∗
represents the mean and stan-

dard deviation from three training runs, highlighting the instability in the models behavior
caused by the limited data available for PAFT. The “mean” columns indicates the average
evaluation score of drums, bass, piano, and guitar. The “PAFT data” column indicates the
input data of models during PAFT. Bold indicates the highest value, while the underline
represents the second-highest value. “Gray” text indicates the scores used in the ablation
study.

Method PAFT
data

w/o PAFT w/ PAFT
drums bass piano guitar residuals mean drums bass piano guitar residuals mean

All-Diff
Clean clean 63.11

[60.27,65.89]
55.14

[52.18,58.07]
61.59

[58.62,64.50]
65.53

[62.62,68.36]

− 61.34 61.81
±5.62

71.89
±17.20

58.36
±2.64

66.10
±3.67

− 64.54

Cascade pseudo
69.56

[66.83,72.20]
62.32

[59.42,65.16]
57.34

[54.33,60.31]
66.73

[63.84,69.53]
− 63.99

71.09
±0.75

75.50
±2.58

60.45
±5.52

76.55
±4.62

− 70.90

normal 69.53
±3.07

73.81
±5.42

64.22
±0.80

62.99
±2.72

− 67.64

Cascade-PAFT pseudo 70.54
±3.49

76.30
±4.60

64.65
±4.62

75.80
±0.16

− 71.83

Cascade-FT pseudo 62.25
[59.40,65.05]

61.44
[58.52,64.29]

62.42
[59.46,65.31]

58.53
[55.53,61.48]

− 61.16
69.69
±2.91

68.75
±3.70

59.75
±3.68

73.45
±4.90

− 67.91

normal 69.77
±4.26

71.65
±2.77

60.19
±2.64

64.59
±0.59

− 66.55

Direct pseudo 56.74
[53.41,59.19]

65.78
[62.93,68.55]

69.64
[57.12,63.04]

62.20
[59.72,65.56]

57.63
[62.63,68.29]

61.55 63.95
±0.80

68.51
±2.24

62.64
±1.67

64.50
±2.37

57.11
±3.14

64.90

Direct-Reconst pseudo 56.32
[53.41,59.19]

65.78
[62.93,68.55]

60.11
[57.12,63.04]

62.67
[59.72,65.56]

65.50
[62.63,68.29]

61.47 55.27
±1.64

72.93
±3.69

56.08
±1.06

71.94
±2.55

62.79
±3.39

64.06

One-Shared
Clean clean 95.33

[94.35,96.18]
92.39

[91.13,93.53]
94.30

[93.24,95.24]

94.14
[93.06,95.10]

− 94.04 95.90
±0.00

92.43
±1.20

92.66
±0.64

93.84
±0.77

− 93.71

Cascade pseudo
96.26

[95.37,97.02]
91.17

[89.82,92.39]
94.49

[93.44,95.41]
93.11

[91.95,94.15]
− 93.76

95.26
±1.11

89.71
±3.05

92.49
±2.46

92.13
±1.38

− 92.39

normal 95.58
±0.55

92.30
±1.67

94.56
±0.00

92.80
±1.22

− 93.81

Cascade-PAFT pseudo 95.90
±0.00

90.13
±0.40

93.13
±1.57

91.18
±1.32

− 92.59

Cascade-FT pseudo 96.26
[95.37,97.02]

92.04
[90.75,93.20]

94.12
[93.04,95.07]

93.30
[92.15,94.32]

− 93.93
95.90
±0.00

90.93
±1.17

92.70
±2.11

93.97
±0.68

− 93.37

normal 95.58
±0.55

92.01
±0.40

93.35
±1.57

90.33
±1.32

− 92.82

Direct pseudo 95.90
[94.19,97.21]

91.40
[89.09,93.36]

87.44
[84.89,89.69]

89.20
[86.74,91.35]

93.04
[90.83,94.86]

90.99 95.90
±0.00

92.10
±0.48

86.10
±1.05

90.96
±0.94

90.62
±0.00

91.26

Direct-Reconst pseudo 95.93
[95.01,96.72]

89.18
[87.72,90.52]

91.43
[90.17,92.58]

92.55
[91.35,93.63]

92.09
[90.80,93.24]

92.24 93.57
±1.31

84.91
±2.82

86.40
±2.59

88.98
±0.90

86.18
±1.03

88.46

4.4.1 Evaluation of Cascade-FT on Music Estimation Scores

It can be observed from Table 2 that Cascade-FT achieves higher evaluation
scores than the previous method [17] for all instruments. This suggests that
the proposed methods achieve higher S4-based InMSRL performance com-
pared to the previous method. From a comparison between Cascade w/o
pre-trained MSS, w/o pseudo-musical-pieces and Cascade w/ Spleeter [17],
the performance improvements can be seen in former. This is caused by the
insufficient separation accuracy of Spleeter, as shown in Table 4. This poor
performance of Spleeter is likely due to the fact that Spleeter is trained on
music with raw-audio-songs, while the experiments in this paper and [17]
use musical pieces generated from MIDI. Moreover, we can also observe that
E2E-FT in the proposed method is effective for further InMSRL performance
improvements under S4-based condition from a comparison between Cascade
w/o pre-trained MSS and Cascade-FT. Separation accuracy does not show
consistent improvement with E2E-FT. This suggests that E2E-FT optimizes
non-target instrument sounds, treated as noise in the separated outputs, for
InMSRL task. These results demonstrate that the performance of the MSS
model in Cascade methods strongly affects the performance of InMSRL.
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The disentanglement performance of each InMSRL method can be com-
pared in Table 3. All evaluation scores of Cascade-FT exceed 90%. We also
observe that E2E-FT is helpful to further improve the performance.

These results suggest that the proposed method Cascade-FT can learn
high-quality S4-based music similarity feature representations focusing on in-
dividual instruments.

4.4.2 Evaluation of Direct-Reconst on Music Estimation Scores

Table 2 shows that Direct-Reconst does not outperform the previous method
[15] for some instruments, i.e., bass, piano, and guitar. On the other hand,
Direct-Reconst significantly outperforms previous method in the evaluation
result of MES-Pseudo as shown in Table 3. These results indicate that Di-
rect [15] for MES-Normal is significantly affected by the leakage of the other
instrument features and its disentanglement performance is actually low. On
the other hand, the proposed method Direct-Reconst not only improves the
evaluation scores of MES-Pseudo but also maintains the evaluation scores
of MES-Normal at the same level as the previous method. Therefore, the
proposed method can achieve better InMSRL performance than the previous
method. Table 3 also shows that DA significantly improves the MES-Pseudo
score, demonstrating the effectiveness of DA. Additionally, a comparison of
Direct w/ DA and Direct-Reconst in Tables 2 and 3 shows that the multi-
task learning of the disentangled music similarity feature extraction and the
reconstruction is effective for improving the InMSRL performance.

4.4.3 Evaluation of Perceptual InMSRL Performance Without PAFT

Table 5 shows the evaluation results of perceptual InMSRL performance. Cas-
cade in Table 5 is corresponding to Cascade w/o pre-trained MSS in Table 2
and 3, and Direct in Table 5 is corresponding to Direct w/ DA in Table 2 and
3. Moreover, Cascade-PAFT refers to the models that replaces the E2E-FT of
Cascade-FT with PAFT and conducts the E2E-FT and PAFT simultaneously.

First, we discuss the perceptual InMSRL performance of models without
PAFT as shown in “w/o PAFT” columns of Table 5. Under the One-Shared
condition, Direct-Reconst achieves a higher score than Direct. This is expected
since the One-Shared condition can be regarded as based on S4, which is same
to the MES-Normal and MES-Pseudo, indicating that Direct-Reconst achieve
better perceptual InMSRL performance between the same musical pieces than
Direct. Additionally, although the performance gain of Cascade-FT over Cas-
cade is marginal under the One-Shared setting, the consistent improvements
observed on MES-Normal and MES-Pseudo indicate an enhanced capability
of InMSRL between the same musical piece.
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Furthermore, in “w/o PAFT” columns of Table 5, the scores of models
under the All-Diff condition are significantly lower than the scores of models
under the One-Shared condition. However, this does not mean that similarity
is not represented at all in the All-Diff condition, i.e., all models achieved
an average perceptual similarity agreement performance of over 60%. This
results are similar to the previous study [18]. These results indicate that
S4-based training contributes to some extent not only to capturing similarity
within same musical pieces but also to representing similarity between different
musical pieces although this contribution is not sufficient.

Moreover, under the All-Diff condition, Cascade outperforms Cascade-FT
and Direct outperforms Direct-Reconst, which is the opposite to that observed
under the One-Shared condition and in the quantitative MES-Normal and
MES-Pseudo evaluations. This means that effective learning under the train-
ing strategy based on S4 leads to higher InMSRL performance between the
same musical pieces but does not contribute to improving InMSRL perfor-
mance between different musical pieces.

4.4.4 Evaluation of Perceptual InMSRL Performance with PAFT

Next, we discuss the perceptual InMSRL performance of models with PAFT
as shown in “w/ PAFT” columns of Table 5. We can observe that scores of
models with PAFT are higher than those of models without PAFT under the
All-Diff condition. In contrast, the scores under the One-Shared condition
remain at the same performance level. These results demonstrate that PAFT
contributes not only to enhancing the perceptual InMSRL performance be-
tween different musical pieces, which cannot be sufficiently trained based on
S4 similarity, but also to maintaining to represent the similarity between same
musical pieces.

Additionally, when comparing to the perceptual InMSRL performance be-
tween different musical pieces of models with PAFT, Cascade (row 2) is supe-
rior to Cascade-FT (row 5), and Direct (row 7) is superior to Direct-Reconst
(row 8). This indicates that an effective training strategy based on S4 similar-
ity does not necessarily lead to performance improvement through PAFT. It
can also be considered that there is a significant discrepancy between the fea-
tures emphasized across different musical pieces and those emphasized within
the same musical piece.

Furthermore, Cascade-PAFT achieves the highest perceptual InMSRL per-
formance under All-Diff condition. This can be considered as a result not only
of minimizing the impact of separation errors from MSS model on the sub-
sequent feature extractor but also of optimizing the entire network for music
similarity based on human preference. This indicates that E2E-FT is also
effective for improving perceptual InMSRL performance.
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4.5 Discussion

The results of the visualization of music similarity feature vectors are shown
in Figure 7, and the corresponding MES-Pseudo values for the target and
non-target music IDs in the visualization are presented in Table 6.

ü Only target instrument
feature is focused

✘ Overall music feature
is focused

✘ Non-target instrument
feature is focused

target track
Identifier (color)

non-target track
Identifier (shape)

track A

track B

track C

・・・

・・・

・・・

Direct-ReconstDirect Direct w/ DA

bass

piano

Cascade-FT

Figure 7: Visualization results of the music similarity features for pseudo-musical-pieces.
In visualization, the music identification for the target instrument is represented by colors,
while that for non-target instruments is represented by shapes. In this setting, the aggrega-
tion of music similarity features with the same color but the different shapes indicates that
the model focuses only on the feature of target instrument. In contrast, the aggregation of
music similarity features with the same shape but different colors indicates that the model
focuses on the features of non-target instrument, while the aggregation of music similarity
features with the same shape and color indicates that the model focuses on the features of
overall musical pieces. The music similarity feature vectors were compressed to 2 dimension
vectors by t-SNE [34].

Table 6: Results of MES-Pseudo computed on the pseudo-musical-pieces used in the vi-
sualization (Figure 7). The “Target” column shows MES-Pseudo scores for the music IDs
corresponding to the target instruments, while the “Non-Target” column presents the scores
for the music IDs corresponding to non-target instruments. Bold indicates the best perfor-
mance, while underline denotes the second-best.

Method Target ↑ Non-Target ↓
drums bass piano guitar residuals drums bass piano guitar residuals

Direct 83.30 13.00 15.40 5.70 59.30 11.80 85.40 83.00 95.00 46.80
Direct w/ DA 98.90 76.00 78.60 57.50 95.90 0.70 17.50 17.10 40.70 4.80
Direct-Reconst 99.30 89.90 88.90 68.70 98.40 0.60 7.1 11.30 28.80 2.60
Cascade-FT 100.00 99.90 99.50 92.20 − 0.00 0.00 0.20 6.80 −
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4.5.1 The Results of Visualizing the Music Similarity Feature Vectors

In Figure 7, Direct-Reconst exhibits the most desirable aggregation pattern
among Direct approaches. Consistently, Table 6 shows that it achieves the
highest MES-Pseudo for target music IDs and the lowest for non-target IDs,
indicating the best separation of instrument-specific features. Direct [15] pro-
duces many clusters with identical shapes. Coupled with its low MES-Pseudo
for target instruments and high scores for non-target instruments, this sug-
gests that Direct captures features of unintended instruments rather than the
target ones. Direct w/ DA forms many more same-color clusters than Direct,
and its MES-Pseudo for target music IDs increases substantially, demonstrat-
ing the effectiveness of data augmentation. Moreover, Direct-Reconst further
suppresses feature dispersion relative to Direct w/ DA and yields higher MES-
Pseudo values, confirming the benefit of multi-task learning within Direct
framework. Finally, Cascade-FT reduces feature dispersion even further, form-
ing tight clusters that share the same color while differing in shape, thereby
validating its superior instrument-wise feature disentanglement.

4.5.2 Clean, Cascade and Direct Approaches Comparison

First, we compare Cascade approach with Direct approach. Tables 2 and
3 show that Direct approach tends to have higher MES-Normal scores than
MES-Pseudo scores for some instruments except for drums and residuals. Nor-
mally, MES-Normal score would be lower than or equal to the MES-Pseudo
score because the MES-Normal uses 136 target labels compared to 10 for the
MES-Pseudo at 5NN. This is considered to be due to the leakage of the other
instrument features as discussed in Section 4.4.2. In contrast, the Cascade ap-
proach can more precisely focus only on target instruments, as demonstrated
by the higher MES-Pseudo scores than the MES-Normal scores. Table 4
further supports this finding: Cascade approach achieves greater separation
accuracy than Direct-Reconst. Additionally, in the visualization results shown
in Figure 7 and the MES-Pseudo results for the same data presented in Table
6, Cascade-FT suppresses feature dispersion and achieves better MES-Pseudo
values compared to Direct approach. These results demonstrate that Cascade
approach achieves more reasonable S4-based InMSRL and higher disentangle-
ment performance than Direct approach. Furthermore, from All-Diff scores of
“w/ PAFT” columns of Table 5, Cascade approach also tends to have higher
perceptual InMSRL performance between different musical pieces than Di-
rect approach. This indicates that Cascade approach also outperforms Direct
approach in terms of the effectiveness of PAFT. These several results demon-
strates that Cascade approach achieves higher InMSRL performance not only
in objective evaluation but also in perceptual similarity representation than
Direct approach. On the other hand, Direct approach needs to use only the
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disentangled music similarity feature extractor in the inference step, and there-
fore, its computational cost is lower than Cascade approach.

Next, we compare Clean approach with Cascade and Direct approach.
MES-Normal scores of Clean are the highest in all of InMSRL models as
shown in Table 2 and it is predicted that MES-Pseudo scores would be much
higher scores than MES-Normal scores because of its less target labels. Addi-
tionally, Clean records the highest scores on the perceptual similarity agree-
ment under the One-Shared condition as shown in “w/o PAFT” columns of
Table 5. This result is to be expected because Clean utilizes clean individual
instrument stems as input, which are generally not publicly available, there-
fore explicitly providing distinct individual instrument features to the music
similarity feature extractors. In contrast, in terms of perceptual InMSRL per-
formance between different musical pieces, Clean is not the top-performing
model. Specifically, the scores of Clean without PAFT under the All-Diff con-
dition are comparable to those of the Cascade and Direct approaches without
PAFT as shown in “w/o PAFT” columns of Table 5, and the Cascade ap-
proach with PAFT rather outperforms Clean with PAFT as shown in “w/
PAFT” columns of Table 5. It is possible that this is caused by the overlearn-
ing of the music similarity between the same musical pieces. Since learning
the similarity between the same musical pieces possibly requires only a specific
part of the instrument features, such as hi-hat features in drums, models that
use clean instrument stems have potential to focus primarily on those specific
features. In such cases, the model is expected to be struggle to perform well
when it needs to capture more diverse features, such as when learning similar-
ity between different musical pieces. Conversely, in Cascade, while the feature
extractors receive separated instrument stems that contain separation errors,
these errors possibly mask some parts of the instrument features and poten-
tially lead to more robust similarity representation learning. As a result, in
perceptual InMSRL between different musical pieces with PAFT, the model
was able to capture various features, which likely contributed to performance
improvement.

From evaluation results, Clean is superior to Cascade and Direct for the In-
MSRL performance between same musical pieces, while Cascade tends to out-
perform Clean for the InMSRL performance between different musical pieces.

4.5.3 The Effectiveness of Pseudo-musical-pieces

In Cascade approach, the evaluation result of w/o pseudo-musical-pieces
showed in Table 2 and Table 3 indicates that by using pseudo-musical-pieces,
we can minimize the adverse effects of separation errors caused by the MSS
model. Note that although the performance w/o pseudo-musical-pieces looks
higher than that w/ it in Table 2, this result is caused by the leakage of the
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other instrument features, and therefore, the actual InMSRL performance
is limited. The use of pseudo-musical-pieces is also essential in Direct ap-
proach as reported in [15]. These results demonstrate that the use of pseudo-
musical-pieces is an important technique to improve InMSRL performance.
Furthermore, in Table 5, the All-Diff scores of Cascade approach which uti-
lizes pseudo-musical-pieces during PAFT are higher than those of Cascade
approach which utilizes normal musical pieces during PAFT. This means that
pseudo-musical-pieces are more effective than normal musical pieces during
PAFT in terms of perceptual InMSRL performance between different musical
pieces since they minimize distraction from the features of other instrument
features.

5 Conclusion

In this paper, we have proposed three methods to improve InMSRL perfor-
mance. First, for Cascade, we have proposed end-to-end fine-tuning (E2E-FT)
of the MSS model and the music similarity feature extractors using an aux-
iliary separation loss. Second, for Direct, we have proposed joint training
of the disentangled feature extraction and MSS based on the reconstruction
with the disentangled music similarity features. Third, we employ perception-
aware fine-tuning (PAFT) utilizing human preference. We have conducted ex-
perimental evaluations and have demonstrated that the E2E-FT for Cascade
improves InMSRL performance, the multi-task learning for Direct is also help-
ful to improve disentanglement performance in the feature extraction, PAFT
enhances the perceptual InMSRL performance, and Cascade with the E2E-FT
and PAFT outperforms Direct with the multi-task learning and PAFT.

In this study, we have relied on the Slakh dataset, which provides MIDI-
generated stems. However, the most of real-world music is recorded as live,
non-MIDI performances, and the corresponding stems are seldom released
publicly. Moreover, since live recordings exhibit far greater expressive variabil-
ity and stochasticity than MIDI-based data, performance on raw-audio songs
can be expected to degrade compared to that on MIDI-generated tracks. As
future work, we will extend our approach to operate on raw-audio songs. This
will require the development of training strategies and model architectures ca-
pable of extracting instrument-specific features from fully mixed recordings,
even when only limited stem tracks are available during training stage, and
of maintaining high accuracy under realistic deployment conditions, such as
real-world music recommendation and retrieval scene.
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