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ABSTRACT
This paper addresses performance degradation in anomalous sound
detection (ASD) when neither sufficiently similar machine data
nor operational state labels are available. We present an inte-
grated pipeline that combines three complementary components
derived from prior work and extends them to the unlabeled ASD
setting. First, we adapt an anomaly-score-based selector to cu-
rate external audio data resembling the normal sounds of the tar-
get machine. Second, we utilize triplet learning to assign pseudo-
labels to unlabeled data, enabling finer classification of operational
sounds and detection of subtle anomalies. Third, we employ iter-
ative training to refine both the pseudo-anomalous set selection
and pseudo-label assignment, progressively improving detection
accuracy. Experiments on the DCASE2022–2024 Task 2 datasets
demonstrate that, in unlabeled settings, our approach achieves an
average AUC increase of over 6.6 points compared to conventional
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methods. In labeled settings, incorporating external data from
the pseudo-anomalous set further boosts performance. These re-
sults highlight the practicality and robustness of our methods in
scenarios with scarce machine data and labels, facilitating ASD
deployment across diverse industrial settings with minimal anno-
tation effort.

Keywords: Anomalous sound detection, pseudo-label, domain shift, external
data, triplet learning.

1 Introduction

Anomalous sound detection (ASD) systems assess whether a monitored ma-
chine is operating normally or anomalously by placing a microphone nearby
and analyzing the captured audio data [2, 3, 23, 29, 31, 20]. Unlike anomaly
detection systems relying on images or video [52, 51, 7, 65], ASD systems excel
in confined or dark environments inaccessible to humans, detecting anomalies
through sound rather than visual inspection. For example, they can identify
subtle issues, such as irregularities in high-speed rotating machines or mi-
nor wear in excavated areas, that cameras might miss, by capturing acoustic
changes.

Developing ASD systems is straightforward when ample anomalous data
are available, but real-world deployment faces three key challenges:

1. Rarity of anomalous data. Anomalous events are infrequent and
diverse, prompting the use of only normal data for training to detect
unknown anomalies [31].

2. Influence of background noise. Recorded audio comprises normal
and anomalous machine sounds mixed with environmental noise, where
the distinction between normal and anomalous machine sounds may
be less pronounced than that between machine sounds and background
noise [62].

3. Domain shift. Variations in machine settings and factory environ-
ments can cause mismatches between training and testing conditions,
leading to misclassification of normal sounds as anomalies [28, 10].

In the literature, unsupervised ASD usually refers to the setting in which
only normal recordings are available during training and no anomalous ex-
amples are observed. Two primary strategies address these challenges: gen-
erative and discriminative model-based methods [28]. Generative methods
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include two sub-approaches: one minimizes reconstruction errors using au-
toencoders [53, 17, 48, 27, 42] or generative adversarial networks [63, 26] with
normal data, while the other maximizes the likelihood of normal data using
normalizing flows [46, 30, 8] or Gaussian mixture models [50, 37, 18]. These
methods model the probability density of normal data. Conversely, discrim-
inative methods classify data based on machine type and operational state
(e.g., speed, location, microphone type) [38, 58, 34, 5, 24, 66, 19, 6, 14, 61],
deriving posterior probabilities for normal states.

Both methods solve challenge 1 (rare anomalies) by training exclusively
on normal data, but they diverge on challenges 2 and 3. For challenge 2
(background noise), generative methods must model the entire acoustic scene
and thus flag benign noise variations as anomalies, whereas discriminative
methods concentrate on machinespecific cues, yielding greater resilience to
noise perturbations [62]. Challenge 3 (domain shift), which manifests itself
as changes in machine settings or microphone placement, poses difficulties
for both methods, since shifts in the distribution of normal sounds degrade
detection performance [28, 10]. However, when only a handful of normal
samples in the target domain are available, discriminative methods can be
adapted by tweaking a few shots to recover performance, while generative
methods lack this capability [4]. Extensive benchmarks on DCASE Task 2
and related evaluations confirm these tendencies [44, 59, 33].

However, discriminative methods fail when classification tasks are overly
simplistic [31]. If labels are too coarse the network has the potential to cap-
ture spurious cues (e.g., noise level or band-limited energy) instead of subtle
machine abnormalities. Consequently, performance hinges on access to similar
machines and detailed state annotations during training [60]. Such labels are
difficult to obtain for new equipment or inaccessible installations [45], leading
to high false alarm rates.

Building on, yet going beyond, prior work, we make three integrative con-
tributions: (i) Pseudo-anomalous set selection: we extend the anomaly-
score selector of [35] by adding machine-specific thresholds and importing the
selected AudioSet clips as extra multi-class normals (instead of binary pseudo-
anomalies). (ii) Triplet-based pseudo-label assignment: we first adopt
triplet learning following [15] to improve the fidelity of the generated pseudo-
labels; building on this, we introduce a training scheme that leverages these
refined pseudo-labels to achieve higher anomaly detection performance. (iii)
Iterative learning: we show that alternately updating the external set and
the pseudo-labels yields consistent AUC gains in DCASE 20222024 Task 2.
To confirm the effectiveness of these methods, we conducted extensive exper-
imental validations in unlabeled and labeled settings on DCASE 2022-2024
Task 2 datasets [10, 45, 9].1

1Our implementation is available at https://github.com/ibkuroyagi/unlabeled-asd.

https://github.com/ibkuroyagi/unlabeled-asd
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This paper is structured as follows: Section 2 details discriminative method
challenges, Section 3 reviews state-of-the-art labeled approaches, Section 4
presents our method, Section 5 provides experimental results, and Section 6
concludes.

2 The Issues with Discriminative Model-based Methods

Discriminative model-based methods identify differences in operational
sounds, such as those caused by machine manufacturers or settings, as defined
by labels. When an anomalous sound is input, the model classifies it into a
class different from its original class, thereby identifying it as an anomaly.
Consequently, these methods are significantly influenced by the types of data
in the training set and the granularity of the labels [60].

For example, in the ASD competition DCASE Challenge Task 2, datasets
from 2022 to 2024 include operational sounds from 7 to 16 machine types,
labeled with machine type, section ID, and attribute. Table 1 shows the
details of the datasets. The machine type indicates the kind of machine, the
section ID represents domain shifts within the same machine type, and the
attribute details the operational settings. Notably, the section ID also serves
as a label for product models or manufacturers within certain machine types,
making its classification equivalent to distinguishing similar sounds within a
machine type. Prior to DCASE2022, methods that classified section IDs to
detect subtle differences within machine types achieved high performance [49,
32, 55, 22, 11]. From DCASE2023 onward, when section IDs were unavailable,
classifying attribute labels improved performance [45, 9].

Table 1: Details of the datasets used in DCASE Task 2 across different years.

DCASE # of machine types # of section IDs Attribute labels available # of training samples per machine type
2022 7 6 ✓ 6000
2023 14 1 ✓ 1000
2024 16 1 ✓ 1000

However, label information suitable for ASD, such as section IDs or at-
tributes, is not always accessible. For instance, when deploying an ASD sys-
tem in a new factory, the monitored machines are often of the same manufac-
turer and product model [9], making it challenging to collect data equivalent
to section IDs. Moreover, obtaining attribute labels is difficult for machines
where state monitoring or setting annotation is impractical [45]. Thus, ex-
isting methods struggle to achieve high performance when suitable data for
ASD are unavailable.



Improving Anomalous Sound Detection 5

3 State-of-the-art Method Under Labeled Conditions

3.1 Network and Input

We adopt the architecture of Wilkinghoff [60], enhanced with Fujimuras mul-
tiresolution refinement [54]. Each audio recording is first converted into three
complementary representations: a 2D magnitude spectrogram obtained by
applying a 256 mswindow shorttime Fourier transform (STFT), a second 2D
magnitude spectrogram using an 8 mswindow STFT, and a 1D magnitude
spectrum computed by a discrete Fourier transform (DFT) over the entire
signal. Each representation is then fed into its own CNN branch, producing a
128-dimensional embedding z(m) ∈ R128, m = 1, 2, 3. The three embeddings
are concatenated to form zcat = [ z(1), z(2), z(3) ] ∈ R384.

3.2 Sub-cluster AdaCos and Subspace Loss

Following [62], each embedding is trained with the Sub-cluster AdaCos (SCAC)
loss, which shrinks intra-class variance and enlarges inter-class margins. Fu-
jimura et al. [15] introduce the subspace loss

Lss = LSCAC(z
cat, l) +

3∑
m=1

LSCAC

(
z(m), l

)
, (1)

where l is the one-hot label that combines machine type and attribute. The
first term fixes class centres to stabilise the global embedding, whereas the
second terms encourage each sub-space to carry discriminative cues on its
own, approximating FeatEx [60] behaviour without explicit feature swapping.
Data augmentation uses mixup [67] exactly as reported in [60, 54].

3.3 Inference

After training, source-domain embeddings are clustered by kso-means and the
target-domain ones by kta-means (kso=16, kta=10).

Cso = {c1, . . . , ckso}, (2)
Cta = {ckso+1, . . . , ckso+kta}, (3)
C = Cso ∪ Cta, J = kso + kta. (4)

For a test embedding z we compute the cosine similarity to every repre-
sentative

sj(z) =
⟨z, cj⟩
∥z∥ ∥cj∥

, j = 1, . . . , J. (5)
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The anomaly score is then

score(z) = − max
1≤j≤J

sj(z), (6)

so that larger values indicate that z lies farther from every normal cluster.

4 Proposed Method

In unlabeled conditions where section IDs and attributes are unavailable, the
performance of discriminative models significantly degrades [15]. Building
upon the subspace loss Lss and inference procedure described in Section 3, we
propose new steps to address the lack of labels and enhance ASD performance.
Our proposed method consists of three components:

1. Pseudo-anomalous set selection from external data: External
data similar to the normal data of the target machine type are selected
based on a machine-specific threshold.

2. Assigning pseudo-labels to unlabeled data: Class labels are as-
signed to unlabeled data using triplet learning.

3. Iterative learning: The model is retrained iteratively to refine perfor-
mance.

An overview of the proposed methods is shown in Figure 1. We describe each
component in detail in the following subsections.

4.1 Pseudo-anomalous Set Selection from External Data

The performance of discriminative models decreases when class labels rep-
resenting similar sounds within the same machine type (e.g., section IDs)
are unavailable. The proposed method addresses this by selecting external
data that resemble the target machine type’s normal sounds and assigning
appropriate class labels. An overview of this process is shown in Figure 2.
The pseudo-anomalous set selection consists of three steps: (i) training a
baseline model, (ii) selecting the pseudo-anomalous set from external data
using a machine-specific threshold, and (iii) retraining the baseline model
with the pseudo-anomalous set. We adopt the baseline method proposed by
Fujimura [54] to train the model for selecting external data.

4.1.1 Selecting the Pseudo-anomalous Set from External Data

To mitigate the performance drop, the proposed method selects external data
that are misclassified as normal by the baseline model. The trained baseline
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Figure 1: Overview of the proposed method, illustrating the integration of three key com-
ponents within an iterative learning framework: (1) Selection of the pseudo-anomalous set
from external data using a feature extractor, (2) Assignment of pseudo-labels to unlabeled
original data via the same feature extractor, and (3) Iterative learning, where the model
is retrained over multiple cycles using updated training data Xtrain derived from both the
pseudo-anomalous set and original data to progressively improve performance.

model computes anomaly scores for all training data, and for each machine
type, the highest anomaly score is used as a threshold, denoted as athr

machine.
External data with anomaly scores below athr

machine are considered similar to
the normal data of the corresponding machine type. To prevent over-reliance
on external data, the number of external samples added per machine type
is capped at Nmax. Specifically, if Nout is the number of selected external
samples, the number of samples added is:

Nex = min(Nout, Nmax), (7)

where the Nex external samples with the smallest anomaly scores are added
to the training data. This expanded dataset is referred to as Xtrain. The clas-
sification labels for the external data follow the format machine_attribute,
where:

• machine is assigned based on the machine type from the original dataset,
using the class with the highest similarity to the external dataset.

• attribute is assigned from the external dataset’s class label (if avail-
able).
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Figure 2: Overview of the process for selecting the pseudo-anomalous set from external
data, consisting of three steps: (1) Training a baseline model on the original dataset with
the subspace loss Lss, (2) Processing external data through the baseline model to com-
pute anomaly scores, which are then sorted and filtered using machine-specific thresholds
athr

machineA, athr
machineB, . . . to select the pseudo-anomalous set, and (3) Retraining the base-

line model on the combined dataset to refine predictions with the subspace loss Lss.

If multiple external samples belong to the same class but are associated with
different machine types, they are treated as separate classes to account for
the potentially coarser class definitions in external data.

Conventional methods using external data [35, 47] randomly select exter-
nal data, define them as pseudo-anomalous, and train the model using binary
classification. However, these methods may select irrelevant sounds (e.g., in-
struments or speech), limiting their effectiveness. Our method improves per-
formance by filtering external data that are beneficial for ASD and treating
them as part of a multi-class classification problem, enabling the detection of
subtle differences among normal data.

4.1.2 Retraining the Model with the Pseudo-anomalous Set

The feature extractor is retrained on the augmented dataset Xtrain using the
same procedure as the baseline. After training, representative vectors are
calculated only from the original dataset, excluding external data, to prevent
misclassifying anomalous sounds similar to external data as normal. The
methods for calculating anomaly scores and representative vectors remain the
same as in the baseline [54].
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4.2 Assigning Pseudo-labels to Unlabeled Data

We propose a method to improve performance when the machine type is
known, but internal state or configuration labels (e.g., attribute) are un-
available. An overview of this method is shown in Figure 3. The process
consists of three steps: (i) training a baseline model, (ii) obtaining pseudo-
labels from the baseline model, and (iii) retraining the baseline model with
the pseudo-labels.

Figure 3: Overview of the proposed method for assigning pseudo-labels to unlabeled data,
consisting of three steps: (1) Training a baseline model on the original dataset by passing it
through the function f to produce category outputs zcat, optimized using the loss function
Lmlt, (2) Using the trained baseline model to predict and assign pseudo-labels to unlabeled
data, generating x, l(pseudo), and (3) Retraining the model on the pseudo-labeled data
x, l(pseudo) to iteratively improve predictions via the loss function Lmlt.

4.2.1 Training a Baseline Model

In unlabeled conditions where attribute labels are unavailable, baseline train-
ing typically relies solely on machine type labels. However, this approach
often leads to a simplistic classification task, causing the model to focus on
irrelevant features such as specific frequencies or background noise [62], which
can impair its ability to detect subtle anomalies. To address this limitation
and prepare the model for effective pseudo-labeling, we enhance the base-
line training by incorporating triplet learning, building on insights from prior
work [15]. Specifically, [15] demonstrated that triplet learning can effectively
disentangle operational sound variations from environmental noise, creating
a feature space better suited for anomaly detection. We selected triplet learn-
ing instead of contrastive learning because it better aligns with our goal of
capturing subtle changes within the same sample, such as variations in ma-
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chine operational sounds, rather than just distinguishing between different
samples. Contrastive learning focuses on separating distinct samples within a
mini-batch, which is less effective for identifying fine-grained differences crit-
ical to anomaly detection. In contrast, triplet learning encourages the model
to emphasize these subtle intra-sample changes while ignoring irrelevant noise
variations.

For triplet learning, we define three samples: the anchor xa
i , the positive

xp
i , and the negative xn

i , as follows:

• Anchor: The anchor sample xa
i is a normal sound sample from the i-th

machine type.

• Positive: The positive sample xp
i is created by adding scaled sound

from a different machine type j ̸= i as background noise to the anchor,
defined as:

xp
i = xa

i + 10−
α
20 · ∥x

a
i ∥

∥xj∥
xj , (8)

where ∥ · ∥ denotes the Euclidean norm, and α is a hyperparameter
representing the signal-to-noise ratio (SNR) in decibels to adjust the
intensity of the background noise relative to the anchor signal.

• Negative: The negative sample xn
i is generated by pitch-shifting the

anchor sample:
xn
i = PitchShift(xa

i , β), (9)

where β simulates operational variations, with the implementation based
on torchaudio [64, 25].

This triplet configuration encourages the model to distinguish operational
changes from background noise variations. Let za

i , zp
i , and zn

i represent the
embedding vectors of xa

i , xp
i , and xn

i , respectively.
A similarity function with a temperature parameter τ is employed:

sτ (z, z
′) =

⟨z, z′⟩
τ ∥z∥∥z′∥

, (10)

where ⟨·, ·⟩ denotes the dot product. The triplet loss Ltrp is defined as:

Ltrp(z
a
i , z

p
i , z

n
i ) = max {0, γ + 1− sτ (z

a
i , z

p
i ) + sτ (z

a
i , z

n
i )} , (11)

where γ is a margin parameter. This loss encourages the model to prioritize
operational sound differences over noise.

The feature extractor is trained using both the triplet loss Ltrp and the
subspace loss Lss, where li is the one-hot machine type label. Mixup [67]
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is applied to Lss with a 50 % probability, but not to Ltrp, to preserve the
intended triplet relationships. The combined training loss is:

Lmlt = Ltrp(z
a
i , z

p
i , z

n
i ) + Lss(zi, li). (12)

This enhanced baseline training establishes a robust feature space, enabling
effective pseudo-label assignment in the subsequent steps and supporting the
iterative learning framework.

4.2.2 Generating Pseudo-labels

After training, we generate pseudo-labels by applying k-means clustering to
the learned embeddings for each domain and machine type, similar to previous
studies [15, 57, 40]. Let kso and kta be the numbers of clusters for the source
and target domains, respectively. Each sample xi is assigned to the cluster
with the nearest centroid in embedding space:

ℓ
(pseudo)
i = argmin

1≤j≤kdi

∥∥∥zi − c
(di)
j

∥∥∥ , where di =

{
so (source domain),
ta (target domain).

(13)

4.2.3 Retraining the Baseline Model with Pseudo-labels

We retrain the model from scratch using Lmlt, replacing li with the pseudo-
label ℓ

(pseudo)
i . Since pseudo-labels are not ground truth, minimizing intra-

class variance with Lss alone may force samples with different true labels into
the same cluster, leading the model to focus on environmental noise or incor-
rectly group operational sounds. By incorporating the triplet loss, the model
learns to ignore noise differences and focus on operational sound changes,
mitigating these issues and improving ASD performance. For inference, the
procedure remains the same as the baseline.

4.3 Iterative Selection of Pseudo-anomalous Set and Pseudo-labels

We combine the pseudo-anomalous set selection (Section 4.1) and pseudo-label
assignment (Section 4.2) into an iterative training scheme:

• Stage 1: Train the model using Lmlt on the original labeled dataset
(no external data or pseudo-labels).

• Stage M (M ≥ 2):

1. Use the model from stage (M−1) to select the pseudo-anomalous
set and add up to Nmax samples per machine type to the training
set.
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2. Use the same model to assign pseudo-labels via k-means clustering.
3. Retrain the model using the augmented dataset and new pseudo-

labels with Lmlt.

An overview of this method is shown in Figure 1. By iterating, we refine the
model at each stage, potentially obtaining more accurate pseudo-anomalous
sets and meaningful pseudo-labels for the next stage. During inference, we
reuse the procedure summarised in Section 3: for each test embedding we
take the negative of its maximum cosine similarity to the representative vec-
tors obtained from source and target domain training data. This iterative ap-
proach progressively enhances performance by leveraging both external data
and pseudo-labeled internal variations.

5 Experimental Evaluations

5.1 Datasets

We evaluated our proposed methods using the DCASE Task 2 datasets from
2022 to 2024 [10, 45, 9]. These datasets comprise machine sound recordings, in-
cluding factory background noise. Each recording is a single-channel audio file,
lasting 6–18 seconds, with a 16 kHz sampling rate. The DCASE2022 dataset
includes seven machine types: fan, gearbox, bearing, slide rail (slider), valve,
ToyCar, and ToyTrain [22, 12]. The DCASE2023 dataset features 14 machine
types: its development set matches DCASE2022, while the evaluation set
includes ToyDrone, ToyTank, ToyNscale, bandsaw, grinder, and shaker [21].
The DCASE2024 dataset contains 16 machine types: its development set
aligns with DCASE2022, and the evaluation set includes 3D-Printer, AirCom-
pressor, BrushlessMotor, HairDryer, HoveringDrone, RoboticArm, Scanner,
ToothBrush, and ToyCircuit [1, 43]. Table 1 summarizes the label conditions
for each dataset. Note that some attribute labels in DCASE2024, unavail-
able during the competition, were released post-competition and used in this
analysis.

Each dataset provides 1,000 training samples per machine type, all nor-
mal data. These consist of 990 source-domain samples and 10 target-domain
samples affected by domain shift. Domain shift occurs due to changes in
machine sound characteristics, such as those caused by maintenance actions
or variations in the acoustic environment (e.g., background noise or shifts in
operating conditions). Training samples include attribute labels indicating
the machine’s operating state or environment. An ideal ASD system should
detect anomalies reliably despite domain shifts without adaptation [56]. Per
the DCASE Task 2 setup, training data indicate source or target domain
origin. Evaluation data include 100 normal and 100 anomalous samples per



Improving Anomalous Sound Detection 13

machine type, split evenly between domains. During inference, the domain of
test data is unknown. In DCASE2022, section IDs denote domain shift types,
used alongside attribute labels in labeled settings. From DCASE2023 onward,
the absence of section IDs simplified the classification task, making it harder
to extract embeddings sensitive to anomalous changes.

Performance is assessed using the area under the ROC curve (AUC), fol-
lowing DCASE Task 2. The AUC is vital as machine condition monitoring
thresholds aim to minimize false alarms [41, 13]. This threshold-independent
metric offers an objective comparison of ASD systems.

5.2 System Descriptions

In this study, we compare our proposed method in an unlabeled configura-
tion with Wilkinghoff’s method, known for state-of-the-art performance across
multiple datasets in conventional ASD systems [60], and Fujimura’s baseline
method [54]. Since ASD hyperparameters cannot be tuned with anomalous
data, we use identical hyperparameter values for all machine types. This ap-
proach, widely adopted in ASD [10, 45, 9], ensures robust performance on
unseen machine types. We outlined the settings for each method below.

Wilkinghoff’s Method (Wilkinghoff [60]). This method, per [60],
uses a magnitude spectrogram and the full magnitude spectrum as input
features. Feature extraction employs a window size of 64 ms with a 50 %
hop size. Two convolutional branches produce 128-dimensional embedding
vectors, concatenated into a 256-dimensional feature for ASD. The SCAC
loss [62] is applied to 16 untrainable sub-clusters (randomly initialized) us-
ing these 256-dimensional features. Training involved a batch size of 100, 50
epochs, the AdamW optimizer [39] with a learning rate of 0.001, and mixup
with uniformly sampled ratios. Post-training, embeddings are clustered via
k-means: 16 clusters for the source domain and 10 for the target domain,
where each target-domain sample serves as its own representative vector. The
optimal cluster number in DCASE2023 was 16 for the source domain, though
its impact was minor [60]. Anomaly scores are derived from cosine similarity
between test samples and representative vectors.

Baseline (Ba [54]). This baseline adopts most settings from Wilkinghoff
[60], with key differences: (i) it uses two magnitude spectrograms (8 ms and
256 ms windows) plus the full magnitude spectrum, all with 50 % hop sizes; (ii)
three convolutional branches each yield a 128-dimensional embedding, concate-
nated to form a 384-dimensional feature; (iii) SCAC loss [62] is applied twice,
first to 16 untrainable sub-clusters for the 384-dimensional feature, then to 16
trainable sub-clusters per 128-dimensional branch (all randomly initialized).
Other training and inference parameters align with Wilkinghoff’s method.

Baseline with External Data (Ba+Ex). Following Section 4.1, we in-
corporate approximately 1.8 million labeled audio samples from Audioset [16]
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as external data. Each Audioset sample carries a “mid” label (e.g., /m/05r5c
for Piano, /m/05zppz for Male speech), used as attribute labels. Representa-
tive vectors are computed from the training set using k-means with 16 clusters
for the source domain. Up to Nmax = 1000 external samples per machine type,
matching the training data size, are selected. The baseline model is retrained
with these labeled samples, retaining the original hyperparameters.

Baseline with Ltrp (Ba+Ltrp). Following Section 4.2.1, this method
enhances the baseline with triplet learning. Positive samples are generated
by adding scaled sound from a different machine type as background noise,
with the hyperparameter α (SNR, [−5, 20] dB) controlling noise intensity. The
range of [−5, 20] dB was chosen to balance the intensity of the noise and the
original sound source, ensuring that the noise-to-signal ratio remains within a
range where both components are comparable. Negative samples are created
by pitch shifting the anchor, with β ranging from ±6 to ±12 semitones; this
implementation is based on torchaudio [64, 25]. The range of β was selected
to simulate realistic operational variations without excessively distorting the
original sound, covering a semitone shift to an octave shift. The triplet loss
uses τ = 0.2 and γ = 0.5, following the configuration in [36].

Baseline with Pseudo-Labels (Ba+Ps). Per Section 4.2.2, this method
retrains the baseline using pseudo-labels. After initial training, embeddings
are clustered per domain: 16 clusters (kso = 16) for the source domain and 4
(kta = 4) for the target domain per machine type. Assuming 16 source-domain
attributes and 4 target-domain attributes, this yields 20 pseudo-classes per
machine type. Samples are assigned pseudo-labels based on the nearest of 20
centroids. From stage 2, the model will address a classification task with 20
times the classes of stage 1’s machine types.

Iterative Learning Method (Ba+Ltrp+Ps+Ex, Stage M). Per Sec-
tion 4.3, this iterative method boosts performance over up to M = 5 iterations.
From stage M = 3, 4, 5, pseudo-labels and external data are derived using the
model from stage M − 1.

5.3 Performance Evaluation When Labels are Unavailable

Table 2 presents the experimental results evaluating the performance of the
proposed methods under unlabeled conditions. The per-domain performance
is reported in Table A.1. To assess the effect of Ltrp, we compare Ba and
Ba+Ltrp, focusing on the “all” column. Incorporating Ltrp improved perfor-
mance on all datasets except DCASE2024 development, where the difference
was minimal. This suggests that Ltrp generally enhances performance, likely
by suppressing noise and emphasizing variations in operating sounds within
samples, creating a more discriminative feature space.

To verify the effect of retraining with external data, we compared Ba+Ltrp
and Ba+Ltrp+Ex, focusing on the “all” column. Using external data improved
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Table 2: Average AUC (%) for each training configuration on the DCASE 2022–2024 Task 2
datasets. The upper block (“w/ label”) is a label-based reference, while the lower block
(“w/o label”) shows the proposed unlabeled configurations. Column “stage indicates the iter-
ation number: stage 1 is the initial model, stage 2 adds external data and / or pseudo-labels
derived from stage 1, and stages 35 repeat the same update procedure recursively. Columns
“dev and “eval correspond to development and evaluation splits. Values are mean ± variance
over five random seeds. Ba= baseline [54], Ex= selected external data, Ps= pseudo-labels,
and Ltrp = triplet loss.

Use label Method stage 2022 2023 2024
dev eval dev eval dev eval

w/ label Wilkinghoff [60] 1 82.5±0.8 73.1±0.9 67.2±0.8 74.2±0.3 72.6±0.7 61.5±0.6
Ba [54] 1 81.9±0.9 73.0±0.3 70.5±0.5 77.5±0.4 72.8±0.4 63.2±0.8

w/o label

Wilkinghoff [60] 1 67.2±5.8 64.1±0.8 62.5±0.8 64.4±3.2 59.7±1.1 55.6±0.6
Ba [54] 1 71.3±0.9 64.8±0.7 64.2±1.2 67.8±1.4 59.5±0.7 53.8±0.6
Ba+Ltrp 1 71.8±1.6 65.2±1.3 64.1±1.2 68.8±0.6 59.7±1.3 54.1±1.5
Ba+Ltrp+Ex 2 74.0±0.5 65.3±1.3 65.0±1.1 69.2±0.3 61.2±1.3 54.9±0.9
Ba+Ltrp+Ps 2 76.2±0.4 68.4±0.8 64.2±1.3 72.4±0.7 65.5±1.5 56.4±1.1
Ba+Ltrp+Ps+Ex 2 75.8±0.9 69.1±0.7 64.4±0.5 72.7±1.0 66.4±2.2 56.5±0.6
Ba+Ltrp+Ps+Ex 3 76.8±1.7 70.1±1.4 65.2±0.5 72.6±1.3 68.3±1.0 57.0±0.1
Ba+Ltrp+Ps+Ex 4 76.5±2.0 70.1±0.6 64.3±1.9 73.1±0.6 70.7±1.5 56.1±0.0
Ba+Ltrp+Ps+Ex 5 78.1±1.0 70.3±1.1 65.2±1.4 72.6±0.3 70.4±1.5 56.8±0.1

performance across all datasets, demonstrating its effectiveness. Specifically,
adding external data similar to normal data appears to enhance the detection
of anomalies resembling those external samples.

To examine the effect of retraining with pseudo-labels, we compared Ba+
Ltrp and Ba+Ltrp+Ps, focusing on the “all” column. Retraining with pseudo-
labels improved performance on all datasets, indicating its effectiveness. As-
signing samples with similar operating sounds to the same class enables the
detection of finer differences, such as those across machine settings, leading
to performance gains.

To determine whether combining external data and pseudo-labels yields
additional benefits, we compared Ba+Ltrp+Ex, Ba+Ltrp+Ps, and Ba+Ltrp+Ps
+Ex, focusing on the “all” column. In most datasets, the combined method
outperformed each individual method, except in DCASE2022 development
(where Ba+Ltrp+Ps performed best) and DCASE2024 development (where
Ba+Ltrp +Ex performed best). In these exceptions, target-domain perfor-
mance was notably high, suggesting that particularly suitable external data or
pseudo-labels were obtained. Since combining both methods never degraded
performance relative to each single method across all datasets, we consider
their joint use effective.

We next evaluated the performance improvements from iterative learn-
ing by comparing Ba+Ltrp+Ps+Ex at stages 2, 3, 4, and 5, focusing on the
“all” column. The average scores across all datasets increased from 67.5 at
stage 2 to 68.3, 68.5, and 68.9 at stages 3, 4, and 5, respectively, indicat-
ing steady improvement. Performance improved in both source and target
domains, demonstrating that the proposed method effectively boosts perfor-
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mance under unlabeled conditions. For individual datasets, stages 3, 4, and
5 outperformed stage 2, but differences among stages 3, 4, and 5 were not
pronounced. Given that anomalous data are unavailable for model valida-
tion, iterating up to stage 3 appears sufficient for developing ASD systems for
unknown machines.

Finally, we compared our unlabeled results with the upper-bound per-
formance using ground-truth labels. The average “all”-column scores across
all datasets for w/ label Wilkinghoff [60], w/ label Ba [54], w/o label Wilk-
inghoff [60], and w/o label Ba [54] are 71.9, 73.2, 62.3, and 63.6, respectively.
In Ba [54], the gap between labeled and unlabeled settings was 9.4 points, but
our approach at stage 5 reduced this gap to 4.3 points, improving performance
by 5.1 points. Moreover, our stage 5 result is only 3.0 points below the w/
label Wilkinghoff [60] score. This significant reduction in the performance gap
shows that our method greatly improves upon existing unlabeled approaches
and closely approaches label-based performance.

These results indicate that, in an unlabeled setting, using Ltrp, external
data, and pseudo-labeling with at least three iterations is effective.

5.4 Performance Evaluation When Labels are Available

We evaluated the proposed method in a labeled setting using the results pre-
sented in Table 3. The per-domain performance is reported in Table A.2.
The pseudo-label approach assumes that original labels lack sufficient gran-
ularity for ASD. It augments these labels with pseudo-labels to enable finer-
grained classification. Specifically, when applying pseudo-labels, the label for-
mat shifts from machine_attribute to machine_attribute_pseudo-label.

Table 3: Average AUC (%) of each supervised configuration (attribute labels available) on
the DCASE 20222024 Task 2 datasets. Column “stage indicates the training iteration: stage
1 is the initial model; stage 2 retrains the baseline with external data (Ex) and / or pseudo-
labels (Ps) derived from stage 1; stage 3 repeats the same update. Columns “dev and “eval
correspond to the development and evaluation splits, respectively (mean ± variance over
five random seeds). Ba= baseline [54], Ltrp = triplet loss.

Method stage 2022 2023 2024
dev eval dev eval dev eval

Wilkinghoff [60] 1 82.5±0.8 74.2±0.3 73.1±0.9 72.6±0.7 67.2±0.8 61.5±0.6
Ba [54] 1 81.9±0.9 77.5±0.4 73.0±0.3 72.8±0.4 70.5±0.5 63.2±0.8
Ba+Ltrp 1 80.7±0.8 68.8±0.3 72.6±2.3 69.0±0.9 68.8±0.9 61.9±1.6
Ba+Ex 2 81.7±0.3 76.9±0.5 73.8±1.0 75.0±0.9 71.2±0.9 64.4±0.6
Ba+Ps 2 79.8±0.4 76.0±0.4 73.6±0.6 71.7±1.6 70.2±0.6 61.0±1.1
Ba+Ps+Ltrp 2 80.0±0.5 75.8±0.5 72.5±0.6 69.0±1.6 69.1±0.9 60.7±0.8
Ba+Ex 3 82.2±0.8 76.8±0.5 73.4±0.5 75.0±1.5 70.2±1.1 64.4±1.2

We compared Ba [54] and Ba+Ltrp to evaluate triplet learning’s impact.
When ground-truth labels are available, incorporating Ltrp degrades perfor-
mance across all datasets. Since Ltrp drives the model to detect subtle intra-
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sample variations, it may overemphasize minor sound differences when origi-
nal labels already adequately represent machine settings. This oversensitivity
likely explains the performance decline.

Next, we examined the effect of external data by comparing Ba [54] with
Ba+Ex in the “all” column. Given that Ltrp does not enhance performance
in this setting, we use Ba [54] as the stage 1 model. Adding external data im-
proves performance across all DCASE2023 and DCASE2024 datasets. How-
ever, no significant improvement occurs in DCASE2022. When using external
data, samples similar to the normal data are selected from external sources.
In settings without predefined machine type distinctions (e.g., unlabeled con-
ditions) or similar machine sounds (e.g., lacking section IDs), external data in-
crease classification complexity, potentially boosting performance. Conversely,
when section IDs are present, the training data already contain ample similar
operational sounds, limiting the impact of external data on task complexity
and thus yielding minimal gains.

We then evaluated pseudo-labeling by comparing Ba [54] with Ba+Ps in
the “all” column. Pseudo-labels degrade performance in all datasets except
the DCASE2023 development set. In a labeled setting, pseudo-labeling ef-
fectively subdivides existing labels into finer categories. If original labels
accurately reflect machine settings, further subdivision fragments the data
unnecessarily. These additional categories may capture irrelevant variations
(e.g., background noise), rendering pseudo-labeling redundant when the orig-
inal data are well-segmented.

Finally, we compared stage 2 and stage 3 of Ba+Ex to assess iterative learn-
ing benefits. Since neither Ltrp nor pseudo-labeling proves advantageous in
this setting, we iterate using Ba+Ex. Results indicate negligible improvement
from stage 2 to stage 3. In stage 2, the model learns to distinguish Audioset
samples from normal data based on stage 1 selections. Without new insights
from Ltrp or pseudo-labeling, re-extracting external data from Audioset offers
no additional perspective, leaving performance largely unchanged.

These findings suggest that in the labeled setting where the original labels
are appropriately annotated, applying the external data approach once is the
most effective strategy.

5.5 Effectiveness of Proposed External Data Selection and Impact of Ex-
ternal Data Volume

We investigated the effect of pseudo-anomalous data from external data in the
unlabeled settings. Table 4 is analyzed in three key aspects:

1. Performance differences between selecting external data via anomaly
scores (our method) and random selection,
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Table 4: Performance evaluation comparing external data selection via anomaly scores
(proposed method) and random selection, with varying maximum numbers of external data
(Nmax). Large Nout machines refers to machine types where Nout ≥ Nmax, while small
Nout machines refers to those where Nout < Nmax. Each value represents the average AUC
[%] across all machine types in the dataset, with variance computed from five runs using
different random seeds.

Nmax
large Nout machines small Nout machines

2022 2023 2024 2022 2023 2024
Ba [54] – 71.8±1.2 58.4±0.6 59.9±2.3 67.3±0.7 65.6±0.5 59.2±0.6
Ba+Ex 500 74.1±1.2 61.2±1.9 65.1±2.7 68.3±0.6 66.6±0.8 59.3±0.8
Ba+Ex 1000 74.6±0.8 62.3±2.2 66.1±5.7 68.7±1.1 66.3±1.5 60.0±0.8
Ba+Ex 2000 74.1±0.9 60.6±2.5 63.8±5.4 69.0±0.6 66.3±0.6 60.0±1.0
Ba+Ex (random) 500 73.3±0.9 60.3±2.4 63.6±2.4 67.8±0.9 66.1±1.2 59.8±0.8
Ba+Ex (random) 1000 73.5±1.1 60.6±1.9 59.2±2.9 67.4±0.3 65.8±1.0 59.3±0.6
Ba+Ex (random) 2000 74.1±0.7 61.5±1.5 61.1±1.1 67.6±0.5 65.1±0.5 58.9±1.5

2. Performance variations based on the maximum number of external sam-
ples, Nmax, used in training,

3. Performance differences between machine types with Nout ≥ Nmax (large
Nout machines) and those with Nout < Nmax (small Nout machines).

In DCASE2022, large Nout machines are fan and valve, while small Nout

machines are bearing, gearbox, slider, ToyCar, and ToyTrain. In DCASE2023,
large Nout machines are bandsaw and grinder, and small Nout machines in-
clude bearing, fan, gearbox, shaker, slider, ToyCar, ToyDrone, ToyNscale,
ToyTank, ToyTrain, Vacuum, and valve. For DCASE2024, large Nout ma-
chines are BrushlessMotor, and small Nout machines are 3DPrinter, AirCom-
pressor, bearing, fan, gearbox, HairDryer, HoveringDrone, RoboticArm, Scan-
ner, slider, ToothBrush, ToyCar, ToyCircuit, ToyTrain, and valve.

To compare our method with random selection, we evaluated Ba [54]
against Ba+Ex. Ba+Ex consistently improves performance across all Nmax

values, whereas Ba+Ex (random) shows performance drops in some datasets
compared to Ba [54]. Notably, the highest performance across all datasets
is achieved with our proposed method rather than random selection. This
suggests that targeting external samples likely to be misclassified as normal
enhances ASD performance more effectively than random selection. Further-
more, this improvement occurs regardless of the classification into large Nout

machines or small Nout machines, indicating that adding external data re-
sembling not only the target machine but also co-trained machine types con-
tributes to the performance gain.

Next, we examined the relationship between Nmax and performance in
Ba+Ex. For large Nout machines, performance decreases when Nmax is
changed from 1000 to either 500 or 2000. This indicates that while incor-
porating more external data prone to misclassification as normal can improve
performance, excessive external data beyond the original training data leads
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to performance degradation. This highlights the need to balance the volume of
external data with the original training data. For small Nout machines, perfor-
mance shows no consistent trend with varying Nmax. Since Nout < Nmax, in-
creasing Nmax introduces external data resembling other machine types rather
than the target class, which likely explains the lack of clear performance shifts.

These results demonstrate that our method, which prioritizes external
data prone to misclassification as normal, outperforms random selection and
effectively boosts performance, particularly for machine types with abundant
relevant external data (large Nout machines). Furthermore, for these machine
types, setting Nmax to a value comparable to the size of the training data (e.g.,
Nmax = 1000) is critical to prevent performance degradation due to excessive
external data.

5.6 Performance Analysis of Triplet Loss and Pseudo-Labels in Stage 2

Table 5 evaluates the performance of models trained in stage 2 using pseudo-
labels generated in stage 1 by Ba or Ba + Ltrp. The results demonstrate
that pseudo-labels generated by Ba + Ltrp in stage 1 consistently yield higher
performance than those generated by Ba alone, regardless of the loss function
used in stage 2. This suggests that incorporating Ltrp in stage 1 enhances the
quality of pseudo-labels.

Table 5: Evaluation of the impact of the triplet loss Ltrp on pseudo-label quality and model
performance in a two-stage training framework. Columns indicate the model used in stage
1 to generate pseudo-labels Ba, Ba + Ltrp and the dataset (DCASE2022, DCASE2023,
DCASE2024). Rows show the model configuration in stage 2: Ba+Ps and Ba+Ltrp +Ps .
Each entry reports the average AUC (%) across all machine types in the respective dataset,
with mean and variance computed from five runs.

Loss functions in stage 1 Ba Ba+Ltrp
DCASE 2022 2023 2024 2022 2023 2024
Ba+Ps 70.6±0.2 63.2±1.1 57.4±1.2 71.3±0.5 63.5±1.3 58.9±0.6
Ba+Ltrp+Ps 71.8±0.4 66.8±1.4 59.1±0.5 74.3±0.5 67.0±1.0 60.3±1.2

Moreover, when comparing stage 2 configurations, Ba + Ltrp + Ps outper-
forms Ba + Ps across all datasets and pseudo-label data. This indicates that
adding Ltrp in stage 2 reduces the negative impact of incorrectly assigned
pseudo-labels. The triplet loss contributes to both improved pseudo-label
quality and reduced misclassification errors by training the model to focus on
features relevant to ASD, such as changes in machine sounds, while ignoring
noise and trivial machine-specific characteristics.

These findings highlight the effectiveness of incorporating triplet loss in
all stages of an unsupervised learning framework with pseudo-labels, leading
to enhanced model performance.
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6 Conclusion

This paper introduced three methods to enhance ASD performance when de-
tailed operational state labels and similar machine data are limited. First, we
proposed a pseudo-anomalous set selection method to address scenarios with
scarce comparable machine types. By scanning a vast external dataset, we
automatically extracted audio samples resembling the target machine’s nor-
mal sounds, increasing classification complexity without compromising key
characteristics. Second, we developed a pseudo-label assignment strategy for
unlabeled data, enabling the detection of subtle operational differences critical
for ASD. Clustering learned embedding vectors subdivided unlabeled data into
pseudo-classes, refining the model’s focus on fine-grained anomalies. Third,
we implemented iterative learning to refine these techniques, recalculating
anomaly scores and improving pseudo-label precision across cycles, progres-
sively boosting detection accuracy.

Experiments were conducted in both unlabeled and labeled settings. In
the unlabeled setting, our approach significantly outperformed conventional
methods reliant on coarse machine type labels. In the labeled setting, incor-
porating selected external data further improved detection accuracy. Incorpo-
rating external data selected based on similarity to the target’s normal sounds
consistently enhances detection accuracy, with our targeted selection method
proving superior to random selection. For machine types with abundant rel-
evant external data (large Nout machines), setting the maximum external
data volume (Nmax) to a value comparable to the training data size, such
as Nmax = 1000, optimizes performance, while excessive data leads to degra-
dation. Additionally, employing triplet loss in both training stages improves
pseudo-label quality in stage 1 and mitigated the impact of label errors in
stage 2, demonstrating its effectiveness in unsupervised learning frameworks.

Collectively, these findings confirmed that our methods robustly improved
ASD performance under the limited label availability and for novel machine
types, providing practical and effective solutions for industrial applications.
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A Appendix

Table A.1: Average AUC (%) of each method under unlabeled (attribute-free) conditions
on the DCASE 20222024 Task 2 datasets. source and target denote the two domains; values
are mean ± variance over five random seeds.

DCASE Use label Method stage development evaluation
source target source target

2022

w/ label Wilkinghoff [60] 1 86.0±0.9 78.2±0.7 77.7±0.8 71.6±1.0
Ba [54] 1 84.9±0.6 78.6±1.7 80.2±0.6 74.2±1.0

w/o label

Wilkinghoff [60] 1 69.6±6.1 64.2±5.3 66.9±5.5 63.0±2.2
Ba [54] 1 71.5±1.2 71.1±1.2 70.4±1.6 66.2±1.4
Ba+Ltrp 1 72.1±1.8 71.7±1.4 70.5±1.6 67.1±0.9
Ba+Ltrp+Ex 2 73.6±1.0 74.9±0.8 71.8±0.5 67.4±1.1
Ba+Ltrp+Ps 2 79.5±1.0 75.1±0.9 75.5±0.6 69.6±1.0
Ba+Ltrp+Ps+Ex 2 79.0±1.1 73.3±1.3 76.4±1.4 68.8±1.2
Ba+Ltrp+Ps+Ex 3 80.8±2.0 72.7±2.1 76.7±0.8 68.5±2.3
Ba+Ltrp+Ps+Ex 4 80.2±2.2 72.8±1.8 76.5±0.4 69.2±0.8
Ba+Ltrp+Ps+Ex 5 82.9±0.6 74.5±1.8 76.3±0.7 68.9±0.6

2023

w/ label Wilkinghoff [60] 1 71.2±1.6 75.0±1.5 75.5±0.8 68.7±2.2
Ba [54] 1 72.0±1.4 74.7±1.5 78.0±1.5 68.3±2.1

w/o label

Wilkinghoff [60] 1 64.9±1.8 63.6±0.7 62.8±0.8 56.7±1.7
Ba [54] 1 65.7±1.5 63.5±1.2 60.6±0.9 57.3±1.7
Ba+Ltrp 1 64.6±2.5 64.8±1.4 60.8±1.0 57.8±2.5
Ba+Ltrp+Ex 2 65.7±1.7 64.2±1.1 62.0±1.5 58.9±2.2
Ba+Ltrp+Ps 2 69.5±2.0 67.5±1.2 63.1±1.9 67.9±2.3
Ba+Ltrp+Ps+Ex 2 70.0±1.3 67.5±2.5 65.8±1.5 66.2±4.2
Ba+Ltrp+Ps+Ex 3 71.1±1.5 69.3±2.3 65.9±0.5 70.3±1.7
Ba+Ltrp+Ps+Ex 4 71.8±1.2 68.3±1.8 68.6±1.6 73.3±1.0
Ba+Ltrp+Ps+Ex 5 72.0±1.7 68.3±1.1 68.9±0.8 72.7±2.0

2024

w/ label Wilkinghoff [60] 1 68.9±1.3 63.8±1.8 63.2±1.4 62.7±1.7
Ba [54] 1 74.6±1.1 64.5±1.8 64.0±1.4 65.3±2.4

w/o label

Wilkinghoff [60] 1 65.9±1.3 58.8±1.4 54.2±1.4 57.4±0.9
Ba [54] 1 66.1±3.2 59.5±1.8 52.5±1.5 54.6±0.8
Ba+Ltrp 1 65.4±1.9 59.0±1.0 52.6±2.1 55.6±1.6
Ba+Ltrp+Ex 2 68.2±2.4 61.4±0.9 54.7±1.1 55.2±0.8
Ba+Ltrp+Ps 2 68.8±1.8 59.6±0.9 57.0±1.8 56.5±1.3
Ba+Ltrp+Ps+Ex 2 68.2±1.4 59.8±1.4 58.6±1.1 55.6±0.9
Ba+Ltrp+Ps+Ex 3 71.6±0.0 58.2±1.1 58.5±1.0 56.2±0.1
Ba+Ltrp+Ps+Ex 4 69.9±1.0 59.2±2.7 55.7±0.9 57.5±0.7
Ba+Ltrp+Ps+Ex 5 69.9±2.2 59.9±0.4 59.1±1.4 56.9±0.7
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Table A.2: Average AUC (%) of each method under labeled (attribute-available) conditions
on the DCASE 20222024 Task 2 datasets. Notation is identical to Table A.1.

DCASE Method stage development evaluation
source target source target

2022

Wilkinghoff [60] 1 86.0±0.9 78.2±0.7 77.7±0.8 71.6±1.0
Ba [54] 1 84.9±0.6 78.6±1.7 80.2±0.6 74.2±1.0
Ba+Ltrp 1 83.7±0.6 76.4±1.1 71.2±0.5 66.2±0.5
Ba+Ex 2 84.7±0.4 79.4±0.7 79.9±0.8 73.3±0.8
Ba+Ps 2 82.9±0.3 76.4±1.4 79.8±0.1 72.4±1.0
Ba+Ps+Ltrp 2 82.7±0.7 77.6±0.8 79.1±0.5 72.4±0.5
Ba+Ex 3 84.9±0.9 79.0±1.1 79.5±0.7 73.9±0.5

2023

Wilkinghoff [60] 1 71.2±1.6 75.0±1.5 75.5±0.8 68.7±2.2
Ba [54] 1 72.0±1.4 74.7±1.5 78.0±1.5 68.3±2.1
Ba+Ltrp 1 70.5±2.8 74.3±2.4 71.5±1.7 66.4±1.2
Ba+Ex 2 72.1±1.3 77.2±0.8 79.0±0.3 69.2±1.7
Ba+Ps 2 71.3±1.0 77.2±1.4 75.5±2.4 67.3±2.1
Ba+Ps+Ltrp 2 69.4±0.7 74.9±1.2 70.9±1.9 67.3±2.5
Ba+Ex 3 70.9±0.8 76.6±1.4 79.0±1.1 69.0±1.6

2024

Wilkinghoff [60] 1 68.9±1.3 63.8±1.8 63.2±1.4 62.7±1.7
Ba [54] 1 74.6±1.1 64.5±1.8 64.0±1.4 65.3±2.4
Ba+Ltrp 1 70.9±1.4 65.4±0.7 60.9±2.9 64.7±1.9
Ba+Ex 2 75.2±0.2 65.5±1.5 64.6±2.2 67.3±1.0
Ba+Ps 2 72.5±0.7 65.5±1.9 60.9±1.1 63.0±2.0
Ba+Ps+Ltrp 2 71.3±1.9 64.9±1.7 59.6±1.5 64.7±1.0
Ba+Ex 3 74.2±1.5 64.7±1.2 64.5±2.2 67.1±0.8
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