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ABSTRACT
Deep neural network-based target signal enhancement (TSE) is
usually trained in a supervised manner using clean target signals.
However, collecting clean target signals is costly and such signals
are not always available. Thus, it is desirable to develop an unsu-
pervised method that does not rely on clean target signals. Among
various studies on unsupervised TSE methods, Noisy-target Train-
ing (NyTT) has been established as a fundamental method. NyTT
simply replaces clean target signals with noisy ones in the typi-
cal supervised training, and it has been experimentally shown to
achieve TSE. Despite its effectiveness and simplicity, its mecha-
nism and detailed behavior are still unclear. In this paper, to
advance NyTT and, thus, unsupervised methods as a whole, we an-
alyze NyTT from various perspectives. We experimentally demon-
strate the mechanism of NyTT, the desirable conditions, and the
effectiveness of utilizing noisy signals in situations where a small
number of clean target signals are available. Furthermore, we
propose an improved version of NyTT based on its properties and
explore its capabilities in the dereverberation and declipping tasks,
beyond the denoising task.
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1 Introduction

Target signal enhancement (TSE) is a technique to extract a target signal
from a noisy observation. In various speech communication systems, such
as online meetings, hearing aids, and automatic speech recognition (ASR)
systems, this technique has been employed to extract human speech [41, 66,
27, 11]. It has also been applied to various types of target signal beyond
speech, including music [17, 6, 45] and environmental sounds [25, 54, 14].
This TSE technique can be classified into multi-channel and single-channel
methods. Multi-channel methods extract the target signal by leveraging the
spatial information obtained from multiple microphones [7, 59, 58]. However,
the physical size of the microphone array can sometimes limit its application.
Consequently, single-channel methods, which use a single microphone and
perform TSE based on differences in acoustic features between the target
signal and other noise signals, also play a crucial role in TSE applications.
Classical signal processing-based single-channel methods [46, 40] have been
widely adopted owing to their simplicity and low computational cost; however,
their enhancement performance is often insufficient. In contrast, recent single-
channel TSE methods have achieved significant performance improvements by
incorporating deep neural networks (DNNs) [62, 36, 50, 28, 61, 45].

Most single-channel DNN-based TSE methods rely on supervised learning
with clean target signals, which we refer to as Clean-target Training (CTT)
(Figure 1(a)). In CTT, we input a noisy signal into a DNN and train it to
predict the corresponding clean target signal. CTT is an appropriate strategy,
and various improvements have been made, including modifications to model
architectures (e.g., convolutional networks [36], recurrent networks [35], and
Transformers [50, 28]), loss functions (e.g., mean-squared-error (MSE) and
signal-to-noise ratio (SNR) [9]), and signal representations to which TSE is
applied (e.g., amplitude spectrograms [34], complex spectrograms [62, 61],
waveforms [44, 36, 50], and both spectrograms and waveforms [45]). Fur-
thermore, memory-efficient [56, 51] and real-time [4] architectures have also
been explored. Despite these improvements, CTT still has one major prob-
lem: collecting clean target signals is costly. Typically, clean target signals
are recorded in controlled settings, such as an anechoic chamber, to prevent
degradation from environmental noise and reverberation. Consequently, the
recording process is costly and time-consuming, limiting the amount of train-
ing data. Moreover, although it is theoretically possible to achieve the TSE of
any target signals, such as animals and vehicle sounds, it is often not feasible
to record such clean target signals. Therefore, the types of target signal used
in CTT are realistically limited.
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Figure 1: Comparison of NyTT and its related methods. Blue, red, and purple lines repre-
sent clean target signals, noise signals, and mixtures of target and noise signals, respectively.
Deep purple lines represent more noisy signals. The loss function receives estimated sig-
nals from DNNs and computes a reconstruction loss between the estimates and the target
signals.

To alleviate this limitation, unsupervised1 TSE methods have been stud-
ied [64, 22, 12, 24, 1, 13]. PULSE [22] is an unsupervised TSE method
based on positive-unlabeled (PU) learning [8] and uses noisy target signals
and additional noise signals for its training. PU learning is a machine learn-
ing technique that enables the classification of positive and negative examples
using positive and unlabeled training data. On the basis of this technique,
PULSE classifies local patches of amplitude spectrograms into noise (posi-
tive) or target signal (negative) components. For training, patches of noise
signals are used as positive data, while patches of noisy signals are used as un-
labeled data since a noisy signal contains both noise and target signal patches.
During inference, PULSE performs TSE by applying a mask to the input am-
plitude spectrogram, filtering out noise (positive) patches. Another method,
MetricGAN-U, is based on a generative adversarial network (GAN) and uses
only noisy signals for its training. In MetricGAN-U, the discriminator is
trained to predict a signal quality metric, whereas the generator is trained to
maximize the evaluation from the discriminator. This achieves the unsuper-
vised TSE by employing a non-intrusive metric, which does not use a clean
target signal as a reference, as the metric that the discriminator mimics. Al-
though PULSE and MetricGAN-U have demonstrated their TSE capabilities,

1In the context of TSE, methods that do not require clean target signals are considered
unsupervised, even if the training is performed in a supervised manner [64].
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they cannot directly inherit advancements made in the CTT framework owing
to their specialized training algorithms. For example, PULSE restricts TSE
models to the time–frequency (T–F) masking approach because it relies on the
classification of spectrogram patches, even though time-domain models have
also been developed within the CTT framework [36, 50, 28, 45]. Moreover,
MetricGAN-U requires a non-intrusive evaluation metric for its training, but
it is not always available. Although a pre-trained DNN-based evaluation met-
ric predictor can be employed as the non-intrusive metric, as demonstrated
in the experiments in [12], constructing this predictor still requires clean tar-
get signals. Thus, it does not serve as an essential solution, especially when
developing TSE systems for new types of target signal.

In contrast to the aforementioned unsupervised TSE methods, another ap-
proach utilizes noisy signals in the same training algorithms as CTT [64, 24,
13]. Noisy-target Training (NyTT) [13] is the basic method in this approach
(Figure 1(d)). NyTT utilizes a noisy signal as the target signal instead of
a clean one. It trains a DNN to predict the noisy target from a signal syn-
thesized by mixing the noisy target with additional noise. During inference,
the enhanced signal can be obtained directly from the DNN by inputting an
unprocessed noisy signal. NyTT has been experimentally shown to achieve
TSE without clean target signals and has the same training algorithm as CTT,
which allows us to easily inherit advancements made in the CTT framework.
However, the exact mechanism and desirable conditions of NyTT have not
been clarified, hindering further advancements.

In this paper, we aim to advance the field of unsupervised TSE by analyz-
ing the fundamental method, NyTT, from various perspectives and deepening
our understanding of NyTT.2 Through this analysis, we clarify 1) the mecha-
nism of NyTT, 2) the desirable conditions of NyTT, and 3) the effectiveness
of utilizing noisy signals in situations where a small number of clean target sig-
nals are available. Additionally, 4) we propose an improved version of NyTT
based on its properties, demonstrating its potential to achieve performance
comparable to CTT by iteratively improving the quality of the noisy target
signals. Finally, 5) we demonstrate that NyTT can also handle dereverbera-
tion and declipping tasks, inheriting the broad applicability of CTT.

The rest of this paper is organized as follows: Section 2 provides details of
NyTT and its closely related works. In Section 3, we outline the motivation
and contents of our analyses. In Sections 4, 5, and 6, we present experimen-
tal results in denoising, dereverberation, and declipping tasks, respectively.
Finally, in Section 7, we conclude this paper.

2This paper is an extension of our previous paper [15]. Compared with the previous
paper, this paper provides a more thorough discussion of related works, a more comprehen-
sive analysis of the desirable conditions for NyTT, and an investigation of its capability in
dereverberation and declipping tasks, employing multiple evaluation metrics.
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2 NyTT and its Related Works

2.1 Noise2Noise

Noise2Noise [32] is an unsupervised training method originally proposed for
image denoising (Figure 1(b)). In Noise2Noise, pairs of noisy signals (y(1) =
s + n(1),y(2) = s + n(2)) are used as training data, where the two noisy
signals y(1) and y(2) share the same clean target signal s but have different
noise components n(1) and n(2). A DNN f(·) is trained to minimize the
following prediction error:

LN2N = E(y(1),y(2))∼D[L(f(y
(1); θ),y(2))], (1)

where E[·] is the expectation operator, D is a training dataset, L(·) is a loss
function, and θ is the set of parameters of the DNN f(·). Here, Noise2Noise
trains the DNN to acquire one-to-one mappings between the two noisy signals
y(1) and y(2). However, multiple plausible outputs can exist for a given in-
put, especially when there is no consistent relationship between the two noise
signals n(1) and n(2). In such a case, if the loss function is MSE, the optimal
solution becomes the average of the plausible candidates. For example, we
consider the optimal output ŷ(2) for a given input y(1), when using MSE as
the loss function. Here, the training objective is to minimize the following
LN2N
y(2)|y(1) :

LN2N
y(2)|y(1) = Ey(2)|y(1) [L(ŷ(2),y(2))]. (2)

Therefore, ŷ(2) is obtained as

∂

∂ŷ(2)
LN2N
y(2)|y(1) = 0, (3)

∂

∂ŷ(2)
Ey(2)|y(1)

[
∥ŷ(2) − y(2)∥22

]
= 0, (4)

ŷ(2) = Ey(2)|y(1) [y(2)]. (5)

This averaging effect is observed as a problem of a blurred output in super-
resolution and a greyish output in autocoloring [31, 68, 21]. On the basis
of this property, Noise2Noise can achieve the same denoising training as
CTT without requiring clean target signals since the averaging effect can
remove zero-mean noise in the output signal (i.e., ŷ(2) = Ey(2)|y(1) [s+n(2)] =
Ey(2)|y(1) [s]).

It has been theoretically and experimentally proven that Noise2Noise can
achieve denoising training using only noisy signals. In the case of images, it
is relatively easy to obtain pairs of noisy signals, (y(1),y(2)), that share the
same clean image s by taking consecutive shots when the subject is static. In
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this case, Noise2Noise is a useful technique. However, in the case of audio,
it is not possible to naturally obtain such pairs of noisy signals. Instead, we
must synthesize them using a clean audio signal s. Therefore, in the audio
TSE task, Noise2Noise does not serve as an essential solution [24, 1].

2.2 MixIT

MixIT [64] is an unsupervised training method for sound source separation,
and it can also be used for TSE (Figure 1(c)). In MixIT, training is conducted
using noisy signals x = s+nobs and additional noise signals nadd, where nobs

represents the noise already present in x at the time of observation. MixIT
trains a DNN to minimize the following prediction error LMixIT:

LMixIT = E(x,nadd)∼D [min(LMixIT1,LMixIT2)] , (6)
LMixIT1 = L(u1 + u2,x) + L(u3,n

add), (7)
LMixIT2 = L(u1 + u3,x) + L(u2,n

add). (8)

Here, u1, u2, and u3 are the outputs of the DNN f(y; θ), where y = x+nadd.
MixIT can achieve TSE because (u1,u2,u3) = (s,nobs,nadd) or (s,nadd,
nobs) is the optimal solution for LMixIT. Although LMixIT can also be min-
imized by outputting a noisy signal as u1 (i.e., (u1,u2,u3) = (x,0,nadd)),
this issue can be avoided under the assumption that y does not provide any
information indicating that x consists of s and nobs. Under this assumption,
the DNN cannot estimate a pair of signals that compose x and, therefore,
cannot always accurately estimate x. Consequently, the DNN is trained to
separate y into individual sources, as this always minimizes LMixIT. When
this assumption does not hold (e.g., when the characteristics of nobs and nadd

differ and are distinguishable), it has been observed that MixIT suffers from
performance degradation [48, 38].

MixIT is one of the major unsupervised TSE methods, and several im-
provements have been proposed. For instance, one method mitigated the
overseparation problem by introducing a penalty term for the number of active
sources and the correlation between the output sources [63]. Other methods
produced better separation by using a pre-trained classification model (e.g.,
an audio event classification or an ASR model) [63, 53] or by employing a
loss function that relaxes the training difficulty [48, 38]. Furthermore, the
teacher–student learning approach has also been adopted [67, 55, 23, 47, 33].
In this approach, the student model is trained using the outputs of the teacher
model pre-trained by MixIT as the pseudo-target signals.
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2.3 NyTT

NyTT [13] is an unsupervised training method designed for TSE (Figure 1(d)).
In NyTT, noisy signals x and additional noise signals nadd are used as training
data, and a more noisy signal y is generated as y = x + nadd. NyTT trains
a DNN to minimize the following prediction error LNyTT:

LNyTT = E(y,x)∼D [L(f(y; θ),x)] . (9)

NyTT was inspired by Noise2Noise and realizes Noise2Noise training in the
TSE task by considering y = s+(nobs+nadd) = s+n(1) and x = s+nobs =
s+n(2) as pairs of noisy signals. The prediction error is calculated using MSE
in the time domain, under the assumption that the noise has a zero-mean dis-
tribution. Despite the lack of theoretical proof, NyTT has been experimentally
demonstrated to achieve TSE without clean target signals [13]. Similar to the
developments in MixIT, variants incorporating teacher–student learning into
NyTT framework have also been proposed to improve the performance under
out-of-domain noise conditions [3, 60].

Although NyTT and MixIT stem from different conceptual foundations,
their resulting training algorithms are similar. The primary difference is which
output is selected as the enhanced signal during the inference. MixIT involves
a separation task, where y is separated into several sound sources, and one
of them is selected as the enhanced signal. In contrast, NyTT has only one
slot and uses the output as the enhanced signal. Therefore, NyTT can be
viewed as the simplified version of MixIT, where the DNN is trained with
only L(u1 + u2,x) and the enhanced signal is created by u1 + u2 during
the inference. Both MixIT and NyTT are major unsupervised TSE methods,
and they provide a greater flexibility than specialized unsupervised training
algorithms. However, as mentioned above, NyTT has a simpler and more
flexible architecture than MixIT. The simple architecture enables us to make
improvements and expansions easily, and it is more suitable for analysis. For
these reasons, we have chosen NyTT as the target of our analysis.

One limitation of NyTT is that it requires the zero-mean noise assump-
tion and the use of MSE as conditions for Noise2Noise. Conversely, if NyTT
does not require these conditions, it can be easily applied to wider ranges of
tasks and loss functions. In Section 4.2, we demonstrate that NyTT indeed
works without these conditions, and in Sections 5 and 6, we further show its
effectiveness in dereverberation and declipping tasks.
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3 Motivation and Content of the Investigation

3.1 Validity of the Interpretation of NyTT

NyTT has been proposed, inspired by Noise2Noise, which utilizes noisy sig-
nals as target signals on the basis of the averaging effect of MSE loss function.
On the other hand, NyTT can also be interpreted as being trained to remove
nadd from the more noisy signal y, performing TSE by removing noise com-
ponents corresponding to nadd from the noisy input signal. Therefore, we
investigate whether NyTT can be interpreted as Noise2Noise or not, through
1) the analysis of the signals processed in NyTT (Section 4.2.1) and 2) the
evaluation of NyTT with a loss function that does not satisfy the conditions
of Noise2Noise (Section 4.2.2). If NyTT is not Noise2Noise, the zero-mean
noise assumption and the use of MSE will no longer be necessary, allowing us
to use various loss functions and apply NyTT to various tasks.

3.2 Improvement of NyTT Through Iteration

It has been shown that the performance of NyTT improves as the SNR of the
noisy target increases [13]. On the basis of this property, we propose IterNyTT,
which achieves better performance through an iterative process (Figure 2). In
the first iteration of IterNyTT, we train a DNN f1(·) using NyTT with the
noisy target x. Next, we apply TSE to the noisy target x using f1(·) and
obtain the enhanced signal ŝi−1. Then, we train another DNN f2(·) using
NyTT with ŝi−1 as the noisy target signal. To prevent the degradation of the
target signal component, we apply TSE to the original noisy target x, not
to the already enhanced signal ŝi−1. Through this iterative process, we can
improve the SNR of noisy targets and expect the performance improvement
of NyTT. We investigate the effectiveness of IterNyTT in Section 4.3.

DNN
f1(!)

nadd

x
Train

Iteration 1 Iteration i (i ≧ 2)

DNN
f1(!)Train

nadd

s"is"ix
DNN
fi-1(!)

Figure 2: Overview of IterNyTT.

3.3 Effects of Mismatches Between Noise Signals

In the NyTT framework, there are three types of noise signal: nobs, nadd, and
noise included in the test data ntest. In Section 4.4, we investigate the effects



Analysis and Extension of Noisy-target Training 9

of mismatches between types of noise signal on the performance of NyTT and
IterNyTT. For instance, the performance of CTT is degraded when there is a
mismatch between nadd and ntest [64, 22]. In the experiments, 1) we evaluate
the performance of CTT, NyTT, and IterNyTT under mismatched conditions,
and investigate the effects of each mismatch (Section 4.4.1). Additionally,
considering the effects of mismatch between nobs and ntest, we investigate the
effects of 2) the SNRs of the noisy targets x (SNRx = log10 ||s||22/||nobs||22)
and 3) the SNRs of the more noisy signals y (SNRy = log10 ||x||22/||nadd||22)
on performance.

3.4 Effectiveness of Utilizing Noisy Signals in a Situation Where Clean
Target Signals are Available

Collecting a large number of clean target signals is challenging owing to high
recording costs. In some cases, no clean target signals may be available,
whereas in others, a small number of clean target signals are available, depend-
ing on the task. In Section 4.5, assuming situations where a small number of
clean target signals are available, we investigate the effectiveness of utilizing
a larger number of noisy signals.

3.5 Capabilities in the Dereverberation Task

The dereverberation task aims to restore an original signal from a reverberant
signal. CTT can achieve dereverberation in the same manner as the denoising
task by inputting reverberant signals and training a DNN to predict clean
target signals. In Section 5, we investigate whether NyTT can also perform
dereverberation as CTT does. Specifically, we evaluate the performance of
CTT, NyTT, and IterNyTT, where CTT predicts a clean target signal s from
a reverberant signal s ∗ radd and NyTT predicts x = s ∗ robs from x ∗ radd,
where robs and radd are room impulse responses (RIRs), and ∗ denotes the
convolution operation.

3.6 Capabilities in the Declipping Task

In addition to the dereverberation task, we investigate the capabilities of
NyTT in the declipping task. The declipping task aims to restore an original
signal from a clipped signal where the clipping function fclip : RT → RT is
defined as

fclip(s; c)[m] =

{
s[m] |s[m]| < c
c · sgn(s[m]) otherwise , (10)

where m is the time index and c is a clipping threshold. In Section 6, we
evaluate the performance of CTT, NyTT, and IterNyTT, where CTT predicts
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a clean target signal s from a clipped signal fclip(s; cadd) NyTT predicts x =
fclip(s; c

obs) from fclip(x; c
add), and cadd < cobs.

4 Experimental Analysis in the Denoising Task

One promising application of unsupervised TSE methods is the extraction
of environmental sounds, as clean human speech corpora have already been
created through extensive community efforts [42, 16]. However, in our exper-
iments, we used clean human speech as the target signal, as this allows us
to control the quality and volume of the noisy signals by distorting the clean
speech corpora. We believe that the insights gained from our experiments are
equally applicable to other types of target signal.

4.1 Setups

In the experiments, we used several datasets as shown in Table 1, includ-
ing LibriSpeech [42], CHiME3 [2], noise extracted from the training dataset
of VoiceBank-DEMAND [57], and the training dataset of the DCASE 2016
Challenge Task2 dataset (DCASE) [19]. CHiME3 included background noise
recorded in a bus, a cafe, a pedestrian area, and a street junction. VoiceBank-
DEMAND included noise recorded in a kitchen, an office, a cafe, and a subway,
along with artificially synthesized bubble and white noise. The DCASE 2016
Task2 dataset included sounds of coughing, door knocking, and telephone
ringing. Thus, there are differences in the types of noise across these three
datasets. The noise signals from CHiME3 were segmented every 10 s, and
7.83 h of data were split into CHiME-A and CHiME-B, and another 0.56 h of
data were used as CHiME-C. 11,572 clips of VoiceBank-DEMAND were split
into two subsets, DEMAND-A and DEMAND-B. The noisy target training dataset
was generated by mixing 10,000 utterances of clean target signals from Lib-
riSpeech and noise signals nobs at SNRx randomly selected from 0, 5, 10, and
15 dB. The test dataset was generated by mixing 1,000 utterances of clean
target signals from LibriSpeech and CHiME-C at SNR randomly selected from
2.5, 7.5, 12.5, and 17.5 dB. During training, the input signal to the DNN was
generated by mixing target signals and additional noise signals, and the SNRy

ranges were -5 to 5 dB for NyTT, and 0, 5, 10, and 15 dB for IterNyTT after
the second iteration and CTT. We evaluated the performance using the best
validation epoch, where the validation was conducted with 50 pairs of input
and target signals generated under the same SNRy, nobs, and nadd as in the
training dataset.

The DNN architecture was CNN-BLSTM used in [37]. The input feature
was the log-amplitude spectrogram, and the network estimated a complex-
valued T–F mask. For the short-time Fourier transform (STFT) parameters,
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Table 1: Datasets used in the denoising task

Signal type Original Dataset Train set Test set

Clean signal s
(Utterances) LibriSpeech [42] (10,000) (1,000)

Noise n
(Volume [h])

CHiME3 [2] CHiME-A (3.92) CHiME-B (3.92) CHiME-C (0.56)
VoiceBank-DEMAND [57] DEMAND-A (4.70) DEMAND-B (4.69)
DCASE 2016 Task2 [19] DCASE (0.07)

the frame shift, window size, and DFT size were set to 128, 512, and 512
samples, respectively, using the Hamming window with a sampling frequency
of 16 kHz. We trained the DNN for 1,500 epochs with a mini-batch size
of 50, using the Adam optimizer [26] with a fixed learning rate of 0.0001.
For the loss function, we used MSE calculated in the time domain. As the
metrics, we used the scale-invariant signal-to-distortion ratio (SI-SDR) [30],
the perceptual evaluation of speech quality (PESQ) [20], and the short-time
objective intelligibility (STOI) [52].

4.2 Validity of Interpretation of NyTT

In this section, we trained the DNN using CHiME-A and CHiME-B as nobs and
nadd, respectively.

4.2.1 Analysis of signals processed in NyTT

If NyTT is Noise2Noise, the output signal corresponding to the more noisy
signal y should be the estimate of the clean target signal s. To investigate
this, we analyzed the output signals when we input y to the DNN. To analyze
the output signals during training, we generated more noisy signals by using
the training dataset. Additionally, to analyze the output signals for unseen
more noisy signals, we generated more noisy signals by mixing noisy signals
from the test dataset and CHiME-C at SNRs ranging from -5 to 5 dB.

Table 2 shows the speech quality of 1,000 utterances of the noisy targets
x, the more noisy signals y, and the corresponding output signals f(y; θ),
for both the training and test datasets. Considering that the SI-SDR, PESQ,
and STOI of clean speech are ∞ dB, 4.64, and 1.00, respectively, the output
signals are closer in quality to the noisy targets than the clean target signals.
Figure 3 provides examples of spectrograms from the test dataset, further
illustrating that the output signal is better interpreted as the estimate of the
noisy target rather than the clean target signal.
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Table 2: Quality of singles processed in NyTT. nobs and nadd were CHiME-A and CHiME-B,
respectively.

Data Metric Noisy target More noisy Output

Train set
SI-SDR 7.33 -2.13 6.16
PESQ 1.35 1.07 1.37
STOI 0.838 0.666 0.776

Test set
SI-SDR 9.67 -1.58 7.76
PESQ 1.48 1.08 1.47
STOI 0.874 0.696 0.811
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Figure 3: Spectrograms of the test dataset. (a) Clean target s, (b) noisy target x, (c) more
noisy signal y, and (d) output of a DNN f(y; θ). nobs and nadd used for the training were
CHiME-A and CHiME-B, respectively.

4.2.2 Evaluation of NyTT with loss functions that do not satisfy the conditions of
Noise2Noise

If NyTT is Noise2Noise, nobs must have a zero-mean distribution, and there-
fore, the MSE of the loss function should be calculated in the time domain.
To analyze the significance of this assumption in NyTT, we compared the per-
formance of NyTT with MSE in the time domain (Time) and that with MSE
in the amplitude spectrogram domain (Spec). If NyTT strictly adheres to the
Noise2Noise framework, Spec should not be able to perform TSE, as the zero-
mean distribution for nobs cannot be satisfied in the amplitude spectrogram
domain. In this experiment, we estimated real-valued T–F masks for the am-
plitude spectrograms and transformed the spectrograms to the time-domain
signals using the phase of the unprocessed noisy signals.

Table 3 shows the evaluation results, demonstrating that Spec can improve
speech quality, despite the lack of the zero-mean assumption for nobs. The
results in Sections 4.2.1 and 4.2.2 indicate that NyTT achieves TSE by reduc-
ing the noise component corresponding to nadd rather than the Noise2Noise
framework. Therefore, the zero-mean distribution assumption for nobs and
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Table 3: Comparison of loss functions. nobs and nadd were CHiME-A and CHiME-B, respec-
tively.

Unprocessed Time Spec

SI-SDR 9.67 15.89 14.94
PESQ 1.48 2.33 2.10
STOI 0.874 0.928 0.923

the use of the MSE loss function are unnecessary, making NyTT a more flex-
ible training strategy (this conclusion is also supported by the experimental
results in Sections 5 and 6).

4.3 Effectiveness of IterNyTT

To verify the effectiveness of IterNyTT, we evaluated its performance over
five iterations. In this experiment, nobs and nadd were CHiME-A and CHiME-B,
respectively.

Figure 4 illustrates the SI-SDR of the noisy targets, along with the SI-
SDR, PESQ, and STOI of the processed results for the test dataset at each
iteration of IterNyTT. The figure shows that IterNyTT improves the quality
of the noisy targets, and thus, the performance on the test dataset approaches
that of CTT as the number of iterations increases. Additionally, we observe
that the SI-SDR of the noisy target is significantly improved at the second
iteration and the performance on the test dataset is also improved at that
time.
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Figure 4: Changes in SI-SDR of the target signals and evaluation results for the test dataset
through IterNyTT. The first iteration of IterNyTT is equivalent to the original NyTT.
Values in parentheses indicate the evaluation results of unprocessed input signals. nobs and
nadd were CHiME-A and CHiME-B, respectively.
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4.4 Effects of Noise Mismatches

To investigate the effects of mismatches between noise signals in NyTT (i.e.,
nobs, nadd, and ntest), we simulated mismatched conditions using CHiME-A,
DEMAND-A, and DCASE as nobs, and CHiME-B and DEMAND-B as nadd.

To clarify the noise mismatches, we visualize the distribution of each noise
dataset in Figure 5. The plots in Figure 5 were created by extracting features
using a pre-trained audio event classification model, VGGish [18], and pro-
jecting them into a two-dimensional space using UMAP [39]. For visibility,
we randomly selected 200 samples of 2 s noise signals from each dataset. The
figure shows that each noise dataset forms a distinct cluster, indicating that
they have different characteristics. We can also see that DCASE has particularly
different characteristics from the other datasets.

Figure 5: Distribution of each noise dataset. Although UMAP features were calculated
using all noise datasets, they were separately plotted for visibility. All figures have the
same axes.

4.4.1 Effects of mismatches on the performance

We investigated the effects of mismatches between noise signals on the perfor-
mance of CTT, NyTT, and IterNyTT. In this experiment, we set the number
of iterations for IterNyTT to three.

Table 4 shows the evaluation results of CTT, NyTT, and IterNyTT for
each combination of nobs and nadd. The table also includes the evaluation
results of IterNyTT using different noise datasets for the first and second
iterations (training for the TSE of the noisy targets) and the third iteration
(training for the TSE of the test dataset). We analyze these results from three
perspectives: mismatches between a) nadd and ntest, b) nobs and ntest, and
c) nobs and nadd, where ntest was CHiME-C.

First, we focus on the impact of the mismatch between nadd and ntest on
the performance of NyTT. For example, we analyze the performance of NyTT
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Table 4: Evaluation results on the test dataset. The SI-SDR, PESQ, and STOI of the
unprocessed noisy signals were 9.67 dB, 1.48, and 0.874, respectively. ntest was CHiME-C.
When IterNyTT used two noise datasets as nadd, the first noise dataset in parentheses was
used in the first and second iterations of IterNyTT, whereas the second noise dataset in
parentheses was used in the third iteration of IterNyTT. In CTT, the choice of nobs is not
involved.

nobs nadd SISDR PESQ STOI
CTT NyTT IterNyTT CTT NyTT IterNyTT CTT NyTT IterNyTT

CHiME-A

CHiME-B 17.58 15.87 17.11 2.67 2.32 2.45 0.944 0.927 0.934
DEMAND-B 15.04 10.27 9.80 2.16 1.57 1.51 0.926 0.882 0.877

(CHiME-B, DEMAND-B) - - 10.67 - - 1.59 - - 0.881
(DEMAND-B, CHiME-B) - - 14.64 - - 1.96 - - 0.915

DEMAND-A

CHiME-B 17.58 16.59 17.20 2.67 2.53 2.48 0.944 0.936 0.937
DEMAND-B 15.04 13.56 14.11 2.16 1.98 2.06 0.926 0.905 0.917

(CHiME-B, DEMAND-B) - - 13.85 - - 1.94 - - 0.903
(DEMAND-B, CHiME-B) - - 17.33 - - 2.56 - - 0.940

DCASE CHiME-B 17.58 16.75 17.06 2.67 2.47 2.45 0.944 0.937 0.937
DEMAND-B 15.04 14.20 13.54 2.16 2.06 1.91 0.926 0.914 0.908

when nobs is CHiME-A. In this case, NyTT achieves SI-SDRs of 15.87 dB when
nadd is CHiME-B and 10.27 dB when nadd is DEMAND-B. Similarly, even when
nobs is DEMAND-A or DCASE, and even when the metric is PESQ or STOI, we
can consistently see that NyTT performs better when there is no mismatch
between nadd and ntest, as in CTT.

Second, we focus on the impact of the mismatch between nobs and ntest on
the performance of NyTT. For example, we analyze the performance of NyTT
when nadd is DEMAND-B. In this case, NyTT achieves SI-SDRs of 10.27 dB when
nobs is CHiME-A, 13.56 dB when nobs is DEMAND-A, and 14.20 dB when nobs

is DCASE. Similarly, even when nadd is CHiME-B, and even when the metric
is PESQ or STOI, we can consistently see that NyTT performs better when
there is a mismatch between nobs and ntest. In particular, we can see that
NyTT achieves its best performance when nobs is DCASE, which has distinctly
different characteristics from CHiME-C of ntest, as shown in Figure 5. Since the
DNN is trained to include nobs in the output signals in NyTT, it is expected
that noise will remain in the output signals when there is no mismatch between
ntest and nobs.

Third, we focus on the impact of the mismatch between nobs and nadd

on the performance of IterNyTT. For example, we analyze the performance
of IterNyTT when nobs is CHiME-A. In this case, IterNyTT achieves SI-SDRs
of 17.11 dB when nadd is CHiME-B and 14.64 dB when nadd is (DEMAND-B,
CHiME-B). When nadd is (DEMAND-B, CHiME-B), in the first and second itera-
tions, the mismatch between nobs(=CHiME-A) and nadd(=DEMAND-B) prevents
IterNyTT from effectively removing nobs from the noisy targets. Thus, there
is no performance improvement on the test dataset in the third iteration.
Additionally, IterNyTT achieves a higher SI-SDR when nadd is (CHiME-B,
DEMAND-B) (10.67 dB) than when nadd is DEMAND-B (9.80 dB). Moreover,
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IterNyTT shows little performance improvement when nobs is DCASE. Sim-
ilarly, even when nobs is DEMAND-A, and even when the metric is PESQ or
STOI, we can consistently see that IterNyTT performs better when using
nadd matched with nobs in the first and second iterations. The impact of the
mismatch between nobs and nadd on IterNyTT is consistent with that of the
mismatch between nadd and ntest on NyTT.

Summing up the above results, we derive the desirable condition for the
NyTT framework, as shown in Figure 6. a) NyTT achieves high performance
when there is no mismatch between nadd and ntest, as in CTT, b) NyTT
achieves high performance when there is a mismatch between nobs and ntest,
and c) IterNyTT improves the performance when there is no mismatch be-
tween nobs and nadd. Additionally, these results are consistent with the inter-
pretation of NyTT in Section 4.2.

(a) w/o
mismatch

(c) w/o
mismatch

ntest nobs(b) w/
mismatch

nadd

Figure 6: Desirable condition in NyTT framework.

4.4.2 Difference in the impact of SNRx with and without the mismatch between
nobs and ntest

NyTT experiences performance degradation when SNRx is low [13]. How-
ever, the impact of SNRx on performance is expected to vary depending
on the mismatch between nobs and ntest. To investigate this, we evaluated
the performance of NyTT using CHiME-A, DEMAND-A, and DCASE as nobs, and
CHiME-B as nadd, and by adjusting SNRx to -5, 0, 5, 10, 15, and 20 dB. Ad-
ditionally, we evaluated the performance of CTT for the case where SNRx is
∞ dB. In this experiment, SNRy was set to range from -5 to 5 dB for both
CTT and NyTT.

Figure 7 shows the SI-SDR, PESQ, and STOI of the processed results for
the test dataset at each SNRx. Overall, the performance of NyTT degrades as
SNRx decreases. The impact depends on mismatches; significant degradation
occurs when nobs is CHiME-A, which has no mismatch with ntest. In contrast,
when there is a mismatch, the performance remains relatively high even at a
low SNRx. From the results of this experiment, we confirmed that the impact
of SNRx significantly depends on the mismatch between nobs and ntest.
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Figure 7: Relationship between SNRx and the evaluation results of NyTT. Values in paren-
theses indicate the evaluation results of unprocessed input signals. nadd was CHiME-B and
SNRy ranged from -5 to 5 dB.

4.4.3 Difference in the impact of SNRy with and without the mismatch between
nobs and ntest

Considering that NyTT trains a DNN to estimate noisy targets by removing
nadd from more noisy signals, SNRy also affects the performance. For exam-
ple, when there is no mismatch between nobs and ntest, and SNRy is high, the
effect of reducing noise is less significant than the adverse effect of the residual
noise in the output signal. To investigate this, we evaluated the performance
of NyTT using CHiME-A and DCASE as nobs, and CHiME-B as nadd, and by
varying the SNRy range to [−10,−5), [−5, 0), [0, 5), [5, 10), and [10, 15) dB.
We also evaluated the performance of CTT. In this experiment, we set SNRx

to 5 dB for NyTT.
Figure 8 shows the SI-SDR, PESQ, and STOI of the processed results for

the test dataset at each SNRy range, where the performance of CTT varies
depending on the mismatch of SNR between the training and test datasets.
When nobs is DCASE, which has a mismatch with ntest, the performance of
NyTT has a similar tendency to that of CTT. On the other hand, when nobs

is CHiME-A, which has no mismatch with ntest, the performance of NyTT
degrades when SNRy exceeds 5 dB, and this trend differs from that of CTT.
Thus, when there is no mismatch between nobs and ntest, NyTT effectively
acquires the TSE feature by setting SNRy to a moderately low level, not too
low.

4.5 Effectiveness of Utilizing Noisy Signals in a Situation Where Clean
Target Signals are Available

In this experiment, we used 100 utterances from LibriSpeech as Clean-100
and 900 utterances as Clean-900. We generated Noisy-900 by mixing
Clean-900 with CHiME-A at an SNR of 5 dB. We investigated the effective-
ness of using Noisy-900. Moreover, we investigated the effectiveness of using
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EnhNoisy-900, which was generated by applying TSE to Noisy-900 using the
CTT model trained on Clean-100. In this experiment, we used CHiME-B as
nadd, and we used 50 clean utterances from LibriSpeech for the validation of
both CTT and NyTT. Note that there was no mismatch between nobs and
ntest, and SNRx was 5 dB, resulting in a challenging condition for NyTT.
Since the volumes of the speech datasets were different, we carefully trained
a DNN for enough epochs, ensuring that the best epoch remained unchanged
for the last 300 epochs.

Table 5 shows the evaluation results, demonstrating that the combined
use of Clean-100 and Noisy-900 achieves a higher SI-SDR than using either
dataset separately. Furthermore, the performance of the combined use of
Clean-100 and EnhNoisy-900 approaches that of the ideal situation where
both Clean-100 and Clean-900 are available. We can also expect that the
performance will improve with the use of noisy targets recorded under better
conditions (i.e., higher SNRx or nobs mismatched with ntest). These results
indicate that leveraging a large number of noisy signals is beneficial, even
when a small number of clean target signals are available.

Table 5: Evaluation results of the combined use of the clean and noisy signals. nobs

was CHiME-A, nadd was CHiME-B, and SNRx was 5 dB. SI-SDR, PESQ, and STOI of the
unprocessed noisy signals were 9.67 dB, 1.48, and 0.874, respectively. ntest was CHiME-C.
We assume that Clean-900 is not available.

Training dataset SI-SDR PESQ STOI Epoch
Clean-100 13.82 2.03 0.910 3,816
Noisy-900 13.68 1.88 0.906 1,302

Clean-100, Noisy-900 14.35 2.00 0.914 2,350
Clean-100, EnhNoisy-900 16.45 2.33 0.935 11,626

Clean-100, Clean-900 17.13 2.56 0.942 11,593
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5 Experimental Analysis in the Dereverberation Task

5.1 Setups

In the experiments, we used RIR simulated by utilizing Pyroomacoustics [49].
The room width and depth were randomly selected from 4 to 8 m, the height
was randomly selected from 2 to 6 m, and the distance between the microphone
and the sound source was set to 1 m. The reverberation time RT60 ranged from
0.20 to 1.10 s. We divided the range into 0.05 s segments and generated 170
RIRs for each interval. The 170 RIRs were split into 80, 80, and 10 samples,
and which were used as RIR-A, RIR-B, and RIR-C, respectively. The total
number of RIR-A, RIR-B, and RIR-C were 1,440, 1,440, and 180, respectively.
Each of these three datasets covers the same RT60 range. RIR-A, RIR-B, and
RIR-C were used as robs, radd, and rtest, respectively. The clean target signals
were 10,000 utterances from LibriSpeech and the reverberant target signals
were generated by convolving the clean target signals with RIR-A. The test
dataset of reverberant signals was generated by convolving 1,000 utterances
from LibriSpeech with RIR-C. The sampling frequency was 16 kHz.

The DNN was Conv-TasNet [36] implemented in the Asteroid toolkit [43],
and the loss function was SNR. We trained the DNN for 850 epochs with a
mini-batch size of 12, using the Adam optimizer with a fixed learning rate of
0.0001. For the validation of both CTT and NyTT, we used 50 clean utter-
ances of LibriSpeech and generated reverberant signals using the same radd as
in the training. As the metrics, we used speech-to-reverberation modulation
energy ratio (SRMR) [10] in addition to SI-SDR, PESQ, and STOI.

5.2 Effectiveness of NyTT in the Dereverberation Task

We conducted experimental evaluations of NyTT in the dereverberation task.
Table 6 shows the evaluation results under different RT60 conditions of robs.
First, we observe that NyTT achieves higher scores than the unprocessed
signals in most cases, demonstrating its capability in this task. This result
also demonstrates that NyTT is not Noise2Noise, since the degradation is not
even caused by additive noise. Additionally, we can see that the performance
improves with shorter RT60 values and degrades with longer RT60 values.
This trend is consistent with the results of the denoising task, where higher
quality (SNRx) leads to better performance.

5.3 Effectiveness of IterNyTT in the Dereverberation Task

To verify the effectiveness of IterNyTT in the dereverberation task, we eval-
uated the performance over five iterations under different RT60 conditions
for robs. Figure 9 illustrates the SI-SDR of the reverberant targets, along
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Table 6: Evaluation results of CTT and NyTT in the dereverberation task.

Method RT60 of robs [sec] SI-SDR PESQ STOI SRMR
Unprocessed - -5.32 1.59 0.834 4.84

CTT 0.0 3.83 2.23 0.918 8.81
NyTT [0.20, 0.50) 1.69 1.95 0.902 7.59
NyTT [0.50, 0.80) 0.51 1.74 0.882 6.01
NyTT [0.80, 1.10) -1.39 1.57 0.840 4.85
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Figure 9: Changes in SI-SDR of the target signals and evaluation results on the test dataset
through IterNyTT under different RT60 conditions of robs. The first iteration of IterNyTT
is equivalent to the original NyTT. Values in parentheses indicate the evaluation results of
unprocessed input signals.

with the SI-SDR, PESQ, STOI, and SRMR of the processed results for the
test dataset at each iteration of IterNyTT. From this figure, we observe an
overall trend of improved performance of IterNyTT. When RT60 of robs was
[0.8, 1.1), IterNyTT in the first iteration does not perform well, and the per-
formance is not improved in the subsequent iterations. We can also see that
IterNyTT works stably when the RT60 of robs is [0.5, 0.8), whereas it becomes
unstable when the RT60 of robs is [0.2, 0.5). Although there are cases where
IterNyTT does not work well, especially when the target signals are of very
low quality, we can conclude that IterNyTT is generally effective even in the
dereverberation task.

6 Experimental Analysis in the Declipping Task

6.1 Setups

In the experiments, the clean target signals were 10,000 utterances of Lib-
riSpeech, and we generated the clipped target signals x by clipping them
with an SNRx of 3, 7, or 15 dB. The clipped signals of the test dataset were
generated by clipping 1,000 utterances of LibriSpeech with the SNR randomly
selected from 1, 3, 7, and 15 dB. During the training, for both CTT and NyTT,
the clipping threshold was determined from the SNRy randomly selected from
1 to 9 dB.
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The DNN was a causal Demucs [65, 5], and the loss function was a weighted
sum of the L1 waveform and multi-resolution STFT losses, as in [29, 65]. The
weights for the L1 waveform and multi-resolution STFT losses were set to 10
and 0.1, respectively. We trained the DNN for 400 epochs with a mini-batch
size of 12, using the Adam optimizer with a fixed learning rate of 0.0001.
For the validation, we used 50 clean utterances of LibriSpeech and generated
clipped signals with the SNR randomly selected from 1, 3, 7, and 15 dB. As
the metrics, we used SI-SDR, PESQ, and STOI.

6.2 Effectiveness of NyTT in the Declipping Task

We conducted experimental evaluations of NyTT in the declipping task. Ta-
ble 7 shows the evaluation results under different SNRx conditions. As in the
denoising and dereverberation tasks, we can see that NyTT is effective in the
declipping task, NyTT works without satisfying the Noise2Noise conditions,
and the performance of NyTT improves with higher target signal quality.

Table 7: Evaluation results of CTT and NyTT in the declipping task.

Method SNRx [dB] SI-SDR PESQ STOI
Unprocessed - 6.41 1.89 0.866

CTT ∞ 16.59 3.53 0.965
NyTT 15 15.27 3.21 0.959
NyTT 7 12.44 2.65 0.941
NyTT 3 10.09 2.28 0.915

6.3 Effectiveness of IterNyTT in the Declipping Task

To verify the effectiveness of IterNyTT in the declipping task, we evaluated the
performance over five iterations under different SNRx conditions. Figure 10
illustrates the SI-SDR of the clipped targets, along with the SI-SDR, PESQ,
and STOI of the processed results for the test dataset at each iteration of
IterNyTT. Here, we can again observe a consistent trend: IterNyTT improves
performance, although its effectiveness is affected by the quality of the target
signals. Specifically, when SNRx is 15 dB, IterNyTT achieves performance
comparable to that of CTT.

7 Conclusion

In this study, we conducted comprehensive experimental analyses of NyTT
to elucidate its detailed properties. Our experiments revealed the follow-
ing key findings: 1) NyTT can be interpreted as a training method to es-
timate the noisy target x by removing nadd, rather than strictly adhering to
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Figure 10: Changes in SI-SDR of the target signals and evaluation results on the test dataset
through IterNyTT under different SNRx conditions. The first iteration of IterNyTT is
equivalent to the original NyTT. Values in parentheses indicate the evaluation results of
unprocessed input signals.

the Noise2Noise framework. This indicates that the Noise2Noise conditions
(i.e., the zero-mean distribution assumption for nobs and the use of the MSE
loss function) are not necessary, demonstrating the flexibility of NyTT. 2)
IterNyTT improved performance by enhancing the quality of noisy target sig-
nals, demonstrating its potential to achieve performance comparable to that of
CTT. 3) By investigating the effects of noise mismatches, we derived desirable
noise conditions. 4) Even when a small number of clean target signals were
available, the combined use of noisy and clean target signals improved per-
formance. 5) NyTT was also effective in the dereverberation and declipping
tasks. Furthermore, both NyTT and IterNyTT exhibited similar behaviors
across the denoising, dereverberation, and declipping tasks, implying their
general applicability.
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