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ABSTRACT
This paper proposes a novel learning method for audio captioning,
which we call Audio Difference Learning. The core idea is to con-
struct a feature space where differences between two audio inputs
are explicitly represented as feature differences. This method has
two main components. First, we introduce a diff block, which is
placed between the audio encoder and text decoder. The diff block
computes the difference between the features of an input audio clip
and an additional reference audio clip. The text decoder then gen-
erates text descriptions based on the difference features. Second,
we use a mixture of the original input audio and reference audio
as a new input to eliminate the need for explicit difference anno-
tations. The diff block then calculates the difference between the
mixed audios embeddings and those of the reference audio. This
difference embedding effectively cancels out the reference audio,
leaving only information from the original audio input. Conse-
quently, the model can learn to caption this difference using the
original input audios caption, thus removing the need for addi-
tional difference annotations. In experiments conducted using the
Clotho and ESC50 datasets, the proposed method achieved an
8% improvement in the SPIDEr score compared to conventional
methods.
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1 Introduction

Audio captioning is a task of describing the content of input audio in natural
language, and it has become an important technology in the field of audio pro-
cessing [4, 32, 17, 18]. This technology supports a wide range of applications,
such as providing accessibility services for the hearing impaired, enabling effi-
cient audio content search, and analyzing audio environments for surveillance
systems.

General audio captioning models employ an encoder-decoder framework
[25]. These models consist of an audio encoder that extracts feature represen-
tations and a text decoder that generates captions from these representations.
Techniques, including RNNs (Recurrent Neural Networks) [4, 32], CNNs (Con-
volutional Neural Networks), and Transformers [30] are often utilized in the
audio encoder [17], while the decoder frequently employs Transformers.

A major challenge in audio captioning is the limited availability of paired
audio-caption data. For instance, the widely used Clotho dataset [5] comprises
roughly 5,000 audio clips ranging from 15 to 30 seconds with a total duration
of approximately 30 hours. Similarly, AudioCaps [9] contains approximately
140 hours of data from about 46,000 clips, each around 10 seconds long. In
contrast to Automatic Speech Recognition (ASR), which benefits from data
spanning hundreds or even thousands of hours, audio captioning is limited by
relatively small datasets. Consequently, many researchers resort to leveraging
pre-trained models, such as PANNs [14] and BEATs [2], and employ data
augmentation techniques.

However, data augmentation for audio captioning is not straightforward.
While audio input alone can be augmented using various techniques such
as speed perturbation and SpecAugment [20], caption augmentation poses
a greater challenge. Several methods involve rephrasing captions through
techniques like synonym substitution [3], adversarial training [19], and lever-
aging language models [23, 33]. Recently, approaches inspired by MixGen [7],
initially proposed in the vision-language domain, have been explored [10, 3,
12]. These methods involve mixing two audio clips and concatenating their
corresponding captions using conjunctions such as “and”. Other techniques
propose using temporal connectors like ’followed by’ or ’after’ to capture the
temporal dependencies of audio content [31, 35]. However, these rule-based
strategies often show limited effectiveness, sometimes only enhancing perfor-
mance on specific metrics. The augmented captions risk deviating from the ac-
tual content description, leading to potential performance degradation. Thus,
developing a more effective learning methodology is essential.
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In this paper, we propose a novel learning approach termed “audio differ-
ence learning.” This approach introduces a reference audio as an additional
input during training. Captions are generated by the differences between
the original input audio and the reference audio, computed in the feature
space as a difference representation. A critical component of this method is
the introduction of a "diff block," which computes audio differences. Initial
experiments [13] demonstrate the effectiveness of a simple subtraction-based
diff block. However, this approach necessitates the temporal alignment of
mixed audio and reference audio, which can be limiting. To address these
constraints and enhance flexibility, we also propose a masking-based diff block
utilizing cross-attention mechanisms. This advanced block design allows for
more robust handling of audio differences without strict alignment require-
ments. Additionally, we implement a learning strategy that circumvents the
need for manual annotations and heuristic-rule-based text processing typically
required for audio difference learning. Specifically, we create a mixed audio
input by combining the reference audio with the original input audio. By
computing the difference between the mixed input and the reference audio
in the feature space, we effectively recreate the feature representation of the
original input. Consequently, the target caption remains consistent with the
original, allowing training without additional annotations or text processing.
This method also enables new applications in which the differences between
two audio clips are articulated in captions.

2 Related Works

Data augmentation for captioning.
Captioning tasks across images, video, and audio increasingly benefit from
dataaugmentation techniques. In computer vision and video, vocabulary di-
versification via backtranslation [29], synonym substitution with BERT [1],
languagemodelbased caption expansion for video [16], and the synthesis of
imagecaption pairs through diffusion models [34] have all proven effective.

Audiospecific augmentation.
For audio captioning, MixGeninspired methods [10, 3, 12] concatenate the
captions of two mixed audio inputs, whereas rulebased strategies attempt to
reflect temporal order using connectors such as followed by [31, 35]. Although
such rules capture temporal structure, their simplistic nature often degrades
performance on standard metrics.

Leveraging large language models.
More recently, large language models (LLMs) like ChatGPT have been used
to combine two captions [33] or to rephrase existing ones [23]. While LLMs
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increase caption diversity, they operate without direct access to the audio
signal and can therefore generate captions misaligned with the underlying
content.

Differenceaware captioning in vision.
In vision, differenceaware learning explicitly models semantic differences be-
tween paired inputs. Early work–including SpottheDifference [8] and Neural
Naturalist [6]–introduced datasets for finegrained comparison. Later models
such as DUDA [21], viewpointadapted encoders [24], cycleconsistent train-
ing [11], and contrastive pretraining [36] improved robustness to viewpoint
changes and irrelevant scene variations, confirming that attention, alignment,
and contrastive objectives yield contextsensitive, discriminative captions.

Difference modeling in audio.
For audio, recent studies [28, 26] generate captions that describe differences
between two clips. These approaches target difference captioning itself, rely
on specially crafted differenceoriented captions, and do not improve general
audiocaption performance. Generalpurpose audio representation work [27]
explores subtractionbased difference learning, yet our preliminary experiments
indicate that pure subtraction is limiting.

Our contribution.
In contrast to these prior studies, our proposed method, audio difference
learning, aims to enhance data augmentation by explicitly learning audio
differences. Our masking-based diff block, leveraging cross-attention, offers
greater flexibility and robustness in handling audio differences without requir-
ing precise temporal alignment. Our proposed method not only augments
data diversity but also removes the need for additional human annotations,
offering a cost-effective and scalable solution for data augmentation in audio
captioning.

3 Audio Captioning

Audio captioning is a technique for generating natural language descriptions
of audio content. Audio captioning generally uses an encoder-decoder archi-
tecture consisting of an audio encoder that extracts features from the input
audio and a text decoder that generates captions from the extracted features.

Figure 1-(a) shows the block diagram of audio captioning with an encoder-
decoder structure. Let the spectral feature of the input audio be denoted as
Xin ∈ RT×F , and let the target text sequence be y ∈ VL, where T is the
length of the audio sequence, F is the number of frequency bins, and L is the
length of the text sequence. First, the input audio Xin is fed into the audio
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Figure 1: (a) A conventional audio captioning system, (b) The proposed method generates
the difference between the input and reference audio based on the difference of the encoded
audio representation. (c) The proposed method behaves as the general audio captioning
system when the reference audio is null.

encoder, transforming it into a feature representation Z ∈ RT×D, where D is
the feature dimension. This transformation can be expressed as:

Z = AudioEncoder(Xin). (1)

The feature representation Z can be considered as a representation of the
semantic content within Xin. Feeding Z into the decoder yields an estimation
of y, denoted as ŷ, as:

ŷ = TextDecoder(Z). (2)

Here, ŷ ∈ [0, 1]L×|V| represents the predicted probability distribution over the
vocabulary corresponding to the content of the input audio Xin.

Cross-entropy between the predicted text sequence ŷ and the target text
sequence y is commonly used as a loss function in the training process:

L = CrossEntropy(y, ŷ). (3)

4 Proposed Method: Audio Difference Learning

4.1 Overview

In this paper, we propose audio difference learning which incorporates an addi-
tional reference audio input Xref ∈ RT×F . The proposed method is trained to
describe the difference between the input Xin and the reference Xref , enabling
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the model to capture subtle distinctions between audio inputs for caption
generation.

The key aspect of our method is to construct a network that can perform
semantic manipulation of audio content in the feature space by training a
model based on differences in the representations. The structure is shown
in Figure 1-(b). We begin by encoding Xref into a reference feature represen-
tation Zref as in Equation 1:

Zref = AudioEncoder(Xref). (4)

We then derive a difference representation Zdiff by calculating the difference
between the input Zin and the reference Zref :

Zdiff = diff(Zin,Zref). (5)

Here, diff() is a critical function that must be carefully designed to represent
the difference between two feature representations. The goal is to design a
feature space where semantic addition and subtraction of audio can be per-
formed. In this paper, we propose two approaches: one based on subtraction
and another based on masking. The details of each will be explained in Sec-
tions 4.3.1 and 4.3.2.

The obtained difference representation Zdiff is fed into the decoder,

ŷdiff = TextDecoder(Zdiff). (6)

This results in ŷdiff, which is a caption of the difference between the input
and the reference audio. Note that if the reference audio Xref is set to null,
the system behaves identically to a conventional audio captioning system as
shown in Figure 1-(c). This highlights the versatility of the proposed method,
making it applicable to various scenarios and inputs.

A major challenge is the difficulty of obtaining ground-truth labels for ydiff

to calculate the cross-entropy loss,

Ldiff = CrossEntropy(ydiff , ŷdiff). (7)

To train using Equation 7, it is necessary to annotate the text ydiff that rep-
resents the difference between Xin and Xref . In this study, we propose a
training strategy that enables training using difference representations with-
out the need for annotation, making the process more efficient and scalable.
The details of this strategy will be discussed in the following Section 4.2.

4.2 Training Strategy

We present a training strategy that eliminates the need for explicitly anno-
tated differences. First, we construct a new input X+

in by adding the reference
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audio to the original input in the time domain. Let the corresponding wave-
forms be denoted as X+

in , Xin, and Xref x
+
in , xin, and xref , respectively. Thus,

x+
in = xin + xref . (8)

We then convert it into the spectral representation X+
in . Next, we obtain

feature representations of the new input and the reference as follows (see also
Equations 1 and 4):

Z+
in = AudioEncoder(X+

in), (9)
Zref = AudioEncoder(Xref). (10)

We compute the difference representation and its corresponding caption, as
in Equations 5 and 6:

Zdiff = diff(Z+
in ,Zref), (11)

ŷdiff = TextDecoder(Zdiff). (12)

Because Z+
in contains information from both the original input Xin and the

reference audio Xref , the difference Zdiff = diff(Z+
in ,Zref) aims to isolate and

retain only the content of the original input Xin. Hence, the difference rep-
resentation Zdiff should produce the same caption y that originally describes
Xin. We therefore compute a cross-entropy loss against the original caption
y:

L+
diff = CrossEntropy(y, ŷ+

diff). (13)

This approach enables learning from audio differences without extra annota-
tion costs.

4.3 Design of diff Block

In this section, we describe two approaches to the diff function: a subtraction-
based approach (Figure 2) and a masking-based approach (Figure 3).

4.3.1 Subtraction-based Difference Calculation

In this section, we describe a subtraction-based approach to implementing the
diff function, as shown in Figure 2. In this block, the difference embedding is
obtained by simply subtracting the two embeddings Zin and Zref :

Zdiff = diff(Zin,Zref)

= Zin − Zref . (14)
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Figure 2: Diagram of the Diff block using the Subtraction method. The input embedding
and reference embedding are subtracted to produce the difference embedding.
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Figure 3: Diagram of the Diff block using the Masking method. Cross-attention calculates
the similarity between the input and reference embeddings. The resulting weights are
scaled by a sigmoid function and applied in the masking process to produce the difference
embedding.

Because this method does not require additional parameters, it enables a
simple and parameter-free implementation.

Note, however, that both the input audio and the reference audio must be
temporally aligned. If the audio signals are misaligned in time, element-wise
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subtraction may fail to capture meaningful differences. Temporal alignment
ensures that corresponding elements in the embeddings are subtracted accu-
rately, thus reflecting valid differences between the audio inputs.

4.3.2 Masking-based Difference Calculation

We next describe a masking-based approach to compute differences, illustrated
in Figure 3. This approach first computes the similarity of Zin to Zref using
cross-attention, and then derives a mask that suppresses features in Zin that
resemble those in Zref .

The process begins by calculating a cross-attention matrix between Zin

and Zref :

Zsim = CrossAttention(Zin,Zref)

= Softmax
(
QKT

√
d

)
V, (15)

where Zsim has the same temporal length and feature dimension as Zin. Here,
Q,K, and V are computed by linear transformations of the respective embed-
dings:

Q = Linear(Zin), K = Linear(Zref), V = Linear(Zref). (16)

Each element of Zsim is passed through a sigmoid function (to map values
into [0, 1]) and subtracted from 1 to create the mask M:

M = 1− σ(Zsim). (17)

This mask emphasizes parts of Zin that are less related to Zref . Finally, the
mask M is applied to Zin by element-wise multiplication:

Zmasked = M⊙ Zin. (18)

Hence, the function diff(Zin,Zref) preserves features in Zin that are distinct
from those in Zref . Since this method leverages cross-attention rather than
simple subtraction, it can handle scenarios in which Zin and Zref are not
aligned in time, unlike the subtraction-based approach.

5 Experimental Evaluations

5.1 Experimental Settings

We employed the baseline system1 from DCASE2023 Task6 for the captioning
model. We kept all hyperparameters consistent with the baseline. The input

1https://github.com/felixgontier/dcase-2023-baseline.

https://github.com/felixgontier/dcase-2023-baseline
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audio features are 64-dimensional mel-spectrograms with a sampling rate of
44.1 kHz, a window length of 40 ms and a hop size of 20 ms. The audio
encoder uses a pre-trained 12-layer CNN, followed by an adapter composed
of linear layers. The feature representation has a dimensionality of 768. The
text decoder uses BART [15]. In the masking-based approach, we insert a
cross-attention module that linearly projects Zin and Zref into 768-dimensional
query, key, and value vectors (see Equation 16). The attention output is
passed through a sigmoid, inverted, and then element-wise multiplied with
Zin to produce the masked representation (Equation 18). The training
was conducted for 40 epochs, with a batch size of 32. We used the model
parameters from the 40th epoch for evaluation.

In the experiment, we compared the baseline trained with standard cross-
entropy to our proposed audio difference learning method. We also conducted
a comparison with Al-MixGen, also referred to as PairMix [10], a mix-up-like
augmentation that involves mixing two audio files and generating a target
caption by concatenating the individual captions.

We evaluated captioning performance using the coco caption toolkit,2
which computes standard metrics [18] such as BLEUn, METEOR, and
ROUGEL, that assess n-gram precision, lexical overlap, and other linguis-
tic factors. We also used CIDEr, SPICE, and SPIDEr, which place emphasis
on term frequency-inverse document frequency weighting and scene graph
alignment.

5.2 Design of Training Dataset

In our experiments, we utilized two datasets: the Clotho [5] and ESC-50 [22]
datasets. The Clotho dataset is commonly used in audio captioning tasks and
consists of 4981 audio clips, each 15-30 seconds long. These clips comprising
2,893 training, 1,045 validation, and 1,043 test samples. The ESC-50 dataset
is a collection of 2000 environmental sound clips evenly distributed across
50 different classes. Each class represents a specific sound event, offering a
diverse set of reference sounds for this study.

For the generation of X+
in , we superimposed Clotho and ESC-50 audio clips

in the time domain with matched power levels. For the reference audio Xref ,
we used three conditions based on whether the same ESC-50 clip is used and
whether the clips are temporally aligned. These patterns are described as
(Sound source / Time alignment):

• (Same / Same): The audio clip for X+
in generation and Xref is the

same, and are temporally aligned.

• (Same / Diff): The audio clip for X+
in generation and Xref is the same,

are not temporally aligned.
2https://github.com/tylin/coco-caption.

https://github.com/tylin/coco-caption


Audio Difference Learning Framework for Audio Captioning 11

• (Diff / Diff): The audio clips for X+
in generation and Xref are different

but belong to the same acoustic class, and have different time align-
ments.

Additionally, we also considered conditions in which multiple ESC-50 clips
were superimposed: (Multi / Same) and (Multi / Diff). The detailed
procedure for loading audio clips is described in the following algorithm:

Algorithm 1 Audio loading process.
Require: Clotho dataset, ESC-50 dataset
Ensure: Generated audio X+

in and reference audio Xref

1: Sample a Clotho audio clip Xclotho and an ESC-50 audio clip Xesc

2: if source condition is (Same / *) then
3: Set reference ESC-50 audio Xref = Xesc

4: else
5: Sample a different ESC-50 clip Xref from the same class
6: end if
7: Randomly choose tadd within the duration of Xclotho

8: Superimpose Xesc onto Xclotho at tadd to create X+
in

9: if scenario is (* / Same) then
10: Zero-pad Xref to ensure temporal alignment with tadd
11: end if
12: if using pattern (Multi / *) then
13: Repeat the sampling and superimposition steps for additional ESC-50

clips
14: end if
15: return the pair X+

in and Xref

The subtraction-based difference calculation is limited to the (Same /
Same) scenario, whereas the masking-based approach is applicable to all other
scenarios. Performance variations across these patterns are analyzed in Sec-
tion 5.4.

5.3 Experimental Results

Table 1 presents the experimental results for the audio captioning task. All
metrics were evaluated on the test split of the Clotho dataset. The proposed
method used the reference audio only during training and did not use it during
evaluation. These results highlight the effectiveness of our proposed audio
difference learning for general audio captioning. In the SPIDEr metric, we
achieved an 8% improvement. These results confirm the effectiveness of the
proposed audio difference learning.
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Table 1: Experimental results of the general audio captioning task setting: The proposed
method employed the reference audio only during the training phase, and it was not used
during the evaluation. These results highlight the impact of our proposed audio difference
learning on the general audio captioning.

Model Bleu1 Bleu2 Bleu3 Bleu4 METEOR ROUGEL CIDEr SPICE SPIDEr
Baseline 0.585 0.379 0.251 0.161 0.179 0.386 0.399 0.120 0.259
AL-MixGen [10] 0.590 0.384 0.254 0.164 0.180 0.392 0.404 0.122 0.263
Proposed (Subtraction) 0.593 0.386 0.257 0.164 0.181 0.392 0.403 0.122 0.264
Proposed (Mask) 0.606 0.395 0.266 0.173 0.187 0.405 0.431 0.129 0.280

Both the subtraction- and masking-based approaches outperform the base-
line and the conventional AL-MixGen method. The proposed method with
the masking-based approach exhibits the best performance. It achieves the
highest scores across all metrics, particularly excelling in CIDEr and SPIDEr.

The superiority of the masking-based approach can be attributed to the
increased expressive capacity enabled by the use of cross-attention. This al-
lows for a more effective modeling of subtle differences between different audio
inputs. In contrast, the Subtraction approach is less flexible because it relies
on temporal alignment. These results suggest that the masking-based method
is more adaptable and better suited to handle a wider variety of audio inputs,
making it a robust, versatile solution for audio captioning.

5.4 Comparison of diff Blocks

Table 2 also summarizes the results obtained with the two diffblock variants,
Subtraction and Masking, under five mixing conditions defined by the origin
of the ESC50 clip and its temporal alignment with the reference. The key
findings are as follows.

Table 2: Performance comparison of the proposed methods with various combinations of
audio clips. Evaluations were conducted using Subtraction and Mask approaches across
different source and time alignment patterns. The results indicate that the Mask approach
consistently outperforms others, maintaining high performance across various conditions.

Model (Source / Time) Bleu1 Bleu2 Bleu3 Bleu4 METEOR ROUGEL CIDEr SPICE SPIDEr
Subtraction (Same / Same) 0.590 0.383 0.253 0.162 0.180 0.390 0.403 0.121 0.262
Mask (Same / Same) 0.606 0.395 0.266 0.173 0.187 0.405 0.431 0.129 0.280
Mask (Same / Diff) 0.605 0.394 0.264 0.171 0.187 0.405 0.427 0.129 0.278
Mask (Diff / Diff) 0.605 0.392 0.261 0.168 0.186 0.406 0.419 0.126 0.273
Mask (Multi / Same) 0.606 0.394 0.264 0.171 0.187 0.404 0.419 0.127 0.273
Mask (Multi / Diff) 0.603 0.389 0.259 0.167 0.184 0.401 0.414 0.127 0.271

The Subtraction block can be trained only in the (Same / Same) sce-
nario, because it requires the reference audio to be identical and perfectly
timealigned with the audio mixed into X+

in . All other scenarios violate this
assumption, making elementwise subtraction meaningless. In contrast, the
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Masking block, implemented with crossattention and a learned mask, suc-
cessfully trains under all five conditions, demonstrating far broader coverage.

When the ideal (Same / Same) condition is met, Masking attains the
highest scores across all metrics, exceeding Subtraction despite the latters
perfect temporal alignment. This margin reflects the greater generalization
power of the crossattention mechanism, which can model nonlinear differences
better than a simple vector subtraction.

Moving from (Same / Same) to (Same / Diff), where the mixed segment
is timeshifted, the Masking block loses only 0.002 absolute SPIDEr (0.7%
relative), confirming that it can internally compensate for timing discrep-
ancies. Even when the reference is a different audio recording of the same
class (Diff/Diff), the decline is merely 0.007 SPIDEr (2.5%), showing that the
learned attention mask still isolates the original Clotho content effectively.

Superimposing multiple ESC50 clips (Multi/Same) and (Multi/Diff) pro-
duces no additional gains and even marginally lowers SPIDEr. A likely reason
is that dense overlapped events dilute the semantic cues originating from the
target clip.

Because realworld deployments rarely provide perfectly aligned {input,
reference} pairs, the Masking blocks resilience to misalignment and source
variation makes it the preferred choice. However, at present there are no
publicly available corpora of real-world {input, reference} pairs; our evaluation
therefore relied on synthetic mixtures. Collecting genuine paired recordings
remains an open challenge for future research and would allow the true upper
bound of differenceaware captioning to be measured in practical settings.

5.5 Inference Examples of Audio Difference

Table 3 presents examples of captions generated by our proposed method
and the baseline in four different ways: (1) Original input from the Clotho
dataset (in), (2) Mixed sound of in with sounds from the ESC-50 dataset (in+),
(3) Captions produced from the difference representation between the mixed
audio and the ESC50 clip; this caption should match that of (1). (4) Captions
produced from the difference representation between the mixed audio and
the original input (the inverse of (3)), leaving the ESC50 component to be
captioned.

Both the proposed method and the baseline perform well in captioning
the input. However, the baseline struggles with the input+ when an addi-
tional event is superimposed. The proposed audio difference learning method
successfully separates and encodes the individual audio contents in the repre-
sentation space.

In the examples where captions are generated based on the difference repre-
sentation, it can be seen that the proposed method is able to caption only the
semantic difference from the original audio in the input sound as highlighted
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Table 3: Examples of difference captioning results generated using difference-representation
between two audio. The proposed method can handle mixed sounds and differences.

(1) Input Audio: kids are playing as one child shrieks while birds are chirping
Baseline birds are chirping and children are talking in the background
Proposed birds are chirping and children are talking and playing in the background

(2) Caption for mixed audio: in+ = in+ Car Horn sound
Baseline birds are chirping and children are talking in the background
Proposed birds are chirping and children are talking in the background as a car drives by

(3) Caption with difference representation: in+ − Car Horn sound ⇒ (1)
Baseline birds are chirping and children are talking to each other
Propose birds are chirping and children are talking in the background

(4) Caption with difference representation: in+ − in ⇒ Car Horn sound
Baseline a person is using a hard object to make a few seconds
Proposed an engine is whirring and then it gets louder and louder

(1) Input Audio: a distorted drum or similar instrument is played
Baseline a synthesizer is playing a musical instrument
Proposed a synthesizer is playing a synthesizer with a musical instrument

(2) Caption for mixed audio: in+ = in+ Laughing sound
Baseline a person is playing a synthesizer with a musical instrument in the background
Proposed a person is playing a synthesizer with a man talks in the background

(3) Caption with difference representation: in+ − Laughing sound ⇒ (1)
Baseline a synthesizer is playing a musical instrument
Propose a synthesizer is playing a musical instrument

(4) Caption with difference representation: in+ − in ⇒ Laughing sound
Baseline a person is playing a synthesizer while another person is speaking in the background
Proposed a person is speaking and then a child laughs

in bold. The baseline, on the other hand, is unable to model the difference
representation effectively, leading to captions that blend events from both
superimposed sounds, particularly for input+ − input = inputesc.

The proposed method not only improves performance but also suggests
the potential for additional new applications, such as captioning differences
between two audio recordings.

6 Conclusion

In this paper, we introduced a novel learning method for audio captioning,
termed Audio Difference Learning. This method trains a model to generate
captions based on feature representations of differences between audio inputs,
establishing a representational space specifically attuned to these differences.
By designing the input and reference audio so that the difference representa-
tion can reconstruct the original data, we enable learning without the need
for human-annotated differences. Our experiments demonstrated that the
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proposed method achieves superior captioning performance compared to tra-
ditional approaches. Additionally, the results indicate potential new applica-
tions, such as generating captions that specifically articulate the nuances of
differences between audio recordings.
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