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ABSTRACT

Monaural speech separation is a crucial task in speech processing,
focused on isolating single-channel audio with multiple speakers
into individual streams. This problem is particularly challenging
in noisy and reverberant environments where the target informa-
tion becomes obscured. Cascaded multi-task learning breaks down
complex tasks into simpler sub-tasks and leverages additional infor-
mation for step-by-step learning, serving as an effective approach
for integrating multiple objectives. However, its sequential na-
ture often leads to over-suppression, degrading the performance
of downstream modules. This article presents three main con-
tributions. First, we propose a separation-priority pipeline to
ensure that the critical separation sub-task is preserved against
over-suppression. Second, to extract deeper multi-scale features, we
design a consistent-stride deep encoder-decoder structure combined
with depth-wise multi-receptive field fusion. Third, we advocate a
training strategy that pre-trains each sub-task and applies time-
varying and time-invariant weighted fine-tuning to further mitigate
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over-suppression. Our methods are evaluated on the open-source
Libri2Mix and real-world LibriCSS datasets. Experimental results
across diverse metrics demonstrate that all proposed innovations
improve overall model performance.

Keywords: Speech separation, speech enhancement, cascaded multi-task
learning, separation priority pipeline, transfer learning

1 Introduction

Speech separation (SS) emerged as a solution to the cocktail party problem [5],
which highlights people’s ability to effortlessly follow the desired speaker despite
the presence of interfering speakers and background noises. Therefore, SS aims
to disentangle speech information in scenarios where multiple speakers are
conversing simultaneously [54]. Monaural speech separation further narrows
this scope to the specific scenario where only one microphone is available to
record mixed audio [23]. Deep learning techniques have facilitated the progress
of SS at an accelerated pace [3, 24, 25]. In contrast to other domains where
deep learning prevails, obtaining clean speech labels for SS is challenging
because it is not an easy job to gain high-quality individual speeches from
the mixed speech which has already been collected in advance. Therefore,
most studies simulate mixed speeches by temporally adding sources, while
simultaneously preserving the sources as separation labels [19, 62, 28, 16]. In
the context of generating a massive number of samples via this way, models
have the option to base their processing on traditional time-frequency features
or learned features. Time-frequency domain separation models typically first
compute the spectrogram of the mixed speech. Then, using the mixed speech
spectrogram as the model’s input to output source spectrograms. Typically,
there are two learning objectives for the model: the mapping approach involves
the model directly outputting the spectrograms of each speaker, whereas the
masking approach generates a mask applied to the input mixture spectrogram
to produce the target speaker’s spectrogram. Finally, the waveform of the
sources is reconstructed from their respective spectrograms [3, 25, 19, 62, 28,
16, 60, 15, 59, 57].

It is worth noting that this method typically requires additional consid-
eration of phase information to achieve better results [20, 17]. Moreover,
since the optimization objective of this approach is minimizing spectrogram
error, frequency-domain methods do not offer any advantage in improving
the signal-to-noise ratio. Time-domain separation methods use differentiable
1-dimensional convolutional and transposed 1-dimensional convolutional layers
to bridge between the time-domain signal and feature space, hence they are
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also referred to as end-to-end (e2e) separation methods. Their innovation
lies in the unification of both amplitude and phase of traditional handcrafted
features, enabling models to learn features tailor-made for separation and
directly optimize on signal-to-noise or signal-to-distortion metrics [36, 33, 35,
31, 2, 49, 52]. Because time-domain and frequency-domain models each have
different areas of focus, the combination of time-domain and frequency-domain
methods is also becoming increasingly popular [56, 55, 63].

With the growing popularity of e2e approaches, the encoder-decoder frame-
work has also been extensively studied. Compared to the original single-layer
encoder-decoder model, deep encoders have been found to be more robust in
feature extraction [26]. Additionally, dilated convolutions have been employed
to increase the receptive field within convolutional layers [43, 64, 42]. Despite
thriving with the aid of e2e separation methods, SS in complex environments
continues to be a concern for researchers. For instance, the challenge of sep-
arating mixed speech in the presence of loud background noise remains a
significant issue [58]. The background noise interferes with models’ ability to
capture the desired information, resulting in dwindled results compared to
clean environments. To resolve this dilemma, a natural solution is to introduce
speech enhancement (SE) [48, 47] for mixed speech as a front-end [68, 51, 38,
22, 37]. The SE task aims to improve the quality of speech [13]|, encompassing
various aspects such as noise cancellation and echo suppression. This article
specifically defines SE as the removal of background noise. This strategy is
prevalent in similar tasks, such as in mixed speech recognition tasks, where
SS serves as the front-end and automatic speech recognition (ASR) as the
back-end [39]; in enhancement tasks involving noise and reverberation, the
SE module serves as the front-end, and the dereverberation (DE) module
as the back-end [37, 67]. These sub-tasks are jointly trained via cascaded
multi-task learning. While the additional utilization of noise-free mixtures as
enhancement module labels in multi-task learning leads to an improvement
in accuracy, SS with SE encounters a new issue: the over-suppression problem
[22, 10]. For the separation module, although its input alters to noise-free
mixed speech after the introduction of the SE module, the quality of mixed
speech decreases to a certain degree due to the processing of the SE module.
One hypothesis regarding gradient conflicts suggests that the divergent opti-
mization directions of the SE task and the SS task impede overall performance.
To address this, A learning patch is proposed to adjust the gradient weights of
the front-end task (SE task) based on the more critical posterior task (SS task)
[22, 10]. Unfortunately, learning patches require adjusting gradients layer by
layer, which consumes excessive computational resources. Furthermore, this ap-
proach has been shown to compromise the model’s generalization ability [10, 9].

This paper is an extended version of the conference paper [10]. In the
conference paper, to mitigate the over-suppression problem in multi-task models
for noisy speech separation, we proposed SPP, which prioritizes the separation
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module. SPP ensures the integrity of the input to the SS module, making it
more effective. Additionally, no extra gradient modulation is required, and
the labels for the swapped SS module are easily accessible. In this paper,
we propose the SPP-based cascaded multi-task learning approach to address
monaural speech separation in noisy and indoor environments. There are
three main innovations. Firstly, we develop two SPP pipelines for time-
domain monaural noisy and reverberant speech separation. They are SPP with
enhancement-secondary (SPP-ES) and SPP with derevereberation-secondary
(SPP-DS). Secondly, to enhance the model’s processing ability, we propose a
consistent stride deep encoder-decoder structure (CS-DEDS) and depth-wise
multi-receptive field fusion (DW-MRFF) blocks. Finally, to further alleviate
the over-suppression issue, we conduct pre-training for each sub-task, followed
by an overall transfer learning approach with time-varying and time-invariant
weights. We validate our theory and model on the publicly available simulated
dataset Libri2Mix. The effectiveness of each innovation is confirmed across
various metrics.

2 Problem Formulation and Related Works

2.1 Problem formulation

For a clear narrative, related terms are first introduced in Table 1. Suppos-
ing s"(t) and n(t) denote the spatial image and ambient noise, respectively.
Monaural noisy and reverberant mixture z(¢) can be formulated in the time
domain by:

I

w(t) =) si(t) +n(t) (1)

i=1
where t and I represent the discrete time and the number of sources, respectively.
i-th reverberant signal can be decomposed as follows:

s; (t) = si(t) * ri(t) (2)
(t) = (rd;(t) + ru(t)) (3)
() % rd;(t) + s;(t) * ru(t) (4)
s3(t) + s (1) (5)

:Si
=S

L

Table 1: Terminology explanation.

Terms Explanation
Noisy wvs. Clean Have ambient noise vs. Have no ambient noise
Anechoic vs. Reverberant Direct path signal vs. Spatial image

Mixture vs. Source Mixed signal vs. Individual signal
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Figure 1: Problem formulation. Sub-figure (a) illustrates the generation process of indoor
reverberation, where s denotes the signal source and s” represents the receiver. The red
arrow indicates the direct path, while the green arrows represent the reverberation paths.
Sub-figure (b) depicts the simulation of noisy and reverberant mixture x, where r; and n
denote time-invariant RIR and ambient noise.

where * denotes convolution operation. In this work, the position of source
is static, so r;(t) denotes time-invariant room impulse response (RIR). RIR
consists of the direct path rd;(t) and undesired reverberant path ru;(¢). An
illustration of reverberation is depicted in Figure 1(a). The objective of this
paper is to separate each individual anechoic signal s¢(t) from z(¢) by filtering
out s¥(t) and n(t) [34, 7]. It is also worth noting that there is only a delay
difference between the target signal s¢(¢) and the original signal s, (t).

2.2 End-to-end (e2e) separation methods

Time-domain audio separation network (TasNet) is the first e2e separation
approach [36, 32]. This approach’s architecture is composed of an encoder
layer, a masking network, and a decoder layer. The encoder layer extracts
features from the waveform, the masking network separates these features,
and the decoder layer upsamples the features and reconstructs the wave-
form. A fully-convolutional structure-based masking network (Conv-TasNet) is
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developed in [35]. These blocks are stacked with exponentially increasing
dilation factors to obtain multi-scale representation. To capture both local and
global dependency, features are segmented into a 3-D tensor and processed by
a dual-path recurrent neural network (DPRNN) architecture [31]. Later on,
RNNs are replaced with transformer encoders, naming the model SepFormer
[49]. In the context of complex environments of this paper, to distinguish the
aforementioned methods from cascaded multi-task learning methods, they are
also referred to as single-task methods.

2.3 Cascaded multi-task learning methods

Cascaded multi-task learning involves decomposing complex task into several
step-by-step simpler subtasks. Its success is mainly attributed to the leverage
of more information compared to e2e separation methods [37]. The processing
sequence of enhancement, separation, and dereverberation yields the best
results in complex environmental separation. Additionally, two points are
noteworthy: first, each module used an e2e architecture, meaning the input
and output of each module were waveforms; second, the implementations
of the processors used TasNet and Conv-TasNet. Based on this, shared
encoder and decoder scheme (SEDS) streamlines the model, with intermediate
processing operating in the time-frequency domain [38]. Moreover, an extra
channel attention mechanism is added before the DP process. However, the
sequential nature of cascaded multi-task learning causes it to suffer from the
over-suppression problem, which means the SE module, while denoising, also
loses other information that could potentially aid in separation.

To address the over-suppression problem, one hypothesis posits gradient
conflicts [22]. In a cascaded multi-task structure of SE and SS, for layers
influenced by both SE and SS, they sometimes have conflicting optimization
directions. This means that gradient conflict occurs, and to prevent it, an addi-
tional step of gradient modulation (GM) is performed before back-propagation.
Concretely, for each layer of such a module where gradient conflict occurs, the
projection gradient modulation (PGM) approach treated gradients from the
enhancement loss as vectors and adjusted them by projecting onto the orthog-
onal vector of the separation gradient at that layer [22], and negative gradient
modulation (NGM) simply took the negative value of the enhancement gradient
vector as the adjusted gradient value [10]. Although GM is effective, it has two
drawbacks. Firstly, SEDS does not exhibit the same level of generalization as
dependent encoder-decoder scheme [37]. Secondly, GM introduces additional
computational expenditure, which increases exponentially with the number of
sub-tasks.

Another idea for tackling the over-suppression problem challenges the
conventional pipeline with enhancement as the front-end. In the task of
separating noisy mixed speech, a separation-priority pipeline (SPP) with
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separation as the front-end is proposed [10]. This approach ensures the
integrity of the input to the separation module. Additionally, without the need
for specialized GM, the averaged rate of gradient conflict can also be reduced
to below 4%.

3 Proposed Methods

To address the issue of separating mixed speech in the presence of noise
and reverberation, we propose two SPP-based cascaded multi-task learning
methods: one is SPP with enhancement as the secondary priority (SPP-ES),
and the other is SPP with dereverberation as the secondary priority (SPP-DS).
Together with the previous EPP, the diagram of these three pipelines are
depicted in Figure 2. In each sub-task, the proposed network consists of a
deep encoder structure, a depth-wise multi-receptive field fusion (DW-MRFF),
a processor, a deep decoder structure. The overview of the proposed network
is displayed in Figure 3.
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(a) EPP diagram. (b) SPP-ES diagram. (c) SPP-DS diagram.

Figure 2: The diagrams of EPP, SPP-ES, and SPP-DS are presented in sub-figure (a), (b),
and (c) respectively. All SE, SS, and DE modules are colored in blue, aquamarine, and
tangerine respectively for distinction. A description of every sub-task is placed on the right

side of each pipeline.
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Figure 3: The proposed network for implementing each sub-module. Specifically, sub-figure
(a) displays the SE sub-module of EPP, where the processor produces only one mask. In
contrast, the processor in the SS sub-module generates masks corresponding to the number
of speakers. Sub-figure (b) elaborates on the implementation of the DP block.
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3.1 Consistent stride deep encoder-decoder structure (CS-DEDS)

Inspired by vanilla deep encoder and decoder architecture [26], and to serve the
model in processing deeper and finer features, we propose consistent stride deep
encoder-decoder structure (CS-DEDS) which also consists of three encoder
layers and three decoder layers. Unlike the vanilla approach, which applies
a large stride (stride of 8) in the first layer and smaller strides (stride of 1)
in the next two layers, we use a consistent stride of 2 across all three layers.
This design choice allows for gradual feature extraction and helps prevent
excessive information loss after the first encoder layer of the vanilla approach.
Additionally, to control the model parameters, the window size of the first
layer is reduced from 16 to 4. This design also ensures that the receptive fields
of both the deep encoder layers and the single-layer encoder remain consistent,
thereby controlling the performance improvements brought by changes in the
receptive field. Given the input signal € R'7 the deep encoded feature
H, € RV*L (N is the feature dimension and L is the number of time steps)
is obtained through three 1-dimensional convolutional encoder layers with
window sizes and stride sizes of (4,2), (3,2), (3,2), respectively, followed by an
exponential linear unit (ELU) activation function [6].

For a masked representation Hy € RI*N*L which is to be decoded, the
estimation of each source 7 is restored via three 1-dimensional transposed
convolutional layers that are mirror-symmetric to the encoder layers in terms
of parameters.

3.2 Depth-wise multi-receptive field fusion (DW-MRFF)

Inspired by Conv-Tasnet and HiFi-GAN [35, 29], we propose a depth-wise
multi-receptive field fusion (DW-MRFF) based on the stacked residual and
depth-wise 1-dimensional convolutional layers with a fixed window size and
exponentially increasing dilation factors. For each layer f of DW-MRFF with
a window size of W and dilation factor of Dy, features H. and convolutional
kernels are evenly divided into several groups based on depth, and convolution
is performed within the corresponding groups:

H! = DW-MRFF;(H., W}, Dy) (6)

where Dy equals 2f=1,
Finally, we sum up the output of each layer as well as initial input:

F
H,=H.+)» H] (7)
=1
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3.3 DP-processor

The goal of DP-processor is to generate masks M = [My,--- , M| € RIXNxL

for each source i from H, and then H,; is gained by applying each learned
feature mask back to H,:

H,fi,:,:]=H; ® MJi,:,:] (8)

where ® denotes the Hadamard product.

In different tasks, DP-processors are referred to by different names. In
separation, enhancement, and dereverberation models, we respectively call
them the separator, enhancer, and dereverberator. Apart from the fact that
the separator generates masks equal to the number of sources, while the
other two only generate a single mask, there is no distinction in modeling.
To capture the local and global representation, DP-processor first splits H ¢
into chunks with length of K and hop size of P, generating a 3-D tensor
T € RVXEXS where S is the number of generated chunks. The DP structure
will alternately process T' through the time dimension (intra-process) and
the chunk dimension (inter-process). In this paper, we mainly consider RNN
structure and Transformer structure to implement processor.

We use a total number of B stacked DPRNN blocks, each of which consists
of an intra- and inter- process sub-block. For each input T, of b-th DPRNN
blocks, inter- sub-block consists of a recurrent neural network (RNN) layer, a
fully-connected (FC) layer, and a layer normalization, followed by a residual
connection:

T, = LN(Intra-FCp, (Intra-RNNy (T [, 1, 5]))) + T (9)
b-th inter- sub-block models similarly:

Ty41 < LN(Inter-FCy, (Inter-RNNy (T [:, k. 1)) + T, (10)

3.4 SPP in noisy and reverberant speech separation

We classify mainstream cascaded multi-task learning methods that employ
the SE module as the front-end as EPP [48, 51, 38, 22, 37]. In contrast to
their structure, which better aligns with intuition though, the SPP we propose
positions the SS module first: one is with enhancement as the secondary
priority (SPP-ES), and the other is with dereverberation as the secondary
priority (SPP-DS). For SPP-ES, the task of the SE module is to estimate the
reverberant clean source from the input containing reverberation and noise,
while the task of the DE module is to take the reverberant clean source as
input and output the anechoic clean source. For SPP-DS, DE module first
predicts anechoic noisy source from reverberant noisy source, followed by the
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SE module that estimate final anechoic clean source. It is worth noting that
the number of samples doubles after separation. Hence, the subsequent DE
and SE modules process samples one after another.

3.5 Training approaches

Training from scratch is a straightforward approach. However, the downstream
SE and DE modules remain susceptible to the over-suppression issue. To
mitigate this, we first pre-train each of the seven core tasks individually (note
that the SS task for both SPP-ES and SPP-DS is identical, as is the DE
task for EPP and SPP-ES), as introduced in Figure 2. After pre-training, we
assemble the required modules according to different pipelines for fine-tuning.

4 Experiments

4.1 Datasets

We primarily focus on the case where there are two speech sources. Hence, we
use Libri2Mix [8], a derived mixture dataset from LibriSpeech [40], and the
noise from WHAM! to synthesize noisy mixtures [48]. The training (train-100),
validation (dev), and testing (test) subsets of Libri2Mix process 13900, 3000,
and 3000 samples, respectively. Samples are mixed based on the length of
the shorter utterance. For each sound source, we follow previous recipes [37]
of using Pyroomacoustics [46] to simulate anechoic and reverberant versions
according to the random configurations exhibited in Table 2. The resulting
signal-to-noise ratios (SNRs) are distributed with a mean of —2.0 dB and

Table 2: Reverberation sampling distribution configuration. Length (L), width (W), and
height (H) specify the size and position of room and receiver, respectively. The source
position is determined by H, distance, and angles (). T60 denotes the duration, in seconds,
for a sound to decrease by 60 decibels (dB). U represents the continuous uniform distribution.

L (m) U(5,10)
Room W (m) U(5,10)
H (m) U(3,4)
T60 T (s) 4(0.2,0.6)
L (m) Lr(éovn +u(_0_270'2)
Receiver W (m) w +U(-0.2,0.2)
H (m) 4(0.9,1.8)
H (m) £(0.9,1.8)
Sources  Dist. (m) 14(0.66,2)

0 U(0,2m)
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Table 3: Configuration of LibriCSS. Subsets 0L and 0S imply the 0% overlapping ratio with
long and short inter-utterance silence.

overlapping ratio (%) 0L  0S 10 20 30 40
No. of utterance 601 813 815 875 972 941

a standard deviation of 7.0 dB. Furthermore, to meticulously evaluate the
model’s capability, we also utilize other versions of the Libri2Mix test set
that does not contain reverberation or background noise, as well as the single-
channel utterance-wise evaluation schemes of LibriCSS to conduct generation
tests on real-world environment [4]. LibriCSS encompasses six subsets with
varying overlapping ratios, and its configuration is shown in Table 3. All the
data is sampled at 8 kHz.

4.2 Parameters
4.2.1 Model parameters

All models, including those reproduced from previous studies, use 64-dimensional
features. The single encoder Conv1lD layer has a kernel size of 16 samples, a
stride size of 8 samples, and 64 channels. As for the deep encoder layers, we
use F = 3 ConvlD layers. The kernel size and the stride size of the first layer
are 4 samples and 2 samples, while the second layer and the third layer both
have a kernel size of 3 samples and a stride of 2 samples. All three layers have
64 output channels. This design ensures that the resulting features have the
same size as those obtained from a single encoder ConvlD layer with a kernel
size of 16 samples and a stride of 8 samples, thereby eliminating the impact of
feature size inconsistency on the processor. Similarly, the deep decoder layers
use D = 3 T-ConvlD layers. Their parameters are mirror-symmetric to those
of the deep encoder layers. For the MRFF, we use 8 ConvlD layers with a
kernel size of 5 samples and a stride of 1 sample. The dilation factors for these
layers increase exponentially from 1 to 8.

We use DPRNN to implement the DP-processor. When employing the DP
structure, the 2-D tensor is folded to 3-D shape with a window size of K = 250
and a hop size of P = 125. For each Transformer layer, we use 8 parallel
attention heads and a 1024-dimensional FC layer, while each RNN layer in
the DPRNN utilizes a 128-dimensional LSTM. Adhering to the conclusion of
prior research [22, 10], we employ 6 processor blocks in the SS module, and
2 processor blocks in the SE module. For the DE module, we simply use 1
processor block. This is because the best results are reported in [10] when the
layer number of SS module and SE module are in a 3:1 ratio. Meanwhile, we
restrict the total number of layers to 9.
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4.2.2  Training parameters

We conduct DPRNN experiments using an NVIDIA GeForce RTX 3080 Ti
GPU, and SepFormer and reproduction experiments using an NVIDIA GeForce
RTX 4070 Ti SUPER GPU. All code is developed based on the open-source
toolkit Asteroid [41]. We use Adam as the optimizer [27].

The training epoch is set to 120, and the batch size is 4 for DPRNN and 2
for SepFormer. For training from scratch, we use an initial learning rate of
0.00015, which is adjusted to 0.0001 for fine-tuning. The initial learning rate
is halved if no improvement is observed on the validation set for 5 consecutive
epochs, and an early stop strategy is triggered after 30 consecutive epochs
without improvement. Gradient clipping is set to 5. The best-performing
checkpoint on the validation set is used for testing.

4.8 Objective functions
4.3.1 Objective function with time-invariant (TI) weights
Objective function of SPP enhancement secondary (ES) is given by:
Lspp.ps = assLss + aspLspEs) + ODELDE(ES) (11)
where ass, asg, and apg represent the weight of each sub-task. Given the

estimated noisy and reverberant source 57", estimated reverberant source 57,
and anechoic source s y Lss, Lsg(Es) and CDE(ES) are represented by:

Lss = —max Z SI-SNR(87(;), 57") (12)
Lsprs) = — ZSI SNR (87, 57) (13)
Lpgms) = —~ ZSI—SNR iy s (14)

In SS task, we employ permutation-invariant training (PIT) to calculate the
best permutation mapping set m among all possible mapping set P. 7 assists
the model in establishing the correspondence between estimated and ground
truth speeches [28]. Once 7 is determined in training SS module as shown
in Equation 12, SE and DE module in Equations 13 and 14 will adopt the
same one. s is gained by the temporal addition of reverberant image s; and
ambient noise n.
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SI-SNR (scale-invariant signal-to-noise ratio) in Equations 12, 13, and 14
are similarity metrics of two time-domain signals:

2
SI-SNR(3, s) = 10log, ||||:"J|2 (15)
noise
(3, s)s
Sproj = W (16)
Snoise = 5— Sproj (17)

where sp,:0j denotes the projection of 5 on s.

In the case of SPP-DS, objective function of dereverberation module
Lpgs) still keeps the noise, and noise is removed in the final SE module.
Entire objective function is altered to:

Lss = —max - ZSI SNR(87(;, s7") (18)
LprmDs) = —7 ZSI SNR(7(;, s7%) (19)
Lspns) = —7 Z SI-SNR (3 ), 57) (20)

where s7? is the result of adding anechoic source s¢ and ambient noise n
likewise.

Since each sub-task is assumed to be equally important during training,
time-invariant (TI) fine-tuning method means that the objective function

weights for sub-tasks are evenly distributed, namely ags = asg = apg = %

4.3.2  Time-varying (TV) weights objective function for fine-tuning

Considering that the final output represents the overall model performance,
inspired by [12], an alternative time-varying (TV) weights objective function
for fine-tuning is proposed for SPP-DS by:

1
g, e < 40
Ozss(e) = QDE(B) = _7e 9 (21)
— 4
2400 + 20° 0
1
57 e < 40
ose(€) =3 J4e 1 (22)

— >
2100 " 10" <
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where e is current epoch number. Before the 40th epoch, the weights for the
three tasks are all 1/3. By epoch 120, the weights linearly transition to the
ratio of 1:1:8.

4.4 Evaluation metrics

We first evaluate the model’s performance from the category of signal-to-noise
ratio, including SI-SNR [30], SI-SNR improvement (SI-SNRi), SDRi (signal-to-
distortion ratio improvement), SIRi (signal-to-interference ratio improvement)
[53]. An estimated signal § of target source s can be assumed to be composed
of four components:

5= Starget + Einterf T €noise T Eartif (23)

where s¢arget calculates the projection of target signal on estimated signal,
€interf and enoise Tepresent the error projection vector of undesired signals and
noise on estimated signal respectively. e,.if is the rest error term.

SDR and SIR are thus given by:

2 ” Starget ||2
SDR(s,s) =101o 24
( ) 810 || €interf T €noise 1 Cartif ||2 ( )
e | [
~ Starget
SIR(3,s) = 10log;, ” ei:tiref E (25)

SDRi and SIRi are used to remove the influence factors of mixed speech:

s) =
s)

In particular, SIRi also directly serves for separation ability.

The second category is perceptual metrics, including perceptual evaluation
of speech quality (PESQ) [44] and short-time objective intelligibility (STOT)
[50]. The third category is enhancement metrics, including predicted rating of
speech distortion (CSIG), predicted rating of background distortion (CBAK),
and predicted rating of overall quality (COVL) [21]. For real-world dataset
LibriCSS where transcriptions are available instead of clean reference signals,
word error rate (WER) is used. As an extra step of ASR, we employ an
SSL-based ASR model to recognize estimated signals [1]. In addition to the
above evaluation metrics, we report the model size and computational load for
3-second data, measured in Giga Multiply-Accumulate operations (GMACs).
The tools we use are publicly available at the public site!

SDRi(
SIRi(

5,
5,

SDR(3, s) — SDR(, m) (26)
SIR(3, s) — STR(&, m) (27)

Lhttps://github.com/sovrasov /flops-counter.pytorch
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The mel cepstrum distortion (MCD) measures the similarity of two se-
quences of mel cepstra based on the mel cepstrum coefficient (MCEP) [18],
which is given by:

10

1\/[(jlj(§7 S) = m

(Ca—cq)? (28)

where ¢; and ¢4 are d-th dimension of estimated MCEP and target MCEP,
respectively. D denotes the dimension of MCEP. In the visualization section,
the MCD metric is employed to measure the distortion of exhibited samples.

5 Results

5.1 Comparative results with previous methods

Table 4 compares the SI-SNRi performance and computational complexity of
the proposed methods against reproduced results from previous separation
models. U-Mamba-Net [11], a much more compact model designed for severely
degraded mixture, achieves a competitive SI-SNRi of 8.50 dB. SepFormer and
its resource-efficient variant [14] yield 9.04 dB and 3.95 dB, respectively. The
DPRNN-based encoder-decoder attractor structure (EDA) [45] also achieves
8.50 dB. MossFormer [65] employs a joint local and global self-attention

Table 4: The results of existing and proposed methods.

Methods Fine-tuning? SI-SNRi (dB) # Param. (M) GMACs
TasNet - 5.70 23.2 27.8
SuDoRM-RF - 2.90 2.6 3.6
SuDoRM-RF-+ - 5.33 2.7 3.0
Conv-TasNet - 6.88 6.3 18.7
DPRNN (6 layers) - 7.59 3.7 23.9
DPRNN (9 layers) - 7.15 5.4 35.6
DPRNN (EPP) - 8.08 5.6 40.2
SepFormer - 9.04 25.7 196.8
ReSepFormer - 3.95 4.8 8.3
EDA - 8.99 7.5 -
U-mamba-net - 8.50 4.4 2.5
MossFormer - 8.11 1.1 -
MossFormer2 - 10.75 9.2 -

Proposal (SPP-ES) X 8.77 6.2 52.7
Proposal (SPP-DS) X 8.95 6.2 52.7
Proposal (SPP-ES) v 9.48 6.2 52.7
Proposal (SPP-DS) v 9.71 6.2 52.7
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architecture, achieving 8.11 dB in SI-SNR. Its variant, MossFormer2 [66], in-
corporates an additional feedforward sequential memory network and, despite
having significantly more parameters, delivers the highest performance among
existing models with 10.75 dB, surpassing our proposed method by approx-
imately 1 dB. The proposed SPP-DS model attains a comparable SI-SNRi
score, trailing SepFormer by only 0.09 dB, while requiring merely one-fourth of
its GMACs. Moreover, with transfer learning, SPP-DS achieves an additional
improvement of 0.77 dB SI-SNRi without increasing model size compared to
training from scratch, and surpasses SepFormer by 0.68 dB. Both SPP-based
models also substantially outperform the EPP-based model. Furthermore, re-
gardless of whether transfer learning is applied, SPP-DS consistently maintains
an average advantage of 0.2 dB SI-SNRi over SPP-ES. Figure 4 presents the
learning curves for both training from scratch and transfer learning fine-tuning,
highlighting the practical effectiveness of the proposed approaches.

4 Methods
3 —e— EPP
o 2 X —%— SPP-ES
Z 1 % —=— SPP-DS
UuJ '§x\1
0 ENR
wn R ~o-o
C -1 1 09
" .\l:x\x\x \._.".‘.~._
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-3 ===
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(b) Training using transfer learning.

Figure 4: Comparison of learning curve of training from scratch (a) and fine-tuning phase of
using transfer learning (b) on validation dataset.
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5.2 Detailed comparison of EPP and SPP

Table 5 provides a detailed comparison between EPP and the proposed SPP-ES
and SPP-DS. In experiments without transfer learning, we observe that model
performance on specific metrics is influenced by the position of the module
associated with each metric. For instance, in EPP, where the SE module is
positioned first, optimal results are achieved in CBAK. By prioritizing the SS
module, both SPP-ES and SPP-DS deliver exceptional performance in SIRi.
Additionally, SPP outperforms in metrics related to signal-to-noise ratio and
perceptual quality, which are widely accepted as overall metrics. This indicates
that SPP can generate superior overall results.

When we focus on transfer learning methods, we first observe that the initial
loss points of SPP that uses TT are lower than that of EPP in Figure 4(b). This
suggests that SPP is more rational than EPP. Additionally, compared to train-
ing from scratch, transfer learning significantly enhances performance across
all three pipelines. This indicates that, through pre-training the downstream
model, sub-modules in the latter positions of the pipeline are expected to be
better learned compared to joint learning from scratch and over-suppression
problem is thus further alleviated. Specifically, the improvements in EPP
exceed those observed in SPP, suggesting that alleviating over-suppression
in the SS module within EPP contributes to a more substantial performance
boost compared to the SE and DE modules in SPP. The narrowing gap of
learning curves of EPP and SPP in Figure 4(b) also supports this statement.
These findings align with the core argument of this paper, asserting that the
SS module plays a more critical role than SE and DE modules. In the last 80
epochs, TV shifts its focus to the later stages, with test set results indicating
that this approach is effective, though the improvement is modest. However,
when the loss weight of earlier modules is gradually reduced to zero in transfer
learning, overall model performance declines sharply. Thus, we conclude that
multi-task learning remains essential in transfer learning. Finally, through
transfer learning, SPP-DS achieves the best results across all metrics, indicat-
ing that this pipeline possesses the strongest separation capability. The best

Table 5: Elaborated results for different pipelines.

Pipeline Fine-tuning? SI-SNRi SDRi SIRi STOI PESQ CBAK COVL

EPP X 8.08 8.62 16.39 73.19 1.75 2.16 2.18
SPP-ES X 8.77 891 1783 74.76 1.82 2.00 2.27
SPP-DS X 8.95 9.10 17.97 75.21 1.82 2.00 2.26
EPP TI 9.23 9.42 1870 76.01 1.86 2.03 2.30
SPP-ES TI 9.48 9.64 19.05 76.67 190 2.07 235
SPP-DS TI 9.71 9.65 19.51 77.14 192 210 2.38

SPP-DS TV 9.72 9.66 19.62 77.23 1.93 2.11 2.39




18 Dang et al.

Table 6: The best SI-SNR performance of each sub-task on its corresponding validation
dataset. These pre-trained sub-modules are to be assembled for fine-tuning each pipeline.

Pipeline SS SE DE

EPP 8.89 11.91 7.04
SPP-ES 827 11.34 7.04
SPP-DS 827 11.87 7.76

Table 7: Ablation studies using SPP-DS pipeline. X means that module is not used at all.
v in column DW-MRFF means the G = 1.

CS-DEDS DW-MRFF SI-SNR SI-SNRi SIRi STOI PESQ # Param. GMACs

Vanilla v 2.60 843 17.00 72.68 1.77 62 M 51.7
v v 3.12 8.95 17.9775.21 1.82 62M 52.7
v X 2.92 8.75 17.82 74.87 1.81 5.7 M 50.2
X 4 3.08 891 1796 75.17 1.83 6.1 M 50.1
X X 2.58 8.41 17.33 73.24 1.75 5.6 M 48.3
v G=2 291 874 17.74 7491 182 6.0M 51.5
v G=4 3.12 8.95 18.10 75.33 1.83 5.8 M 50.8
v G=28 3.20 9.03 18.88 75.33 1.85 58 M 50.5
v G =16 3.09 8.92 18.36 74.93 1.83 5.8 M 50.4

SI-SNR performance of each pre-trained sub-module on the corresponding
validation set is shown in Table 6.

5.3 Results of ablation studies

To access the effectiveness of proposed CS-DEDS and DW-MRFF, we conduct
ablation studies based on the SPP-DS pipeline. The results are displayed in
Table 7. In trials where CS-DEDS is not adopted, a single Conv1D layer with a
window size of 16 samples and a stride size of 8 samples is used. Vanilla means
that we use the deep encoder and decoder architecture from paper [26]. G in
DW-MRFF represents the number of groups into which features are divided.
Firstly, the top half of the table illustrates the individual contributions of
CS-DEDS and DW-MRFF to the model. Both the CS-DEDS and MRFF
modules positively contribute to the model’s separation capability. Meanwhile,
CS-DEDS achieves an improvement of 0.52 dB SI-SNRi over vanilla DEDS.
The lower half of the table examines depthwise convolution controlled by the
grouping variable G. When the parameter is set to 8, the model achieves
optimal performance across all metrics, and both the model’s parameters and
computational load are reduced compared to when G = 1.
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5.4 Replacing DPRNN block with SepFormer block

In this section, to examine the generalizability of different pipelines, we replace
the DPRNN block in the proposed model with the self-attention block of
SepFormer. For an efficient training process and a fair comparison, we compress
the size of the SepFormer block to approximately match that of the DPRNN
block. Their results are displayed in Table 8. The results, whether using
transfer learning or not, demonstrate that the SPP pipeline outperforms the
EPP pipeline. Additionally, applying TV in the fine-tuning phase can further
enhance the effectiveness of transfer learning.

5.5 Merging SE and DE modules in one network

This section discusses an intriguing idea. The previous results have clearly
demonstrated the superiority of SPP. However, regardless of the pipeline,
the module in the final position tends to suffer from severe over-suppression
problem. For instance, the SE module in SPP-DS. To alleviate this, this
section considers merging the SE and DE modules in the SPP, though this
approach may be viewed as a degeneration of multi-task learning. When using
TV fine-tuning, the weights of the first and second modules are gradually
adjusted linearly to achieve a 2:8 ratio over the final 80 epochs. The overall
results and comparative results with not merging SE and DE modules are
shown in Table 9. Firstly, when training is conducted from scratch, the results
after merging outperform those obtained without merging when adopting SPP.
We believe this indicates that the overall degree of over-suppression is reduced
after merging. Pre-training helps the structure without merging SE and DE
better mitigate the over-suppression issue. However, during the fine-tuning
phase, TV that shifts focus toward later stages appears to give the merging
approach a slight advantage. Observing the training curves in Figure 5, the
starting point and overall convergence trend of the merged approach are both
below those of the non-merged approach. Additionally, merging offers the

Table 8: Results of using SepFormer block for each module.

Pipeline Fine-tuning? SI-SNRi SDRi SIRi STOI PESQ # Param. GMACs

EPP X 5.02 5.53 11.38 64.47 1.52 5.5 M 50.1
SPP-ES X 6.25 6.45 12.53 68.14 1.61 6.2 M 64.4
SPP-DS X 6.40 6.77 12.18 68.95 1.61 6.2 M 64.4
EPP TI 7.87 830 16.45 72.44 1.72 5.5 M 50.1
SPP-ES TI 7.98 8.38 16.54 72.49 1.73 6.2 M 64.4
SPP-DS TI 8.37 8.40 16.99 73.12 1.75 6.2 M 64.4

SPP-DS TV 8.59 8.53 17.20 73.60 1.78 6.2 M 64.4
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Table 9: The performance of structure of merging SE and DE modules. SPP with "Not
Merge" column denotes SPP-DS.

Pipeline Fine-tuning? Merge Not Merge
SI-SNRi GMACs SI-SNRi GMACs
EPP X 7.93 36.9 8.08 40.2
SPP X 9.22 49.2 8.95 52.7
EPP TI 9.10 36.9 9.23 40.2
SPP TI 9.64 49.2 9.71 52.7
SPP TV 9.75 49.2 9.72 52.7
-2.8
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Figure 5: Comparison of learning curve between merging structure and fine-tuning manner.

Table 10: The best SI-SNR performance of each sub-task on its corresponding validation
dataset when merging SE and DE modules.

Pipeline SS  SE & DE

EPP 14.90 4.41
SPpP 8.18 5.83

benefit of reduced computational load. Validation SI-SNR performance during
pre-train phase when using transfer learning is displayed in Table 10.

Figure 6 provides a comparison between SPP-ES, SPP (Merge), and
SepFormer in terms of inference time (in milliseconds), computational load (in
GMACs), and GPU memory usage during training (in GB). SPP demonstrates
an advantage over SepFormer in inference time when it exceeds two seconds.
When calculating memory usage, the maximum GPU memory consumption is
recorded with the model’s batch size set to 1.
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Figure 6: Forward-pass speed (left), GMACs (middle), and GPU memory usage (right) on
1-5 seconds input signals.

5.6 FEwvaluation of separation and enhancement ability

We demonstrate another advantage of cascaded multi-task learning in this
section. Since all sub-modules operate directly on waveforms, theoretically, we
can selectively choose the required modules for testing based on the specific
scenario. Our primary focus is on two scenarios: separating mixed speech
without noise or reverberation, separating speech with noise but without
reverberation. Lastly, we check the conversation-like case where signals are
sparsely overlapped in real-world and indoor environments.

5.6.1 FEwvaluation of separation and enhancement ability

We use a noisy anechoic version of the mixed test set to evaluate the three
fine-tuned pipelines. As all pipelines are constructed on cascaded multi-task
structures, we conduct two types of inferences. First, we utilize only the SS and
SE modules to process the noisy mixture, excluding the DE module. Second,
we employ the entire pipeline to obtain the estimated signals, consistent with
the evaluations conducted in previous sections. Their performance is presented
in Figure 7.

From the displayed results, we can draw two conclusions. First, regardless of
whether only the SS and SE modules are used or the entire pipeline is employed,
SPP consistently outperforms EPP. Second, the inclusion of the additional
DE module does not improve the overall signal-to-noise ratio performance.
However, it positively impacts separation and perceptual metrics. This is
possibly because the DE modules in EPP and SPP-ES, which are positioned
at the end, are trained with ground truth targets, thus serving a corrective
function.

5.6.2  FEwvaluation of separation ability

This subsection shows the performance of all transfer-learned pipelines on
noise-free and aechoic mixtures. Similarly, besides using SS and SE modules,
the performance of solely using SS module is compared in Figure 8.
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(b) Performance of using SS, SE, and DE modules.
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Figure 7: Comparison of three pipelines on noisy aechoic situation. The processing order
aligns with the pipeline principle. The error bars represent the standard deviation.
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Figure 8: Comparison of three pipelines on clean aechoic situation. The modules in
parentheses are manually selected.

The separation outcomes achieved solely from the SS module of EPP are
notably poor, with the separated speech signals containing excessive white noise.
We speculate that this issue may stem from over-suppression problems during
training, leading to degraded input quality. Consequently, when normal speech
is fed into the model, it may output a distinct line at a specific frequency, as
illustrated by an example in Figure 9. Thus, we have refrained from reporting
their performance. Also, this inversely suggests that SPP is more flexible
than EPP, capable of handling a broader range of scenarios as required. The
remaining results further underscore the effectiveness of SPP. Apart from
reaffirming the conclusion drawn in the previous subsection that adding extra
modules assist performance on separation and perceptual aspects, it negatively
affects signal-to-noise ratio performance.
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Figure 9: An erroneous instance demonstrating the use of the sole SS module of transfer-
learned EPP for separating a noise-free mixture.
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Figure 10: WER (%) performance on LibriCSS. The error bars represent the 95% confidence
interval.

5.6.8 FEwaluation on LibriCSS

LibriCSS is a dataset created by individuals taking turns reading Librispeech
in an indoor environment. Therefore, testing on LibriCSS can be considered
as speech separation in a reverberant environment with negligible noise. We
process the data using SS and DE modules of fine-tuned models, and then
perform recognition using a pre-trained ASR model. The WER performance
of each subset is shown in Figure 10. Due to the same reasons as in section
5.6.2, the results of EPP are very poor, so only the results of the SPP-ES
and SPP-DS pipelines are compared. First, SPP can perform generalization
tests on real data, whereas EPP cannot. Secondly, the results of SPP-DS
are better than those of SPP-ES. An intuitive reason for this is that the



24 Dang et al.

dereverberation module in SPP-DS is stronger than that in SPP-ES; as it is
positioned earlier in the pipeline. Furthermore, we use the same pre-trained
ASR model to calculate the WER, the mixture signal, and compare it with
SPP in Figure 10. Consistent with the conclusions of previous work [4], for
data with lower overlap ratios, the separation model often performs worse
than when no processing is applied. The threshold for this effect is around
30%, beyond which SPP starts to demonstrate its advantages.

5.7 FEwvaluation of model’s performance with reverberation factors

We conduct an analysis of the model’s performance concerning two reverber-
ation factors: T60 and room volume during the reverberation process. T60
represents the time required for sound to decay by 60 decibels, while room
volume is determined by multiplying its length, width, and height. In Figure 11,
we present their scatter matrix alongside four selected metrics. We observe
strong positive correlations among the four metrics, but no clear correlation
between each metric and T60 or room volume. This suggests that the proposed
model can generally handle reverberations caused by varying room volumes
and materials.

Additionally, we report the Pearson coefficient correlations (PCC) between
the four metrics and T60, as well as room volume, in Table 11. The model’s
performance exhibits a weak positive correlation with room volume, indicating

SIR  SI-SNRi SI-SNR

Room (m3) T60 (s) STOI

o o o o
- -

SI-SNR  SI-SNRIi SIR

Figure 11: Scatter matrix of four metrics and T60, as well as room volume.
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Table 11: The Pearson coefficient correlations (PCC) of four metrics with T60 and room
volume.

SI-SNR  SI-SNRi SIR STOI

T60 -0.327 -0.024 -0.150 -0.249
Room volume 0.216 0.034 0.010 0.118

that larger room volumes lead to weaker reverberations and better results.
Conversely, there is a weak negative correlation between performance and
T60, suggesting that longer reverberation decay times result in stronger re-
verberation and poorer results. These findings are consistent with subjective
understanding.

5.8 Visualization

We present spectrograms of different model outputs using fine-tuning approach
in Figure 12. The first row depicts spectrograms of noisy reverberant mixed
speech, while the second row represents spectrograms of ground truth speeches.
The third to fifth rows respectively show the spectrograms of estimated signals
for EPP, SPP-ES, and SPP-DS. As indicated in the boxes, SPP has two main
advantages. Firstly, compared to EPP, SPP exhibits fewer incorrect separation
portions, as depicted by the white and yellow boxes. Secondly, the fundamental
frequency and harmonics in the red and tangerine boxes of separated speech
by SPP are more clearly restored compared to EPP.

Furthermore, we report the MCD score of each separated signal in Table 12.
We use MCD to describe the consistency of the Mel cepstrum coefficients
between the estimated signal and the target signal within the frequency range
of 10 Hz to 800 Hz. The smaller MCD scores of SPP-DS indicate that SPP-DS
generates signals of the highest similarity.

5.9 Discussion

In the experiments designed to validate the proposed methods, we first imple-
mented the baseline EPP pipeline and the proposed SPP. These experiments
consistently demonstrate the superiority of the SPP pipeline. Subsequent
ablation experiments further validate the effectiveness of each newly added
component. Pre-training and fine-tuning approaches have also been proven
effective in alleviating the over-suppression problem. Although we have demon-
strated that sequentially processing modules according to their importance
in a cascaded structure, and gradually increasing the weights of the posterior
modules during transfer learning, is advantageous for maximizing the allevia-
tion of over-suppression problem and improving the overall quality of speech,
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Figure 12: Visualized spectrograms of the outputs of each pipeline use fine-tuning approach.

Table 12: MCD performance of instances in Figure 12.

Pipeline  Source 1  Source 2  Average

EPP 8.32 7.30 7.81
SPP-ES 8.20 7.35 7.78
SPP-DS 7.47 6.81 7.14

such efforts merely shift the over-suppression problem to less critical modules.
Thus, the over-suppression issue persists. The cascaded structure itself remains
the root cause of the over-suppression problem. Therefore, a promising avenue
for future research is parallel multi-task learning, followed by the utilization
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of more powerful feature fusion techniques, such as cross-attention-based fea-
ture fusion, to estimate sources. Additionally, the SPP pipeline holds great
promise for integration with multimodal approaches, such as incorporating lip
movement data to aid in speech separation in complex environments [61].

6 Conclusion

In this paper, we introduced an efficient solution to noisy and reverberant
speech separation through a separation priority pipeline-based cascaded multi-
task learning framework, which challenges the prevailing architectures that
typically place the SE module as the front-end. We demonstrated that the
EPP pipeline is the root cause of the over-suppression problem affecting the SS
module. Within the scope of our current cascaded multi-task learning approach
for noisy reverberant speech separation, which encompasses SS, SE, and DE
modules, we proposed two variants of the SPP pipeline: one following the SS-
SE-DE order and another with SS-DE-SE. These proposed SPP configurations
effectively mitigate the over-suppression problem by sequentially handling
modules according to their significance, thereby shifting the over-suppression
problem to the less critical SE and DE modules. In each sub-module, we
introduced the CS-DEDS and the DW-MRFF, built upon the traditional
encoder-processor-decoder architecture. Through ablation experiments, we
proved that each module contributes positively to enhancing model perfor-
mance. To further alleviate the over-suppression problem, we implemented
pre-training and time-invariant and time-varying fine-tuning approaches on the
proposed pipelines. Gradually increasing the weights of modules positioned
towards the end of the pipeline resulted in further improvements.
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