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ABSTRACT
Accurate segmentation of individual thyroid cells is a prerequi-
site for cell feature analysis and reliable cancer staging classifica-
tion. However, Diff-Quick stained cytology images present signif-
icant challenges: frequent misclassification of malignant cells and
erythrocytes and substantial cell overlap hindering boundary de-
tection. To address these issues, we propose a novel two-stage
pipeline. This approach enhanced the efficiency-optimized nnU-
Net v2 for rapid foreground-background separation, enabling effi-
cient instance segmentation of overlapping cells and reducing ery-
throcyte misclassification. The results evaluated on a dataset with
multiple thyroid cancer stages show that our method reduced ery-
throcyte false positives and improved accuracy over the best post-
processed baseline while cutting inference time. These findings
demonstrate the practical utility of our pipeline for automated
Diff-Quick thyroid cytology image segmentation within real-world
clinical workflows.
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1 Introduction

DiffQuick is a rapid, cost-effective staining protocol that colors nuclei and
cytoplasm differently. It is indispensable for routine cytological screening,
particularly in thyroid cancer diagnosis. However, its very practicality intro-
duces a set of imageanalysis challenges. First, the stain often produces uneven
chromatic contrast and hue variation, hampering classical intensity-based al-
gorithms. Second, aspirates from thyroid nodules typically contain densely
packed, partially overlapping cells whose nuclei share difficult-to-distinguish
borders.

These factors make automated segmentation and subsequent classification
far more difficult than in curated benchmark datasets. Consequently, there is
a pressing need for advanced learningbased approaches that can (i) disentangle
overlapping cellular structures, (ii) remain robust to color and illumination
variability, and (iii) explicitly differentiate thyroid cells from visually similar
red blood cells while still operating within the inferencetime constraints of
busy clinical environments.

Effective cell segmentation is essential for extracting cellular features that
aid in cancer diagnosis. Traditionally, this problem has been addressed using
classical image analysis techniques [34, 21, 33, 19, 18]. These methods rely on
the inherent intensity or other properties within medical images to distinguish
cells, frequently thresholding. Thresholding classifies pixels as belonging to a
cell or background based on whether their intensity exceeds a defined value.
This threshold can be a single value applied globally [17] or can vary locally
to account for image heterogeneity.

In addition, watershed segmentation [23] has been utilized for cell segmen-
tation in microscopic images. Initially, the process involves identifying pixels
that delineate the foreground and background layers of the image. Subse-
quently, these delineated areas are expanded by incrementally elevating the
image intensity level. The regions surrounding the marked pixels are called
watersheds, where each pixel value represents the terrain. Boundaries be-
tween adjacent basins are established by lines of maximum elevation, known
as watershed lines.

Based on the concepts of classical segmentation techniques, such as thresh-
olding and watershed methods, clustering is another critical approach in cell
segmentation. Clustering utilizes various algorithms [20, 26, 25] to group pix-
els with similar attributes. Among these, K-Means [12] is the most prevalent.
Alternative clustering algorithms, such as Fuzzy C-Means [3] and Mean Shift
[4], have also been successfully applied in cell segmentation tasks.
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The active contour method and its variations play a significant role in
automatic cell image segmentation [1, 6, 31, 15]. In this method, border
points are crucial as they help establish the minimum energy level necessary
for defining nuclei boundaries. The energy function, integral to this model,
is meticulously designed to penalize both discontinuities in the shape of the
curve and discrepancies in gray levels along the contour and ensures that the
segmentation accurately follows the natural boundaries of the cells.

Classical image analysis techniques are often used for simplicity, including
thresholding, watershed segmentation, and clustering. However, their effec-
tiveness is limited in noise or high-intensity variations images. Furthermore,
they often struggle with clustered or irregularly shaped cells. While active
contour models and graph-based segmentation can address some of these limi-
tations, they typically require substantial computational resources, especially
for images with densely distributed cell nuclei. Consequently, deep learning
models have recently garnered significant attention in medical image analy-
sis. Within this domain, two primary deep learning-based approaches have
emerged [8, 2]: (1) employing deep learning models like U-Net [24] in conjunc-
tion with post-processing for individual cell segmentation, and (2) utilizing
dedicated segmentation models based on object detection principles, such as
Mask R-CNN [7, 11].

Deep learning models are developed for analyzing pathological images and
have found widespread application by various research organizations [14, 30].
For instance, Sharma et al. [27] developed a system capable of classifying
stomach cancer from whole-slide images, while Korbar et al. [13] devised
a method for classifying colorectal polyps on whole-slide images. Addition-
ally, Elman Neural Networks (ENNs) [5] have been employed in constructing
computer-aided thyroid cytology diagnosis methods. In recent developments,
tools such as Nuclei AIzer have demonstrated the feasibility of fully automated
pipelines by integrating a Mask R-CNN backbone enhanced with style trans-
fer techniques to improve generalization across datasets with varied staining
styles and using the U-Net model to refine the segmentation masks. Despite
these advancements, deep learning models remain underutilized in cytologi-
cal diagnosis, including thyroid cytology, warranting further exploration and
development in this domain.

During our experimental study, we observed the advantages of employing
U-Net-based models for semantic segmentation and Mask R-CNN for instance-
level segmentation. We implemented a series of data post-processing and
enhancement techniques to systematically evaluate these models to improve
segmentation accuracy on real-world thyroid cytology images. The results
demonstrate that such accuracy improvements often come at the cost of in-
creased inference time, posing challenges for practical deployment in time-
sensitive clinical settings.
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This trade-off between precision and efficiency motivated us to explore
alternative architectures and optimization strategies. As a result, we devel-
oped the integrated pipeline presented in this work, which balances segmen-
tation performance and computational speed by combining the strengths of
state-of-the-art deep learning models with an efficient workflow tailored for
Diff-Quick-stained cytology images.

In this paper, we propose an automated segmentation flow to address the
specific challenges of Diff-Quick staining cytometry imaging. Our approach
leverages the strengths of deep learning by integrating two state-of-the-art
architectures: nnU-Net v2 [10] for semantic segmentation and Cellpose for
instance-level segmentation. The nnU-Net v2 model is employed to distin-
guish the cellular foreground from the background with minimal manual con-
figuration, adapting dynamically to the dataset’s properties. Meanwhile, Cell-
pose [28] is effective in resolving overlapping cell regions and detects individual
cell instances, a model designed as a flexible API for experts in the field of
medical image segmentation. To validate our approach, we conducted exten-
sive experiments on a self-constructed separate dataset of thyroid cell images
collected from the 108 Military Central Hospital in Vietnam. The evaluation
demonstrates that our combined framework performs well in segmentation
compared to classical baselines and single models, especially in densely packed
and morphologically diverse regions.

The remainder of this paper is organized as follows. Section 2 reviews deep
learning-based segmentation methods, focusing on the two models adopted in
our framework: nnU-Net and Cellpose. Section 3 outlines the proposed seg-
mentation workflow. Section 4 details the self-constructed dataset used for
cell segmentation. Section 5 presents the experimental results and correspond-
ing analysis. Finally, Section 6 concludes the paper and discusses potential
directions for future research.

2 Deep Neural Networks for Cell Segmentation in Microscopic Imaging

Deep learning models have transformed digital pathology by facilitating the
end-to-end learning of rich morphological features that classical pipelines can-
not effectively achieve. This section reviews two kinds of segmentation archi-
tectures for cellular segmentation that are considered the baseline for devel-
oping and comparing our proposed models: the UNet and Mask R-CNN. The
U-Net [24] is presented as a representative baseline for semantic segmenta-
tion, owing to its demonstrated effectiveness in medical image competitions
and simplicity for rapid prototyping. For instance, segmentation, Mask R-
CNN [7] is highlighted for its strong performance on COCO-style datasets
and its broad adoption in biomedical research. Therefore, we revised these
two influential models and their variants.
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In addition, this section also describes two deep learning models chosen
to develop in the proposed segmentation workflow, nnU-Net, and Cellposethe
reason for selecting nnU-Net and Cellpose is based on the self-built experi-
ment.

2.1 The U-Net Model and its Variants

The UNet was proposed by Ronneberger et al. [24] and follows a symmetric
EncoderDecoder design with long skip connections that ferry highresolution
features from the contracting to the expanding path, thus preserving localiza-
tion while mitigating vanishinggradient effects.

The U-Net backbone consists of repeated encoder and decoder stages.
Each encoder stage applies two 3 × 3 convolutions and ReLU, followed by
2× 2 maxpooling for downsampling. The decoder mirrors this layout, replac-
ing maxpooling with 2 × 2 transposed convolutions to upsample and refine
the feature maps. During inference, overlappingtile prediction is employed to
reduce boundary artifacts, and extensive data augmentation (elastic deforma-
tion, rotation, intensity jitter) improves generalizationan essential property
for our DiffQuick thyroid dataset, where annotated samples are scarce and
stain variability is high.

Since its introduction in 2015, a family of extensions has emerged, includ-
ing UNet++ [35], which nests dense skip connections to reduce the semantic
gap between encoder and decoder feature maps, and nnUNet v2 [10], which au-
tomates the hyperparameter tuning process, eliminating the need for manual
adjustments. This pipeline dynamically adapts crucial parameters like patch
size, loss function, and data augmentation policy based on the characteristics
of each specific dataset.

2.2 nnU-Net Models

The nnU-Net model is a deep learning framework built upon the widely
adopted U-Net architecture. However, it significantly extends it by intro-
ducing a fully automated configuration pipeline tailored for biomedical image
segmentation.

The nnU-Net pipeline includes four core components:
1. Preprocessing: In the preprocessing phase, nnU-Net analyzes features of

the input data, such as voxel spacing, to determine the image’s spatial
dimensionality (2D, 3D, or 4D), spatial resolution, and pixel intensity
distribution. Based on these features, the model selects a preprocessing
strategy to ensure consistency and optimization for the training process.
Specifically, nnU-Net applies z-score normalization to standardize the
pixel intensity distribution. Each pixel x is transformed to z according
to the formula in Equation 1.
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z =
x− µ

σ
(1)

Where µ and σ denote the mean and standard deviation of the image,
respectively.
For CT images, the model uses a percentile cutoff to remove extreme
intensity outliers, followed by global statistical normalization. Addition-
ally, if the data includes 3D or 4D volumes, the images are resampled to
standardized voxel spacing using spline or nearest-neighbor interpolation
methods to ensure spatial resolution uniformity. Label maps are also
converted to one-hot encoding and interpolated appropriately, which
is particularly important for anisotropic volumes to preserve accurate
boundaries in three-dimensional space.
However, in this paper, all data are 2D images with uniform resolu-
tion. Therefore, nnU-Net only applies z-score normalization and does
not require spatial resampling or other operations related to volumetric
data.

2. Network Architecture Configuration: After preprocessing, nnU-Net con-
figures the network architecture based on key characteristics of the
dataset and hardware information. The average image shape and voxel
spacing are analyzed to determine the appropriate number of resolution
levels (i.e., the U-Net depth), patch size, and overall network structure.
The initial patch size is set to match the mean shape of the input image
to maximize contextual coverage. The nnU-Net model then estimates
the GPU memory required for training and, if necessary, gradually re-
duces the patch size to match the available hardware. Once the patch
size is finalized, the batch size is determined to optimize GPU memory
while maintaining a minimum batch size of two for stable training (see
Equation 2).

VRAMest ≈ B ·
L∑

l=1

Cl ·Hl ·Wl ·Dl (2)

Where B is the batch size, and Cl,Hl,Wl, Dl are the number of channels
and spatial dimensions (height, width, depth) of the feature maps at
layer l. This heuristic trade-off between patch size and batch size enables
efficient dataset training.
All network configurations generated by nnU-Net are based on the orig-
inal U-Net regularization architecture [24] and its 3D extension. The
nnU-Net model adjusts some parameters and significantly improves the
efficiency and stability of the training process. Specifically, to accommo-
date large input patches while remaining within memory constraints, the
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nnU-Net model typically trains with mini-batch sizes. Since batch nor-
malization is sensitive to mini-batch sizes and can degrade performance
under such conditions, nnU-Net replaces it with instance normalization
across all layers. Furthermore, the ReLU activations are replaced with
leaky ReLUs (negative gradient = 0.01) to maintain gradient flow in low
activation regions.
The architecture follows the classic encoder-decoder scheme with skip
connections and deep supervision. Two convolutional blocks are applied
in the encoder and decoder at each resolution level. Each block consists
of a convolution layer, instance normalization, and leaky ReLU activa-
tion. Downsampling uses strided convolutions, while upsampling uses
transposed convolutions. To balance computational cost, the network
initializes with 32 feature maps and doubles this number at each down-
sampling stage while halving during upsampling. The total number of
feature maps is further capped at 320 for 3D U-Nets and 512 for 2D
variants to constrain model size.

3. Training Strategy: The training process in nnU-Net is automatically
configured to optimize convergence and generalization. The framework
employs a composite loss function that combines Dice and cross-entropy
loss, addressing class imbalance and per-pixel classification accuracy.
The total loss combines the soft Dice loss and the pixel-wise cross-
entropy loss as in Equation 3.

Ltotal = LDice + LCE (3)

where the soft Dice loss is defined in Equation 4.

LDice = 1−
2
∑N

i=1 pigi + ϵ∑N
i=1 pi +

∑N
i=1 gi + ϵ

(4)

The cross-entropy loss is defined as in Equation 5.

LCE = − 1

N

N∑
i=1

C∑
c=1

gi,c log(pi,c) (5)

Here, pi and gi denote the predicted and ground-truth probabilities for
pixel i, and C is the number of classes. ϵ is a small constant added for
numerical stability. The Dice encourages overlap between predicted and
ground truth regions, while the cross-entropy penalizes pixel-wise classi-
fication errors. This hybrid loss is particularly well-suited for biomedical
segmentation tasks, which often suffer from class imbalance.
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Optimization is carried out using stochastic gradient descent (SGD)
with Nesterov momentum [29], a strategy known to improve convergence
speed and stability in deep networks by incorporating a look-ahead gra-
dient step.

4. Postprocessing: In the final stage, nnU-Net performs resampling of the
predicted segmentation masks to match the original image resolution
and spacing.

2.3 Instance Segmentation: The Mask R-CNN and its Variants

Instance segmentation builds upon object detection by generating a pixel-level
binary mask for each identified object. Mask R-CNN, introduced by He et
al. [7], is a sophisticated two-stage framework that enhances Faster R-CNN
[22] with an additional branch dedicated to predicting segmentation masks in
parallel with object detection. Its main components include:

• Backbone and Feature Pyramid Network (FPN): A deep convolutional
neural network (CNN), such as ResNet-50, combined with a Feature
Pyramid Network, extracts multi-scale feature maps from the input im-
age.

• Region Proposal Network (RPN): This network generates class-agnostic
Region of Interests (RoIs) potential object locations. Positive anchor
boxes have an Intersection over Union (IoU) greater than 0.7 with any
ground-truth bounding box, while negative anchors have an IoU less
than 0.3.

• RoIAlign: This module replaces the previous RoIPool operation with
bilinear interpolation [32] to precisely align the RoIs with the feature
maps at the pixel level. This accurate alignment is particularly crucial
for microscopy images where fine details matter.

• Multi-task heads: Each fixed-size RoI is then processed by two parallel
heads: (i) a classifier that predicts the object’s class and a bounding-box
regressor that refines the object’s spatial extent, and (ii) a KŒmŒm
mask predictor that outputs a binary segmentation mask for each of the
K classes using a sigmoid activation function.

2.4 Cellpose Model

Unlike conventional approaches that perform per-pixel classification, Cellpose
introduces a novel formulation of instance segmentation as a vector flow re-
gression task (see Figure 1).
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Figure 1: Calculate flow vector in cellpose. (Note: adapted from [28]).

2.4.1 Vector Flow-based Representation of Object Masks

The core idea is to represent each object as a spatial flow field that guides
pixels toward the centroid of the corresponding cell.

During training, a diffusion process is simulated starting from the object
center, producing a scalar heat map for each ground-truth mask. The gradient
of this heat map concerning spatial coordinates defines a vector field F⃗ (x, y)
that points inward toward the object center (see Equation 6)

F⃗ (x, y) = −∇h(x, y) (6)

Where h(x, y) is the diffusion-based scalar field generated by solving Equa-
tion 7.

∂h

∂t
= ∆h, h(x, y, t = 0) = δ(x− xc, y − yc) (7)

Here, ∆ denotes the Laplacian operator, which represents the sum of
second-order spatial derivatives of the scalar field h(x, y), capturing the rate
at which the field diffuses across space. Formally, in two dimensions, it is
defined as in Equation 8.

∆h =
∂2h

∂x2
+

∂2h

∂y2
(8)

Moreover, δ is a Dirac delta function centered at the object’s centroid
(xc, yc). In practice, the Dirac delta function δ(x−xc, y−yc) used to initialize
the heat map is approximated by a narrow Gaussian (see Equation 9).

δ(x, y) ≈ 1

2πσ2
exp

(
− (x− xc)

2 + (y − yc)
2

2σ2

)
(9)

The resulting flow field encodes object shape implicitly and is used as the
training target for the neural network.

At inference time, Cellpose predicts a pair of spatial flow components
(F⃗x, F⃗y) along with a probability mask. To reconstruct individual cell in-
stances, the predicted flow field is integrated via gradient descent, where each
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pixel “flows” along its vector direction until convergence. Pixels that converge
on the exact center point are grouped into the same object mask.

This flow-based formulation allows Cellpose to segment various cellular
structures, including irregular and non-convex shapes, without explicit bound-
ary detection. The network architecture is based on a modified U-Net with
residual blocks and a global style embedding vector that helps adapt to image-
specific characteristics.

2.4.2 Training Data and Supervision Strategy

To better illustrate the internal workings of Cellpose, Figure 2 highlights key
components of its architecture and prediction mechanism. The model reformu-
lates instance segmentation as a vector field regression problem, where each
pixel is guided toward the center of its corresponding cell. Below, we present
the training objective and architectural details that enable this approach.

Figure 2: Model Architecture. The model is trained to output two directional gradi-
ent maps (horizontal and vertical) and a segmentation probability map, forming a vector
field representing the direction of cell boundaries. The network uses a U-Net architecture,
incorporating both encoderdecoder paths with skip connections and global style features,
allowing it to generalize across diverse image styles and resolutions [28].

The U-Net backbone employed in Cellpose differs from the standard imple-
mentation in several key ways to handle better the morphological variability
and staining inconsistencies typical of cytological images. First, the architec-
ture incorporates residual connections within each block, improving gradient
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flow and stability during training. The network is also deepened compared to
the original U-Net to enhance its capacity for feature extraction.

Instead of using feature concatenation between the encoder and decoder
paths, Cellpose employs element-wise summation to reduce model complex-
ity. Furthermore, Cellpose integrates a global style representation extracted
by average pooling in the network bottleneck to accommodate image-specific
staining styles. This style vector is injected into all decoder stages, allowing
the model to dynamically adjust to variations in staining intensity and visual
appearance across different samples.

Cellpose was trained on a large-scale, heterogeneous dataset of over 70,000
manually annotated objects to achieve instance segmentation across various
image types. The dataset encompasses a broad spectrum of microscopy modal-
ities, including fluorescence, phase contrast, brightfield imaging, and diverse
staining techniques. It includes nuclear and whole-cell masks, covering various
cell morphologies, densities, and textures.

The training supervision is based on the flow vector field (F⃗x, F⃗y) and
binary mask prediction. This dual-objective learning strategy allows Cellpose
to simultaneously learn semantic object localization and precise instance-level
shape encoding via vector flow fields.

The flow loss is defined as the mean squared error (MSE) between the
predicted and ground-truth flow vectors (see Equation 10).

Lflow =
1

N

N∑
i=1

∥∥∥F⃗pred(xi, yi)− F⃗gt(xi, yi)
∥∥∥2 (10)

In parallel, a binary cross-entropy loss is applied to supervise the object
probability map (see Equation 11).

LBCE = − 1

N

N∑
i=1

[gi log pi + (1− gi) log(1− pi)] (11)

where gi ∈ {0, 1} denotes the ground-truth label and pi the predicted
foreground probability for pixel i.

The total loss is a weighted sum of the two components as indicated in
Equation 12.

Ltotal = λflow · Lflow + λBCE · LBCE (12)

3 Single Model vs. Combined Pipeline: Proposed Deep Learning Strate-
gies for Cell Segmentation

This section presents a series of targeted experiments to explore and validate
the core ideas proposed in this work.
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3.1 Proposed Single Model for Cell Segmentation

The proposed single model is illustrated in Figure 3.

Figure 3: Proposed single model for cell segmentation.

We first cropped the input image into small overlapping patches for the
instance segmentation branch (the Mask R-CNN model and the NucleiAIzer
method). This approach ensures accurate segmentation at the cellular level by
preserving image resolution and avoiding the downscaling that often degrades
detail, especially in pipelines like Mask R-CNN, which typically resize inputs
to fixed dimensions. After segmentation, the predicted masks for each patch
were stitched back to the original image size, followed by a color-based filtering
step to retain relevant foreground regions.

In contrast, for the semantic segmentation branch (U-Net++), we directly
input the whole image into the model without patch cropping. The resulting
binary prediction mask was refined using a watershed algorithm to delineate
boundaries between individual cell regions.

The following describes the additional processing steps applied to each
model branch to better localize cell regions and map contours into separate
individual cells.

3.1.1 Combine Mask-RCNN and NucleiAIzer with Color-based Filtering for Red
Blood Cell Suppression

We observed that red blood cells and thyroid cells usually have different color
intensities. This makes thresholding methods like Otsu [16] a reasonable
choice for separating them. In our method, we first calculate the average
color intensity of each segmented region. Then, we apply Otsus threshold-
ing to automatically choose an optimal threshold that separates darker and
lighter regions. Otsus method selects the threshold t∗ that maximizes the
between-class variance (see Equation 13).

t∗ = argmax
t

[
ω0(t) · ω1(t) · (µ0(t)− µ1(t))

2
]

(13)
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Where ω0(t) and ω1(t) are the probabilities of the two classes separated
by threshold t, and µ0(t), µ1(t) are their corresponding mean intensities.

This filtering step was initially used to reduce false positives caused by red
blood cells. However, the separation became less reliable in some instances,
particularly when erythrocytes appeared unusually faint or shared similar
intensity with thyroid nuclei.

3.1.2 Combine U-Net++ Model to Watershed Post-processing

Predicted probability maps from U-Net++ were first binarized to identify cell
regions. To handle overlapping structures, we applied a classical watershed-
based post-processing strategy as shown in Figure 4 Details of the post-
processing stages are as follows:

• Remove noise and small holes in the cell region from the binary image
using morphological opening operations.

• Perform image relaxation, marking areas that contain the background
and the foreground image layer in image A.

• Apply distance transform to calculate the distance from each pixel to
the nearest 0-valued pixel.

• Perform thresholding on the distance-transformed image, resulting in
image B, representing the foreground image layer.

• Subtract image B from image A to obtain image C, marking areas uncer-
tain to belong to either the background or the foreground image layer.

• Find connected components in image B, marking uncertain areas within
these connected components as 0 to obtain border markings around the
areas, known as watersheds.

• Use the watershed principle to segment using the previously marked
boundaries, taking the watershed boundaries as cell borders to obtain
the final segmented image, delineating each cell.

3.1.3 Combine nnU-Net v2 to Post-processing Strategy using Centroid-guided Re-
gion Growing

Before developing the final approach using nnU-Net combined with Cellpose,
we also explored another post-processing method to address the cell segmenta-
tion task. In this direction, we propose the generation of semantic segmenta-
tion masks from nnU-Net and aim to separate overlapping cells by identifying
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Figure 4: Watershed-based post-processing pipeline applied to semantic segmentation re-
sults from U-Net++.

Figure 5: Alternative post-processing strategy: centroid-guided region growing.

centroids and expanding them to delineate boundaries. The detailed steps are
indicated in Figure 5.

• Semantic Segmentation Mask Generation: The process began with the
binary mask from nnU-Net, in which white pixels represented cells. Due
to cell overlap, connected regions often had to be separated.
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• Morphological Operations for Cell Separation: Erosion with a circular
kernel (r = 2) was applied to shrink regions and create gaps between
overlapping cells. This made individual components more separable.

• Finding Connected Components and Centroids: After erosion, con-
nected components were identified, and centroids were calculated using
image moments:

xc =
M10

M00
, yc =

M01

M00
(14)

where Mpq =
∑

x

∑
y x

pyqI(x, y).

• Region Expansion: Each centroid was mapped back and expanded out-
ward to recover the original cell region, mimicking the reversed erosion
process.

By experiment (see more detail in Section 4), we recognize that this ap-
proach suffered from several key limitations:

1. It was ineffective in cases of strong overlap, leading to shape distortion
or missed detections.

2. The number of erosion steps varied across images, requiring manual
tuning.

3. The lack of automation made it impractical for large-scale deployment.

In summary, these limitations motivated the development of a more stream-
lined and fully automated solution, which we detail in Section 3.2 describing
our proposed combined pipeline.

3.2 Proposed Combined Pipeline for Cell Segmentation

Motivated by these shortcomings, we propose a two-stage segmentation frame-
work tailored explicitly for Diff-Quick-stained thyroid cytology images. Our
new approach leverages a self-configuring semantic segmentation framework
(nnU-Net) to robustly distinguish cell regions from the background, followed
by the Cellpose instance segmentation model to accurately and efficiently de-
lineate individual cell boundaries, even in densely packed and overlapping
scenarios.

This section details the two complementary components of the proposed
pipeline: nnU-Net for semantic segmentation (Section 2.2); and Cellpose for
instance segmentation (Section 2.4).
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Table 1: Segmentation performance of U Net and its variants on the DiffQuick test set.

Model Dice ↑ Inference time (s) ↓
U Net (baseline) 0.782 45
U Net++ 0.826 60
nnU Netv2 0.842 43

The reason to choose the nnU-Netv2 instead of Unet is that Dice scores
(see Table 1) and average inference time on our DiffQuick thyroid cytology
test set (details of the evaluation protocol in Section 5).

The progressive improvements validate the benefit of architectural en-
hancements, while nnUNet v2 attains the best tradeoff between accuracy and
speed, motivating its use in our subsequent twostage pipeline.

Table 2 reports the performance of Mask R-CNN and its variant on our
DiffQuick preliminary test set. The preliminary dataset was a test subset
designed to assess segmentation performance under relatively clean condi-
tions, particularly focusing on cases with overlapping cells. Mask R-CNN
and its variants performed well on this subset in delineating individual cell
instances. We chose Cellpose because although the Mask RCNN variants ex-
cel at delineating precise boundaries for every cell, their inference time is still
prohibitively long for routine clinical use.

Table 2: Mask R-CNN on DiffQuick test set and inference time.

Configuration Dice Score ↑ Time (s) ↓
Mask R–CNN 0.736 198
NucleiAIzer [9] 0.81 195
Cellpose [28] 0.86 15

Furthermore, we extended the dataset to include more challenging con-
ditions, such as varying staining quality, dense cellular arrangements, and
overlapping instances. Under these harsher scenarios, the integration of both
models demonstrated a balanced trade-off between segmentation accuracy and
efficiency, detailed in Section 5.

4 Self-constructed Cell Segmentation Dataset

The data was provided with the patient’s permission following the project
from the Vietnam National University, and the patient’s personal information
was anonymized entirely. We collected from many typical stages of thyroid
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cancer on the Bethesda scale. We designed a tool for doctors to perform
image pushing and contour labeling operations on images. A team of five
expert doctors performed cell contouring.

Our annotated dataset currently contains around 300 Diff-Quick-stained
cytology images captured at 20 × magnification, each with a 1024 × 768 pixels
resolution. According to the Bethesda system, these images are categorized
into three disease stages: B4, B5, and B6. Each image includes approximately
80 to 271 cells, providing a sufficiently diverse and representative dataset for
training and evaluating the proposed segmentation methods. In total, we
labeled 20,374 cells.

Examples of the input data are shown in Figure 6. Most of the images in
the dataset were captured at a zoom level of 20 micrometers, providing de-
tailed cellular structures suitable for segmentation. To generate high-quality
training labels, we developed a custom annotation tool allowing expert pathol-
ogists to outline individual cell contours manually. All annotations were veri-
fied for accuracy by the same medical professionals.

Figure 6: Thyroid cancer cell images from the dataset.
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5 Experiment Result

5.1 Database

The dataset comprises 272 thyroid cancer cell images, each with a resolution
of 1024 × 768 × 3. The data is divided into training, validation, and testing
sets as shown in Table 3. Details regarding the data augmentation process
applied during training is described in Section 5.2.

Table 3: Overview of the dataset.

Training Validation Testing Total
Images 120 30 122 277
Cells 8990 2207 9177 20,374

5.2 Parameters

5.2.1 Data Augmentation

The dataset initially contains 272 thyroid cancer cell images, which is rela-
tively small for effectively training a deep learning model. To improve the
learning capability and accuracy of the nnU-Net model, we applied several
data augmentation techniques to enhance the diversity of the training and
validation sets, which consist of 150 images. Specifically, the augmentations
are applied dynamically during training with specific probabilities: each im-
age, when passed through the training pipeline, has a chance to undergo each
augmentation, which may be applied or skipped based on its defined probabil-
ity. This way, in every epoch, the model “sees” different versions of the same
original images, thereby increasing data diversity and improving the model’s
generalization during training.

1. Random flipping of images was applied with a probability of 50%.

2. Images were randomly rotated within a range of [−180◦, 180◦] with a
probability of 20%.

3. Random scaling was applied with a scaling factor in the range [0.7, 1.4]
with a probability of 20%.

4. Low resolution transformation was applied with a scaling factor in the
range [0.5, 1.0] with a probability of 25%.

5. Gamma transformation was applied with a gamma value in the range
[0.7, 1.5] with a probability of 30%.
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6. Brightness transformation was applied with a scaling factor in the range
[0.75, 1.25] with a probability of 15%.

7. Contrast transformation was applied with a scaling factor in the range
[0.75, 1.25] with a probability of 15%.

8. Gaussian blur was added with a random standard deviation σ in the
range [0.5, 1.0] with a probability of 20%.

9. Gaussian noise was added with a noise variance in the range [0, 0.1] with
a probability of 10%.

5.2.2 Training Configuration

The nnU-Net framework was configured with a 2D U-Net architecture tai-
lored to our dataset, consisting of an encoder with eight pooling layers using
max-pooling and convolution operations, followed by a decoder with eight
upsampling layers to recover the spatial dimensions. Each layer in the en-
coder and decoder incorporated convolution operations, Instance Normaliza-
tion, and the LeakyReLU activation function. During the preprocessing phase,
nnU-Net extracted the dataset fingerprint, determining a median image shape
of 768 × 1024 (height × width). Consequently, the patch size was set to
768 × 1024, and the batch size was optimized to 4 based on a GPU memory
consumption analysis, balancing memory usage and training efficiency.

The nnU-Net model was trained for 50 epochs using the Stochastic Gra-
dient Descent (SGD) optimizer with an initial learning rate of 7 × 10−3, in-
creased from the default value of 5 × 10−3 to improve convergence speed. A
weight decay of 1 × 10−4 was applied to prevent overfitting. The foreground
oversampling percentage was set to 0.33 to address the class imbalance, en-
suring that 33% of the sampled patches contained foreground regions. The
training process included 250 iterations per epoch, while validation was per-
formed with 50 iterations per epoch. The loss function combined Dice Loss
and Cross-Entropy Loss to focus on cancer cell regions.

5.3 Measurement

We evaluated the segmentation performance using multiple metrics to assess
the overlap between predicted and ground truth segmentation masks across
the B4, B5, and B6 stages. We employed the Dice Coefficient and Intersection
over Union (IoU) metrics for semantic segmentation, which measure pixel-
wise overlap between the predicted and ground truth masks. For instance,
in segmentation, we utilized precision to evaluate the accuracy of individual
instance predictions.
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Dice Coefficient quantifies the overlap between predicted and ground truth
masks, emphasizing the balance between true positives and errors. It is defined
as in Equation 15.

Dice =
2× TP

2× TP + FP + FN
(15)

In which (TP) (True Positives) represents the number of pixels that were
correctly predicted as belonging to a cell and are indeed cell pixels. (FP) (False
Positives) miscount the pixels predicted as cells, but part of the background.
Conversely, (FN) (False Negatives) signifies the number of pixels that are
genuinely cells but were mistakenly predicted as background.

Intersection over Union (IoU) measures the intersection ratio to the union
of the predicted and ground truth masks, providing a robust metric for pixel-
wise segmentation accuracy.

Precision for instance segmentation evaluates the proportion of predicted
instances that are correctly identified as true instances. We adopted a best-
match approach, where each predicted instance is paired with the ground
truth instance yielding the highest IoU, requiring an IoU score of at least
0.7 to ensure high-quality matches. This approach was chosen for instance
segmentation because it focuses on the accuracy of instance detection. It is
critical to evaluate the model’s ability to distinguish individual cells in dense
or overlapping regions, as often encountered in images of thyroid cancer cells.
Unlike Dice and IoU, which assess pixel-wise overlap, Precision directly mea-
sures the correctness of instance predictions, making it suitable for quantifying
the model’s performance in identifying distinct cell instances.

5.4 Result

The final evaluation was conducted on a set of tests of 122 thyroid cytology
images, covering various stages of the disease (32 B4 images, 50 B5 images,
and 40 B6 images). We first assessed the semantic and instance segmentation
results of several single-model architectures to evaluate the baseline perfor-
mance.

For semantic segmentation, we compared U-Net, U-Net++, and nnU-Net
v2. As shown in Table 4, nnU-Net v2 achieved the highest Dice and IoU
scores.

Table 4: Result of single model for semantic cell segmentation.

Model Dice Score IoU Score Inference time (s)
Unet 0.76 0.62 45

Unet++ 0.78 0.62 60
Enhance Unet++ 0.81 0.65 65

nnUnetv2 0.89 0.82 43
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For instance segmentation, we compared three representative models:
Mask R-CNN, NucleAIzer, and Cellpose, as summarized in Table 5.

Table 5: Result of single model for instance cell segmentation.

Model Dice Score Precision Score Inference time (s)
Mask-RCNN 0.70 0.51 198
NucleAIzer 0.75 0.59 195
Cellpose 0.71 0.59 10

The proposed two-stage pipeline outperforms all single-model baselines in
accuracy and inference time. Table 6 shows that it achieves the best Dice,
IoU, and Precision scores.

Table 6: Result of two-stage pipeline proposed.

Model Dice IoU Precision Inference time (s)
nnUnetv2+Cellpose 0.92 0.86 0.87 60

Figure 7 illustrates the results obtained by nnUnet and the nnUnet com-
bined with Cellpose. As indicated in this figure, the nnU-Net model effectively
separates cellular foreground and background; however, it does not work well
if the cells overlap. The combined nnU-Net and Cellpose overcome this limi-
tation, indicating adequate delineation of individual cells.

A notable highlight of the combined nnU-Net and Cellpose approach is
its excellent performance and execution time, which is approximately 60 sec-
onds per image. This is a significant improvement compared to the results
of previous research. This efficiency in both performance and speed is the
key motivation behind developing a new method, as presented in this paper,
to address the time constraint while substantially enhancing segmentation
performance.

6 Conclusion

This study firmly establishes that the proposed method has demonstrated ex-
ceptional effectiveness in Instance Segmentation of thyroid cancer cells, achiev-
ing outstanding accuracy and significantly reduced processing time compared
to traditional approaches. The integration of the nnUNet model for semantic
segmentation and the Cellpose model for instance segmentation has proven
to be a transformative approach, enabling precise differentiation of individual
cells within complex clusters, even in cases with irregular shapes and large nu-
clei. This breakthrough addresses the limitations of manual segmentation and
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Figure 7: The illustration results were obtained by nnUnet (a) and the combined nnU-Net
and Cellpose (b).

basic algorithms, which often struggle with time inefficiencies and inconsistent
accuracy.

The outcomes of this research will be utilized to develop a classification
framework, enabling physicians to diagnose the stage of thyroid cancer with
greater accuracy and confidence. We also aim to collaborate with medical pro-
fessionals to validate the method in real-world diagnostic scenarios, ensuring
its practical utility. These advancements hold immense promise for revolu-
tionizing automated cancer diagnostics, reducing the burden on healthcare
providers, and ultimately improving patient outcomes through more precise
and timely interventions in oncology.
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