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ABSTRACT

The rapid expansion of the metaverse drives the growing demand
for effective 3D scene description technologies, as well as aug-
mented reality (AR) and virtual reality (VR) applications. How-
ever, a noticeable disconnect remains between academic research
and industry-driven standardization efforts. While academic work
often focuses on semantic richness, such as through the develop-
ment of 3D scene graphs, industry standards prioritize interoper-
ability, exemplified by the MPEG graphics language transmission
format (i.e., gl TF) extensions. This survey seeks to bridge this
divide by systematically reviewing and comparing pivotal contri-
butions from both academia and industry related to 3D scene de-
scription technologies and standardization efforts. Our analysis
highlights notable differences in methodologies, data formats, and
core objectives. Key challenges include the need for unified data
representations and the establishment of standardized evaluation
benchmarks to support broader integration. This survey empha-
sizes the urgent need for closer collaboration between academia
and industry and proposes potential pathways towards a unified
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framework to accelerate the real-world adoption of advanced 3D
scene description technologies.

Keywords: 3D Scene Graphs, 3D Understanding, MPEG, scene description,
file format

1 Introduction

The rapid advancement of technologies such as the metaverse, augmented
reality (AR), virtual reality (VR), and digital twins has led to an unprece-
dented demand for rich, interactive 3D content. Developing immersive and
realistic virtual environments that support dynamic user interaction requires
advanced methods for representing and managing complex 3D scenes. Bridg-
ing the physical and virtual worlds effectively necessitates more than visually
appealing models. This capability requires a comprehensive understanding of
scene objects, including their properties, spatial configurations, and seman-
tic relationships. Recent breakthroughs in generative artificial intelligence
are further transforming 3D content creation by extending capabilities be-
yond traditional 2D media. At the core of this evolution are technologies
collectively referred to as 3D scene description, which provide structured, ex-
tensible representations of 3D environments. These technologies encompass
object geometry, appearance, behaviors, and interconnections. As a result,
they enable content to adapt dynamically to user interactions and contextual
variations.

3D scene description incorporates both structural and semantic approaches
to modeling virtual environments. One key avenue involves efforts by indus-
try standardization bodies, such as MPEG and the Khronos Group (creators
of gITF). These bodies focus on defining efficient and interoperable formats
for scene components, including node hierarchies, geometries, materials, and
animations [19, 49]. Their emphasis lies in facilitating real-time rendering
and seamless content exchange across platforms. In contrast, academic re-
search often prioritizes deeper semantic modeling and concentrates on the
explicit representation of objects, their attributes, and inter-object relation-
ships. Within this realm, 3D Scene Graphs have gained prominence as a
framework for encoding entities and their relational structures [54, 65, 29]. De-
spite these differing priorities, both industry and academic efforts contribute
substantially to the core objectives of 3D scene description. These objectives
include organizing complex spatial data, encoding object-level semantics, and
supporting efficient rendering and adaptive interaction. These capabilities are
vital for powering the next generation of responsive, immersive applications
in AR, VR, and the metaverse.
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The increasing demand for advanced 3D scene description technologies
has attracted substantial attention from both academic researchers and stan-
dardization bodies (Figure 1 provides a conceptual overview). However, their
approaches and goals often diverge markedly. Academic research typically
emphasizes semantic richness and intricate relational modeling. This research
often involves representations like 3D Scene Graphs that are derived from sen-
sor inputs such as point clouds [54, 65, 29] or leverages Al-driven techniques to
generate advanced scene representations [36]. In contrast, industry-led stan-
dardization efforts, spearheaded by organizations such as MPEG and Khronos,
prioritize robust, efficient, and interoperable formats like gl TF. These formats
primarily define essential components (e.g., geometry, materials, and node hi-
erarchies) tailored for real-time rendering pipelines [19, 29].

3D scene graph Research & Development Standards glTF
* gITF based
* Hierarchical
3D scene graph based * Various Scenario
* Graph format
Relationship predicate +  MPEG Support
* 3D content
* Representation
Apphcatlon AL l
~
3D Game 3D film & Animation Metaverse

Figure 1: Overview of 3D scene description technology in research and standards.

Furthermore, industrial standards often integrate supporting technologies
such as codecs and haptics, which typically fall outside the scope of aca-
demic investigations [19]. This divergence in objectives, data representations
(e.g., relationship-based graphs versus rendering-optimized scene trees), and
broader scope has limited meaningful interaction between academia and indus-
try. As a result, the transition of research breakthroughs into widely adopted
standards and applications remains slow. Given this gap, a comprehensive
review that bridges these domains, evaluates their distinct approaches, and
explores synergies is currently lacking. This article addresses this need by
offering the following key contributions:

o A structured taxonomy that categorizes leading academic methods (in-
cluding 3D Scene Graphs [54, 65], 3D Dense Captioning [12, 63], and Im-
plicit Representations such as NeRF [37, 68]) alongside industry-driven
standards such as MPEG’s Scene description components and glTF ex-
tensions [19]. This taxonomy is illustrated conceptually in Figure 2.
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Figure 2: Taxonomy of 3D scene description technology in research, standards, and appli-
cation.

o A comparative analysis highlighting the contrast in objectives (e.g.,
semantic depth vs. real-time efficiency), representational structures
(e.g., graph-based vs. component-based models), and technical priori-
ties within each domain.

e An identification of key barriers to integration, such as incompatible
data formats, the absence of standardized datasets and benchmark appli-
cations for both research and commercial use, and the inherent difficulty
of embedding rapidly evolving research into stable industrial standards.
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e A call for closer collaboration between academia and industry, along
with proposed future research directions designed to foster unified frame-
works and facilitate the adoption of advanced 3D scene description meth-
ods within standardized pipelines.

2 Academic Research in 3D Scene Description

Academic research in 3D scene description primarily aims to achieve a compre-
hensive semantic understanding and support sophisticated interactions within
3D environments (Figure 1). The focus extends beyond basic geometric rep-
resentations to encompass the semantics of objects, such as their attributes,
functional properties, and the intricate network of inter-object relationships
[54, 29]. Such semantic depth is essential to enable scene reasoning, context-
aware interactions, and Al-driven content generation. This section reviews
major academic advances and emphasizes core approaches such as explicit
structural representations (particularly 3D Scene Graphs (3D-SGs)), text-
based semantic descriptions (especially 3D Dense Captioning (3D-DC)), and
emerging representations (such as Neural Radiance Fields (NeRF) and 3D
Gaussian Splatting (3D-GS)) [38, 37, 68, 25, 15]. Table 1 offers a high-level
comparison of these key techniques. We then explore foundational methodolo-
gies, notable studies, research challenges, benchmark datasets, and evaluation
metrics associated with each domain.

Table 1: Comparison of key academic 3D scene description techniques.

Category Input Modality Representation Strengths
3D-DC PointCloud BBox + Text Rich captions
3D-SGs PointCloud Graph Explicit relations
NeRF RGB Images Implicit MLP Photorealistic views
3D-GS SfM Cloud Gaussian Splats Real-time rendering

2.1 Text-based Descriptions: 3D Dense Captioning

3D Dense Captioning has become a prominent vision-language task in aca-
demic research. This task aims to automatically generate multiple detailed
natural language descriptions that are explicitly grounded in objects within a
3D point cloud scene [63]. Unlike general scene description tasks, dense cap-
tioning requires simultaneous object localization (where 3D bounding boxes
are typically used) and the generation of corresponding textual descriptions
that capture object attributes and contextual relationships [12]. The input
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is usually a raw 3D point cloud that encodes both geometric structure and
appearance features. Most existing methods follow a standardized encoder-
decoder pipeline that comprises three core stages [63]:

e Scene Encoder: Processes the input point cloud to generate object pro-
posals and extract visual features. Common backbone architectures
include PointNet++ [42] and VoteNet [40].

o Relation Module: Models the spatial and semantic relationships among
detected objects to enrich context. Graph Convolutional Networks
(GCNs) [12] and Transformer-based attention mechanisms [55, 4] are
frequently utilized in this stage.

e Feature Decoder: Translates the enriched object features into natural
language descriptions. This stage often employs sequential models, such
as GRUs or Transformers, which are typically enhanced with attention
mechanisms. Recent studies have also explored parallel architectures
that integrate object detection and caption generation [8].

Recent advancements in this domain incorporate multimodal cues, such as
semantic features from 2D images [64, 56] and contextual information beyond
explicit object boundaries [66], to enhance the richness and precision of the
generated captions. Benchmarking commonly uses datasets such as ScanRefer
[6] and Nr3D [1], both of which are based on the ScanNet dataset [14]. Eval-
uation metrics include standard natural language generation scores (CIDEr
[52], BLEU-4 [39], METEOR |[2], and ROUGE |[31]), often coupled with local-
ization accuracy metrics based on Intersection-over-Union (IoU) thresholds.
This evaluation approach reflects best practices in the field [63]. Although
3D Scene Graph captioning differs from 3D Dense generation, which focuses
on structured graph representations, both tasks share the objective of deep
semantic understanding of 3D scenes and often confront similar challenges in
the processing of 3D data and the modeling of object relationships [63].

2.2 Explicit Graph-based Representations: 3D Scene Graphs
2.2.1 Definition, Goals, and Importance

A central focus in academic research on 3D scene understanding is the devel-
opment and use of explicit graph-based representations, particularly 3D Scene
Graphs (3D-SGs) [54, 29]. Unlike rendering-centric formats such as glTF, a
3D-SG is a structured semantic representation that maps the elements of a
3D scene, typically reconstructed from point clouds or meshes, onto a graph-
based abstraction. In this graph, nodes represent object instances identified
in the scene, and edges denote pairwise relationships among those objects [54,
65].



Research and Standards in 3D Scene Description Technologies: A Survey 7

The primary objective of 3D-SGs is to support rich semantic interpreta-
tion beyond basic object detection or spatial configuration [29]. These graphs
capture both Object-level Semantics (e.g., attributes and affordances) and
Inter-Object Relationships (e.g., spatial, supportive, or comparative associa-
tions). Some models also incorporate hierarchical class labels derived from
ontologies, such as WordNet [54].

The importance of 3D-SGs lies in their ability to provide a compact,
structured, and semantically meaningful abstraction of complex environments.
This explicit modeling is essential to enable higher-level reasoning tasks. 3D-
SGs link low-level geometric data with symbolic representations and thereby
offer a robust framework for Al systems to perceive, interpret, and interact
with the 3D world in a more human-like manner [36, 29].

2.2.2 Input Data and Tasks

Research on 3D scene graph generation (3D-SGG) predominantly utilizes 3D
point clouds as the primary input [54, 29]. These point clouds, often captured
in real-world indoor settings via RGB-D sensors and reconstructed into meshes
or aggregated scans [14, 53], typically include per-point data such as XYZ
coordinates, RGB color, and occasionally surface normals [54].

A critical requirement for most current 3D-SGG methods is the availabil-
ity of class-agnostic instance segmentation masks, where each point is pre-
associated with a unique object instance ID [54, 29]. Although some methods
incorporate supplementary modalities such as 2D images during the train-
ing phase [54], the standard inference process generally relies solely on the
segmented point cloud. To assess model performance, the field borrows eval-
uation protocols from 2D scene graph generation (2D-SGG) literature [54].
The key tasks include:

o Predicate Classification (PredCls): Predicting relationships between
known object pairs with ground-truth labels.

o Scene Graph Classification (SGCls): Predicting both object labels and
their relationships.

o Scene Graph Generation (SGGen)/Relationship Detection (RelDet): Si-
multaneously detecting objects and inferring all relationships.

Among these, SGGen most closely reflects the practical challenge of achieving
full-scene understanding directly from sensor data.

2.2.8 Methodologies and Architectural Evolution

The generation of 3D Scene Graphs (3D-SGs) from point clouds has primar-
ily relied on deep learning approaches. These approaches adapt techniques
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from 2D-SGG and general graph representation learning. For instance, initial
efforts prominently employed graph convolutional networks (GCNs) [26].
GCN-based Approaches. One of the earliest and foundational works in
this area, SGPN (Scene Graph Prediction Network) [54], established a baseline
architecture to directly predict 3D-SGs from point clouds. SGPN leverages
PointNet [41] to extract features from individual object instances (nodes) and
spatial regions between object pairs (edges or relationships). These features
are passed through a GCN to facilitate message passing. This allows for
refined object representation and relationship inference [54]. However, this
approach often prioritizes node classification over the modeling of relationships
and potentially neglects the rich semantics of edges [65].

Subsequent research has sought to enhance this foundational framework.

Scene Graph Fusion Network (SGFN) [57], for instance, incrementally con-
structs scene graphs from RGB-D sequences. To address underutilization of
edge features, EdgeGCN (also known as SGGpoint) [65] introduces an edge-
focused reasoning mechanism that explicitly models high-dimensional edge
attributes and incorporates ’twinning interactions.” Meanwhile, Granular3D
[18] introduces multi-granularity analysis to better handle complex and large-
scale point clouds. Despite these improvements, GCN-based methods face in-
herent challenges such as over-smoothing [30, 36] and limited receptive fields,
especially in sparse 3D environments [18]. These limitations have motivated
the investigation of alternative architectures.
Transformer-based Approaches. To overcome the inherent limitations
of GCNs, especially to capture long-range dependencies and global context,
Transformer-based architectures [51] have been increasingly adopted for 3D-
SG generation [36]. Transformers, known for their self-attention mechanism,
are well-suited to model global relationships, which has prompted their adap-
tation for graph-structured 3D data.

An exemplary model is SGFormer [36], which utilizes Transformer layers
as its architectural core. SGFormer incorporates novel modules tailored for
the 3D-SGG task. These include the Graph Embedding Layer (GEL), which
enables edge-aware self-attention, and the Semantic Injection Layer (SIL),
which integrates external knowledge sources such as ChatGPT [43]. This
design enhances the models ability to capture the global structure of 3D scenes
and yields notable performance gains [36]. Nevertheless, challenges remain in
the adaptation of sequential Transformers to irregular graph topologies and
in the management of their computational demands [36, 29].

2.2.4 Addressing Key Challenges

Although architectural innovation has advanced 3D-SGG performance, sev-
eral fundamental challenges persist. Ongoing research primarily focuses on
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integrating external knowledge, addressing the long-tail distribution problem,
and improving scalability and efficiency.

Knowledge Integration. Sole reliance on 3D geometric and visual features
often proves insufficient to disambiguate complex semantic relationships [56,
36]. Researchers have explored various ways to inject external knowledge.
These ways include approaches such as Visual-Linguistic Assisted Training
(e.g., the VL-SAT scheme [56] that uses a multi-modal “oracle” model [43]),
LLM-based Semantic Enhancement (e.g., in SGFormer [36] that leverages
ChatGPT and CLIP embeddings), and Learned Knowledge Priors (e.g., meth-
ods that use graph auto-encoders or co-occurrence statistics [67, 29, 9]).
Long-Tail and Unbiased Learning. Similar to many real-world datasets,
3D-SGG datasets exhibit a significant long-tail distribution [56, 29, 36].
Knowledge integration strategies help mitigate this issue [56, 36]. Addition-
ally, the employment of specialized loss functions such as Focal Loss [33], as
used in SGFormer [36] and by Wald et al. [54], can help. Other techniques
common in 2D unbiased SGG are potential future avenues [29, 48].
Scalability and Efficiency. The processing of large-scale 3D point clouds
and reasoning over densely connected graphs pose significant computational
challenges [36, 18]. Scalable and efficient solutions include Efficient Architec-
tures such as Granular3D [18] and SGFormer’s GEL [36], and efficient Point
Cloud Backbones such as PointNet++ or RandLA-Net [17]. The achievement
of both high accuracy and real-time performance remains an active area [18].

2.2.5 Relevant Datasets

The advancement and evaluation of 3D-SGG models depend heavily on special-
ized datasets that offer both 3D scene geometry and rich semantic annotations
for objects and their interrelationships. Among these, the most widely used
benchmark in point cloud-based 3D-SGG research is 3DSSG [54]. It was intro-
duced by Wald et al. [54] and constructed on top of the 3RScan dataset [53].
3RScan is a valuable resource that comprises ~1500 multi-temporal scans of
real-world indoor environments. These scans thereby capture scene variations
over time. 3DSSG extends this foundation and incorporates comprehensive
semantic scene graph annotations aligned with the reconstructed scenes [54].
Key characteristics of the 3DSSG dataset include:

e Input Data: It provides 3D point clouds derived from the reconstructed
meshes, typically used alongside the corresponding class-agnostic in-
stance segmentation masks available from 3RScan.

e Rich Annotations: It contains annotations for a large number of ob-
ject instances (~48k nodes) belonging to numerous semantic categories
(~160 object classes initially, often evaluated on subsets such as RIO27
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[36]). Nodes are annotated with hierarchical class labels (using Word-
Net) and various attributes (static, dynamic, affordances).

e Relationships: It includes annotations for a diverse set of pairwise re-
lationships (~544k edges) covering spatial, support, and comparative
types (~26 predicate classes initially) [54].

o Standard Benchmark: Due to its scale and annotation richness, 3DSSG
has become the standard benchmark for evaluating and comparing re-
cent 3D-SGG methods developed for point clouds, as used in studies
such as EdgeGCN [65], Granular3D [18], SGFormer [36], and VL-SAT
[56].

The point cloud data in 3DSSG and similar studies often originates from large-
scale reconstruction datasets such as ScanNet [14], which offers both geometric
and semantic segmentation data widely used across 3D scene understanding
tasks. Other datasets, such as ScanRefer [6] and Nr3D [1], although also
based on ScanNet, are primarily tailored for 3D visual grounding and dense
captioning, respectively [63]. For synthetic data-driven research, the SUNCG
dataset [46] was employed in earlier 3D-SGG works [65].

2.2.6 Ewvaluation Metrics and Benchmarking

Evaluating and comparing the performance of different 3D scene graph gener-
ation models requires consistent use of well-defined evaluation metrics across
standardized tasks: Predicate Classification (PredCls), Scene Graph Classi-
fication (SGCls), and the comprehensive Scene Graph Generation (SGGen)
task [29]. These commonly employed metrics are summarized in Table 2.

o Recall@K (R@K): The most widely adopted metric for evaluating rela-
tionship triplet prediction [29, 54]. It measures the fraction of ground-
truth triplets correctly predicted within the top-K predictions made by
the model for a given scene. Common values for K are 20, 50, and 100.
It is important to note potential variations in RQK calculation, such as
whether graph constraints are applied (allowing only one predicate per
object pair) and whether results are micro-averaged (across all triplets
in the test set) or macro-averaged (averaging per-image recall scores)
[29].

o Mean Recall@K (mR@K): Introduced to address the significant long-
tail distribution issue prevalent in SGG datasets [29, 48]. Instead of
averaging over all triplets, mR@QK calculates Recall@K separately for
each predicate class and then averages these per-class recall scores. This
provides a less biased assessment of a model’s ability to recognize both
frequent and infrequent relationships [56, 36].
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Table 2: Evaluation metrics for 3D scene graph generation.

Metric Definition Use Case
RQK Fraction of GT triplets recovered in top-K Overall relation recall
mRQK Avg. Recall@K over all predicate classes Mitigates long-tail issue
ZS RQK Recall@K on unseen subject-predicate-object Tests generalization to novel
combinations relations
F1 Score Harmonic mean of precision and recall Balances precision and recall
mAP Area under precision-recall curve Standard detection metric

o Zero-Shot Recall@K (ZS RQK): Evaluates generalization capability by
measuring recall only on relationship triplets (subject-predicate-object
combinations) that were not observed during training [29, 35]. Particu-
larly relevant for assessing robustness to the long-tail problem [36].

o Accuracy@K (A@K): Simple top-K accuracy sometimes reported for in-
dividual components such as object or predicate classification (especially
in PredCls) [56, 18].

e F1 Score: Macro-averaged F1 score occasionally used alongside recall-
based metrics due to class imbalance in predicate classification [65, 36].

o Mean Average Precision (mAP): While standard in object detection and
some 2D-SGG benchmarks [29], mAP is less commonly reported for the
primary 3DSSG dataset evaluations in the analyzed literature, poten-
tially due to the difficulty of exhaustive relationship annotation [29].

Consistent application of these metrics, particularly RQ@K and mRQK, on
standard benchmarks such as 3DSSG [54] allows for quantitative comparison.
However, a remaining challenge is the lack of comprehensive, comparative
benchmarking studies under uniform protocols and across different datasets
[29].

2.3 FEmerging Trends in 3D Scene Representation

Beyond explicit representations such as point clouds, meshes, and scene
graphs, another significant direction in academic research explores Implicit
Neural Representations (INRs) for modeling 3D scenes [58]. Among these,
Neural Radiance Fields (NeRF) have garnered substantial attention [37].



12 Lim et al.

2.8.1 Neural Radiance Fields (NeRF)

NeRF, introduced by Mildenhall et al. [37], represents a 3D scene implicitly
via a multi-layer perceptron (MLP). This MLP maps a 3D spatial coordi-
nate (z,y, z) and a viewing direction (6, ¢) to a volume density (o) and view-
dependent RGB color (¢) [37, 58]. NeRF queries the MLP along camera rays
and applies volume rendering techniques [24] to generate photorealistic novel
views. This process uses only 2D input images with known camera poses [37].

Unlike discrete models, NeRF enables the compact and memory-efficient
encoding of complex geometry and appearance and offers higher-fidelity re-
constructions [58]. While initially developed for novel view synthesis, current
research increasingly explores NeRFs for semantic scene understanding [28, 58].
For instance, Semantic-NeRF [68] augments the NeRF MLP to also predict
semantic labels, while Panoptic-NeRF [16, 45] extends it to include instance-
level segmentation. However, early methods typically operate on a per-scene
basis and often struggle with boundary consistency and broader contextual
understanding [28].

More recent methods, such as GP-NeRF [28], incorporate features from
an advanced 2D segmentation network and leverage distillation techniques
[28, 13] to address these limitations. Although the direct extraction of scene
graphs from NeRF is still in its infancy, recent work has explored the integra-
tion of NeRF and scene graphs. For example, Structured-NeRF [38] employs a
hierarchical scene graph to organize and optimize multiple object-level NeRFs.
Similarly, SG-NeRF [10] uses scene graph optimization to enhance the robust-
ness of NeRF-based surface reconstructions.

These studies reveal a promising synergy between implicit NeRF mod-
els and explicit graph structures. However, challenges persist in training
efficiency, semantic editing, and in the extraction of structured representa-
tions for traditional scene understanding tasks. Addressing these challenges
through hybrid approaches that combine the strengths of both implicit and
explicit representations remains a critical direction for future research [58, 38].

2.3.2 8D Gaussian Splatting

Recent advances in 3D scene representation have introduced 3D Gaussian
splatting (3D-GS) as a compelling alternative to fully implicit methods, such
as NeRF [25, 15]. Unlike NeRFs volumetric ray-marching approach, 3D-GS
uses an explicit representation composed of millions of learnable anisotropic
3D Gaussian distributions [25, 7]. This shift enables real-time rendering and
enhanced editability and positions 3D-GS as a remarkable breakthrough in
3D reconstruction and rendering.

At its core, 3D-GS models scenes as a collection of anisotropic 3D Gaus-
sians, each defined by a mean (position), covariance, opacity, and view-
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dependent color, typically encoded with spherical harmonics [25]. Novel views
are rendered through the projection of these 3D Gaussians onto a 2D image
plane through a process called “splatting” [25]. The resulting 2D Gaussians
are depth-sorted and composited with alpha blending. This process produces
the final pixel colors. This rasterization-based approach is highly parallelizable
and offers considerable speed advantages over NeRFs more computationally
intensive ray-marching.

The training of a 3D-GS model involves the optimization of the parameters
of each Gaussian to produce the input views accurately. This is generally
achieved with stochastic gradient descent, guided by a combination of L1 loss
and D-SSIM losses that compare the rendered images to the ground truth [25].
To maintain a positive semi-definite covariance matrix, it is parameterized
with a learnable quaternion for rotation and a 3D vector for scale. A critical
component of this training process is the adaptive control of Gaussian density,
which involves iterative refinement achieved through cloning, splitting, and
pruning Gaussians. Training often begins with a sparse point cloud, typically
generated through Structure-from-Motion techniques [25, 7].

Recent research builds upon the foundational 3D-GS framework to explore
its application in enhanced 3D scene understanding and to expand its use to
new areas. Extensions include the enrichment of Gaussians with semantic,
linguistic, instance-level, and spatiotemporal information. This enrichment
enables tasks such as open-vocabulary querying and semantic segmentation
[44, 69, 62, 5, 60]. Moreover, the integration of 3D-GS with structured repre-
sentations, such as spatial MLPs or grids, has shown promise for high-fidelity
human avatar modeling and dynamic scene reconstruction [59, 61, 11].

Although 3D-GS provides an explicit and richly attributed representation,
its integration with structured semantic models, such as scene graphs, remains
an open research challenge. While the object-centric nature of Gaussians
offers a promising foundation, the extraction or embedding of complete scene
graphs from optimized Gaussian sets is still under development. Nonetheless,
this represents a promising direction for future work and potentially mirrors
recent efforts by NeRF to utilize structured scene graph representations [38,
10).

In summary, 3D-GS provides a highly efficient and editable explicit repre-
sentation for 3D scenes and delivers impressive real-time performance in novel
view synthesis. Despite these strengths, several challenges remain. These in-
clude the management of high memory consumption in large-scale scenes, the
achievement of accurate geometric reconstruction, the handling of complex
lighting and reflective surfaces, and the enhancement of data efficiency for
sparse input views [7, 15]. Ongoing research seeks to address these limita-
tions. This research aims to develop memory-optimized methods, improve
optimization algorithms, incorporate physical realism, and extend 3D-GS ap-
plications to dynamic environments and complex real-world scenarios [7, 15].
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2.8.8 Benchmark and Evaluation Metrics in 8D scene representation

NeRF and 3D-GS utilize various benchmark datasets to quantitatively eval-
uate the performance of view synthesis that synthesizes images from new
viewpoints. The characteristics of each data set used to measure performance
of NeRF and 3D-GS are as follows.

MiP-NeRF360[3]: A dataset proposed independently in the Mip-
NeRF 360 paper and has been standardly used for performance com-
parison in various NeRF modification studies since then.

Tanks& Temples[27]: Contains complex geometric structures of large-
scale real-world scenes, and has been used to evaluate real-world perfor-
mance in various NeRF studies.

DL3DV-10K[34]: A large-scale real-world multi-view dataset, used
for pre-training and generalization performance evaluation in Zip-NeRF
and IBRNet.

Replical47]: A high-quality indoor scene dataset, often used for novel
view synthesis and 3D reconstruction experiments in NeRF-VPT, Seg-
ment Anything in 3D with NeRFs, etc.

UrbanScene3D[32]: Benchmark used in studies dealing with large/
complex scenes at the city level.

ScanNet[14]: Widely used as a standard benchmark in indoor scene
3D reconstruction and NeRF-based neural rendering studies.

NeRF-synthetic[37]: A synthetic dataset proposed in the original
NeRF paper, used as a standard synthetic benchmark in various NeRF
and variant studies.

In terms of evaluation metrics, NeRF and 3D-GS commonly use the peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM), learned per-
ceptual image patch similarity (LPIPS), multiscale SSIM (MS-SSIM) and
mean squared error (MSE).

PSNR : Measures the pixel-level difference between a synthetic image
and a ground truth image to quantify the image quality.

SSIM and MS-SSIM: Evaluate structural similarity to enable quality
evaluation close to human vision.

LPIPS: A deep learning-based image patch similarity index that shows
a high correlation with subjective quality evaluation.
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e MSE : The mean square error, which is the basic index that forms the
basis for calculating PSNR.

Despite employing distinct rendering methodologies, NeRF and 3D-GS utilize
the same benchmarks and metrics for objective performance comparison and
research reproducibility. This indicates that the developmental trajectories
of both technologies are not solely concentrated on enhancing the quality
of novel scene synthesis, but also on fostering generalization and practical
applicability across diverse environments. Furthermore, the presence of these
shared criteria is crucial for ensuring consistency in performance evaluation
and facilitating comparative analysis and advancement between technologies
as new neural rendering techniques emerge in the future.

These datasets offer a range of scene characteristics and challenges, serv-
ing as tools for assessing the overall performance of models. However, their
emphasis on rendering often results in a focus on scenes featuring a single
object or centrally located objects, thereby neglecting background informa-
tion. Furthermore, the majority of evaluation metrics primarily assess the
presence or absence of noise based on visual quality discernible to the naked
eye, leading to a deficiency in indicators that incorporate substantive semantic
information.

3 Industry Standardization Efforts for 3D Scene Description

3.1 Introduction to Standardization

While academic research continues to expand the boundaries of semantic un-
derstanding and representational capabilities for 3D scenes, industry stan-
dardization plays a complementary yet critical role. Standards are essential
to ensure interoperability across tools, platforms, and applications. This in-
teroperability enables seamless exchange and rendering of 3D content within
diverse ecosystems. They provide stable specifications that support real-time
performance, which is particularly vital for applications such as AR, VR, and
gaming. Moreover, standards promote broader industry adoption as they offer
consistent development targets. Unlike academic efforts that often emphasize
innovation and semantic richness, standardization prioritizes robustness, effi-
ciency, and broad applicability in the definition of the core components of 3D
scenes. This section reviews key standardization initiatives in 3D scene de-
scription, with a primary focus on the MPEG and the Khronos Groups glTF
format, as outlined in publicly available documents and technical reports [19,
49]. A thorough understanding of these initiatives is crucial to align academic
advancements with practical industry implementation and to unlock the full
potential of next-generation 3D technologies.
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3.2 Key Standardization Bodies and Formats

Several international standardization bodies are actively involved in defining
formats and protocols for 3D scene description, aiming to foster an interopera-
ble ecosystem. Among the most prominent efforts are those from the Moving
Picture Experts Group (MPEG) and the Khronos Group. Key characteristics
of these standardization efforts by MPEG and Khronos are summarized in
Table 3.

Table 3: Overview of industry 3D scene description standards.

Standard Format Key Features
MPEG-I Bin+JSON Node hierarchy, Animation, Haptic, Codec ext
glTF JSON+BIN Mesh, Material, Texture, RT rendering ext

3.2.1 MPEQG Scene Description (MPEG-I)

The Moving Picture Experts Group (MPEG), a working group of ISO/IEC,
has significantly contributed to multimedia standards. As part of its MPEG-I
(Immersive Media) initiative, MPEG developed specifications for scene de-
scription to support the growing demand for immersive content. The core
standard in this effort is ISO/IEC 23090-14, Information technology Coded
representation of immersive media Part 14: Scene Description [19]. A pri-
mary goal is to provide a framework that ensures consistency with traditional
coded media streams. This enables integrated and synchronized immersive
experiences. The standard defines fundamental constructs to build 3D scenes.
These constructs feature elements such as node hierarchies, meshes, materials,
cameras, and animations. It also aims for compatibility with existing scene
description formats where practical [19].

Furthermore, the standard incorporates features designed to support dy-
namic and interactive immersive applications. These features encompass ca-
pabilities such as modular support and the ability to address random access
to specific parts of the scene description data, as well as mechanisms to handle
dynamic scene updates [22]. The standard explicitly considers the integration
of related technologies critical for immersion, such as haptic feedback and
efficient codec support (e.g., for V-PCC, MIV) for scene data [19, 23, 22].
MPEG’s related activities also cover broader aspects such as the standard-
ization of asset information handling and usage guidelines [21, 20]. Overall,
MPEG’s approach focuses on the provision of a comprehensive, integrated
solution to represent and deliver complex, interactive immersive media expe-
riences within the larger multimedia ecosystem.
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8.2.2 Khronos Group glTF

Alongside MPEG, the Khronos Group plays a significant role in 3D asset
standardization through its gITF (Graphics Language Transmission Format)
specification [49]. Unlike MPEG’s focus on integrating scene descriptions with
coded media streams, glTF is primarily designed as an efficient, interoperable
asset delivery format for 3D scenes and models, particularly targeting WebGL
and other modern graphics APIs, aiming to minimize processing overhead for
real-time rendering applications.

The core glTF specification defines a JSON-based structure describing the
scene hierarchy, geometries, materials, textures, animations, and camera se-
tups [49]. A key aspect is its extensibility mechanism, allowing for adding
features beyond the core specification [50]. While Khronos manages the core
specification and numerous extensions, MPEG has also actively developed
glTF extensions within its MPEG-I framework, explored through dedicated
Exploration Experiments (EEs) [23, 22]. Much of the standardization dis-
cussion relevant to advanced scene description functionalities revolves around
these MPEG-developed extensions:

e Lighting: Extensions such as MPEG Texture-Based Lights and MPEG
Punctual Lights add support for time-varying attributes and integrate
physical and virtual light estimation, crucial for mixed reality [23].

e Haptic Support: The MPEG Haptic and MPEG Haptic Material exten-
sions make it possible to define haptic objects and associate texture-
based haptic data with 3D objects. This enables synchronized tactile
feedback [23].

e Generic Interactivity: Extensions such as MPEG Scene Interactivity
define a framework based on triggers and actions to manage interactive
behaviors and can potentially leverage collision mesh definitions (MPEG
Mesh Collision) [23].

o Avatars: The MPEG Node Avatar extension provides mechanisms to
integrate animated user representations within the scene and links them
with interaction and collision systems [23].

e AR Anchoring: The MPEG Anchor extension makes it possible to an-
chor glTF scenes to real-world elements with various reference space
types for stable AR applications [23].

o Codec Integration: MPEG addresses the integration of volumetric media
codecs such as V-PCC and MIV into gl TF. This work defines processing
pipeline options and specifies necessary signaling [22, 23].
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Furthermore, MPEG has explored standardizing asset information descrip-
tions and usage guidelines associated with glTF assets [21, 20] to ensure
consistent interpretation. This highlights the significant effort, particularly
from MPEG, to extend the core glTF format into a more comprehensive
framework for complex, interactive, and immersive media applications. These
MPEG-developed glTF extensions are summarized in Table 4.

Table 4: Major glTF extensions in MPEG-I.

Extension Purpose Key Properties
Texture-Based Lights Dynamic lighting Texture, light data, time params
Punctual Lights Point light sources Position, intensity, color

Haptic Tactile feedback Texture-based haptic mapping
Scene Interactivity Interactive behaviors Triggers, actions, collision mesh
Node Avatar User avatars Animation, collision linkage

Anchor AR anchoring Reference spaces, transforms
V-PCC Codec Ext. Volumetric codec Pipeline integration, signalling
MIV Codec Ext. Mixed-media codec Stream signalling

3.8 Comparison with Academic Approaches

Having reviewed the primary efforts in industry standardization (Sections
3.2.1 and 3.2.2) and academic research (Section 2), we now explicitly revisit
the key distinctions between these two domains regarding 3D scene descrip-
tion. Understanding these differences is crucial for identifying challenges and
opportunities for convergence. The divergence stems primarily from their dis-
tinct objectives and target applications. Table 5 provides a summary of these
key distinctions.

e Primary Goal: Industry standards such as MPEG Scene Description
and gl TF prioritize interoperability, efficiency, stability, and broad adop-
tion across platforms [19, 49]. In contrast, academic research, particu-
larly in areas such as 3D Scene Graph Generation (3D-SGQG), typically
focuses on achieving deep semantic understanding, capturing complex
inter-object relationships, enabling scene reasoning, and exploring novel
Al-driven techniques [54, 29].

e (Core Representation: Standardization efforts define structured formats
focusing on components essential for rendering and interchange, such as
node hierarchies, geometry, materials, and animations. Relationships
between objects are often represented implicitly through the hierarchy
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Table 5: Key differences between academic research and industry standardization.

Aspect Academic Research Industry Standardization
Primary Goal Semantic depth Interoperability & speed
Core Representation Graph-based semantics Component-based formats
Input Data Point clouds & captions Meshes, textures, streams
Evolution Pace Fast-paced Al Consensus-driven progress

or require dedicated extensions [19, 49]. Academic approaches such as
3D-SGs utilize explicit graph structures where nodes represent objects
(often with rich attributes) and edges explicitly encode diverse semantic
relationships [54, 65].

e Data Focus and Scope: While standards aim for broad applicability,
academic scene graph generation research often concentrates on process-
ing specific sensor data such as point clouds obtained from real-world
scans [54, 18]. Furthermore, standards often need to consider integra-
tion within a larger multimedia ecosystem [19, 23], whereas academic
work might investigate specific aspects in isolation.

These fundamental differences in goals and methodologies explain the cur-
rent gap between cutting-edge research findings and their adoption within
widely used industry standards. Bridging this gap requires mutual under-
standing and collaborative efforts, discussed further in Section 4.

3.4 Challenges in Standardization for Scene Description

Despite significant progress by standardization bodies such as MPEG and
Khronos, developing and adopting comprehensive 3D scene description stan-
dards faces inherent challenges:

e Pace Mismatch with Research: Academic research, especially in Al-
driven fields, evolves rapidly, often outpacing the slower, consensus-
based standardization processes that prioritize stability, interoperability,
and backward compatibility. This lag hinders the timely integration of
state-of-the-art innovations into formal standards.

o Semantic representation gap: As highlighted (Section 3.3), a fundamen-
tal gap exists between semantically rich academic representations (e.g.,
3D-SGs) and the rendering-focused core of standards such as gl TF. Stan-
dardizing the representation and efficient transmission of complex se-
mantic relationships and attributes remains a hurdle. Practical efforts,
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such as those exploring the conversion of formats such as 3DSSG to
glTF (often requiring custom extensions such as EXT_ relationships),
exemplify this challenge [21, 20].

Complezity and fragmentation: The integration of diverse features, such
as rendering, physics, haptics, compression codecs, interactivity, and se-
mantics, into a unified, extensible standard is inherently complex. This
is evident in the broad scope of MPEGs EEs [19, 23, 22]. Without care-
ful coordination, the proliferation of specialized extensions may lead to
fragmentation, impeding cross-platform interoperability.

Lack of standardized benchmarks: The absence of widely accepted
datasets and evaluation across academic and industrial domains ham-
pers objective comparisons and reproducibility. This limitation ob-
structs the validation and potential standardization of emerging research
outputs.

Unclear integration pathways: Establishing agile yet reliable mechanisms
for proposing, assessing, and incorporating novel research into formal
standards remains a notable challenge. Effective frameworks are needed
to bridge the gap between prototypes and deployable, standardized fea-
tures.

Addressing these challenges requires ongoing dialogue and closer collaboration

to foster a more unified ecosystem. Such collaboration can be facilitated

by mechanisms including joint working groups, the development of semantic
extensions, and shared benchmarks. These mechanisms are explored further
in Section 4. The identified challenges, their impacts, and potential remedies

are summarized in Table 6.

Table 6: Standardization challenges & remedies.

Challenge Impact Remedy
Pace mismatch Slow adoption Joint working groups
Semantic gap Limited expressivity glTF semantic extensions
Fragmentation Incompatible versions Extension consolidation
No benchmarks Hard comparisons Shared test suites

Slow integration Feature delays Clear proposal workflows
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4 Discussion of Future Directions

4.1 Bridging the Academia-Industry Divide

The preceding sections have surveyed the landscape of 3D scene description
technologies. This survey has revealed distinct yet complementary efforts
within academic research (Section 2) and industry standardization (Section
3). Academic research has made significant strides to enhance the semantic
richness of scene representations. Approaches such as 3D Scene Graphs [54,
65, 29] excel at the explicit modeling of complex object relationships and
attributes, while Al-driven techniques, such as Transformer architectures [36]
and knowledge integration methods [56, 36], continuously push the boundaries
of scene understanding and generation capabilities. The primary focus often
lies on the exploration of novel representations and algorithms for deeper
semantic insight.

In contrast, industry-oriented standardization efforts, spearheaded by bod-
ies such as MPEG and Khronos, prioritize interoperability, efficiency, and
stability to enable widespread adoption and real-time application [19, 49].
Standards such as glTF provide efficient formats to transmit and render core
scene components, while efforts within MPEG aim to integrate scene descrip-
tions seamlessly within the broader multimedia ecosystem [19]. Extensibility
mechanisms make it possible to add functionalities such as advanced lighting,
haptics, and interactivity, but the core focus remains on the creation of robust
and widely compatible building blocks [50, 23].

As highlighted in the comparison (Section 3.3), this leads to a discernible
divide. Specifically, academia often prioritizes “what” can be represented se-
mantically, while industry focuses on “how” scene data can be efficiently deliv-
ered and rendered across diverse platforms. This divergence manifests in dif-
ferent representational choices (explicit semantic graphs vs. rendering-focused
components) and contributes to the challenges discussed previously (Section
3.4), such as the semantic gap, the pace mismatch between research and stan-
dardization, and difficulties in the establishment of unified benchmarks. While
this specialization is understandable given the different mandates, the current
separation limits the potential for synergy and hinders the practical realiza-
tion of truly intelligent and immersive 3D experiences. To bridge this divide
through collaboration is therefore essential for future progress.

4.2 The Mutual Benefits of Collaboration

Bridging the gap between academic research and industry standardization in
3D scene description, as discussed in Section 4.1, is not only desirable but also
essential for accelerating the field’s advancement. Closer collaboration fosters
a synergistic relationship wherein the strengths of each domain effectively
complement one another.
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4.2.1 Benefits for Academia

e Increased real-world relevance and impact: Engagement with industry
challenges enables academic research to address practical, real-world
problems, thereby enhancing its relevance and impact. This often in-
volves access to industry-scale datasets and application-driven use cases,
enhancing the real-world applicability and impact of academic contribu-
tions beyond theoretical insights.

e Robust validation frameworks: Partnerships with industry offer access to
standardized benchmarks and deployment environments, allowing aca-
demic innovations to be validated in a realistic setting, far surpassing
the limitations of purely academic datasets.

o Access to resources and expertise: Academic institutions benefit from
shared access to proprietary resources, development toolkits, testing
platforms, and specialized domain expertise, which may otherwise be
inaccessible.

4.2.2  Benefits for Industry

e Faster innovation cycles: Industry gains earlier and deeper access to
cutting-edge research innovations in areas such as Al-driven scene un-
derstanding [36], complex relationship modeling [65], multi-granularity
analysis [18], and knowledge integration [56]. This can fuel the develop-
ment of next-generation products and services.

e Improved product functionality: Integrating richer semantic information
and advanced Al capabilities derived from academic research can signif-
icantly enhance the intelligence, interactivity, and immersion of indus-
trial applications in AR/VR, digital twins, robotics, and beyond.

e Solutions to technical challenges: Industry can leverage academic exper-
tise and novel approaches to tackle complex technical hurdles encoun-
tered during the development and deployment of sophisticated 3D ap-
plications, such as handling large-scale scene understanding or complex
semantic queries.

o Future-ready standards: Collaboration helps ensure that industry stan-
dards evolve proactively to incorporate valuable semantic representa-
tions and Al functionalities, preventing standards from becoming out-
dated and ensuring they meet future market needs.

In summary, academic-industry collaboration fosters a dynamic ecosys-
tem that delivers 3D scene description solutions that are both semantically
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advanced and practically deployable. This convergence is critical to unlocking
the full potential of intelligent, immersive 3D technologies.

4.3

Concrete Mechanisms for Collaboration

Recognizing the mutual benefits (Section 4.2) is the first step. Translating
this into tangible progress requires establishing concrete mechanisms to fos-
ter sustained interaction and integration between academic researchers and
industry standardization experts. Based on the challenges identified (Section
3.4), several potential pathways can facilitate this collaboration:

Joint workshops and standardization forums: Host recurring workshops
co-located with major academic conferences (e.g., CVPR, ECCV, SIG-
GRAPH) and standardization meetings (e.g., MPEG, Khronos). These
events serve as a dedicated forum where researchers can present their
findings to standardization bodies, while industry representatives can
share practical constraints and emerging needs with the academic com-
munity.

Shared benchmarks and datasets:Collaboratively develop benchmark
datasets and evaluation protocols that address both academic objec-
tives, such as assessing semantic depth and long-tail phenomena, and
industrial requirements, including scalability, computational efficiency,
and applicability to real-world contexts. This alignment enables more
robust and comparable evaluations, supporting the transition from aca-
demic insight to standardizable technology.

Standardized extension proposal pathways: Creating a clearer and more
accessible process for academic researchers to propose extensions to ex-
isting standards, such as glTF [49]. These may include comprehensive
submission guidelines, mentorship schemes, or dedicated tracks within
standardization working groups. Inspiration may be drawn from mech-
anisms like MPEGs EEs [23] and ongoing discussions around format
conversions and asset definitions [21, 20].

Collaborative open source projects: Promote joint open-source efforts
that bridge academic and industrial ecosystems. Examples include the
development of format converters between academic representation (e.g.,
3DSSG) and industry standards (e.g., glTF), or the creation of reference
implementations for unified scene representations and reusable software
modules, as explored in MPEG initiatives [21, 20].

Cross-disciplinary working groups: Establish specialized working groups
that connect standardization bodies (MPEG, Khronos) with academic
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communities. These groups could focus on solving targeted technical
challenges, such as defining standardized representations for semantic
relationships in glTF [49] or integrating Al-driven scene understanding
into standardized formats.

e Researcher exchange and residency programs: Support short-term resi-
dencies or internships that allow academic researchers to work within
industry labs or standardization organizations, and vice versa. Such
programs foster mutual understanding, facilitate hands-on knowledge
exchange, and align academic innovations with practical implementa-
tion pathways.

The implementation of such mechanisms can help create a continuous feedback
loop. This loop enables academic innovation to inform practical standards
more rapidly and ensures that standardization efforts remain relevant to the
state-of-the-art in 3D scene understanding and representation.

A concrete example of collaborative efforts to bridge academic data for-
mats and industry standards is the proposed pipeline to convert 3DSSG
data to the glTF format, discussed within MPEG standardization [21, 20].
This initiative addresses the difference between gl TF and 3DSSG file formats,
where 3DSSG emphasizes interrelationships among objects while glTF pro-
vides a broader range of scene-related attributes and rendering technologies
[21]. A standardized format that bridges these two spheres would benefit both
academia and industry. This format would allow academia to develop opti-
mized models and industry to implement them for enhanced efficiency and
innovation [21]. The potential for cooperative conversions between these for-
mats has received positive feedback regarding their applicability as test assets
[21, 20].

The conversion process, illustrated in Figure 3, begins with the loading
of the original 3DSSG data with custom Python scripts for data extraction.
Individual OBJ files are then generated for each object within the dataset
scenes. This process involves the creation of meshes and the application of
texture mapping with Blender’s Python API. Next, these individual OBJ files
are merged into a single scene within Blender. This unified scene is then con-
verted into a gl TF file with Blender’s built-in export functionality. Finally, ex-
tensions for relationship references are added to the exported glTF file. These
extensions provide additional semantic information about object relationships
within the 3D data representation. Figure 4 visually demonstrates key stages
of this conversion process. The significance of this progression is that it il-
lustrates a practical pathway from academic data formats to industry-ready
standards. It begins with the raw, segmented point cloud (PLY) common
in research, proceeds through an intermediate 3D model (OBJ), and culmi-
nates in the final, rendering-optimized glTF format. This pipeline serves as a
practical demonstration that bridges academic and industry formats.
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Figure 3: Process of converting 3Rscan and 3DSSG to glTF format.

4.4 Towards Unified Frameworks and Future Directions

The ultimate goal of the fostering of collaboration between academia and
industry (Section 4.3) is to move towards a more unified ecosystem for 3D
scene description. Such an ecosystem would ideally leverage the semantic
depth and Al-driven capabilities that emerge from academic research while
it also retains the interoperability, efficiency, and robustness prioritized by
industry standards. While the achievement of a single, perfect “one-size-fits-
all” representation might be unrealistic given the diverse application needs,
the development of frameworks that allow synergistic integration of different
approaches is a crucial future direction.

Future efforts, guided by collaboration, should focus on several key re-
search and development areas to bridge the existing gaps:

e Hybrid representations and format bridging: Further research is essen-
tial to develop hybrid data structures or standardized formats that effi-
ciently encode both rendering-oriented content (e.g., glTF components)
and rich semantic graph information (e.g., 3D scene graphs). This may
involve creating official, well-defined glTF extensions to support seman-
tic graphs or designing novel representations that inherently unify geo-
metric and semantic content. Initial progress in this direction includes
format conversion tools, such as the 3DSSG-to-glTF pipeline explored
within MPEG [21, 20]. However, broader generalization and formal
standardization remain necessary.

o Standardized semantic taxonomies: Developing common, extensible on-
tologies or standardized vocabularies for object classes, attributes, and
particularly relationship predicates is essential. Such taxonomies need
to be rich enough for academic research yet practical for industry imple-
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Figure 4: The 3DSSG-to-glTF conversion visualization result. We converted the obj file and
segmentation ply file of 3DSSG(research data) into glTF (industry format), and confirmed
that the converted glTF result looks similar to the obj file before conversion.

mentation, facilitating semantic interoperability across different datasets
and applications [54, 29].
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e Cross-Domain benchmarking platforms: The development of comprehen-
sive benchmarking platforms is vital. These benchmarks should assess
not only semantic accuracy (e.g., RQK, mRQK for scene graph gener-
ation) but also metrics critical to industrial settings, such as runtime
efficiency, memory usage, and the impact on rendering quality, across
diverse scene types and real-world tasks.

e Al and standardization synergy: There is considerable potential for
AI/ML techniques to support and accelerate the standardization pro-
cess itself. Possible applications include automated tools for validating
format compliance, facilitating semantic data conversions, and even ex-
tracting insights to guide the creation of future standards.

o Multi-Modal integration within standards: Continued research is needed
to enable robust integration of 3D scene descriptions with other modal-
ities in standardized frameworks. These modalities include natural lan-
guage (building on 3D Dense Captioning research [63]), haptic feedback
(as explored in MPEG EEs [23]), spatial audio, and dynamic behaviors.
A unified multi-modal standard would enrich the fidelity and interactiv-
ity of 3D scene representations.

Realizing a comprehensive and unified approach to 3D scene description de-
mands ongoing collaboration and commitment to mechanisms previously out-
lined. By aligning efforts, academic researchers and industry professionals
can ensure that innovations in 3D understanding and representation are effec-
tively translated into the next generation of intelligent, immersive, interactive
experiences.

5 Conclusion

This survey presents an in-depth review of current 3D scene description tech-
nologies and highlights the divergence between academic and industry ap-
proaches. Academic research tends to prioritize semantic and advanced Al ca-
pabilities, whereas industry-driven standardization emphasizes interoperabil-
ity and real-time performance. These differing priorities contribute to critical
challenges, such as inconsistent data formats and mismatched development
timelines, which hinder broader technological integration. Our central con-
clusion is the pressing need to enhance collaboration between academia and
industry. Such cooperation is essential to bridge existing gaps, and it must be
grounded in joint initiatives, shared benchmarks, and the co-development of
unified frameworks that combine semantic sophistication with practical usabil-
ity. Strengthened partnerships between these domains will ultimately drive
the development of next-generation 3D technologies and will thereby enable
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more innovative, more immersive, and deeply interactive digital experiences.
We hope this survey serves as a springboard for these collaborative efforts.
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