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ABSTRACT

In this paper, we present methods to stabilize training and enhance
the performance of Self-Remixing, an unsupervised source separa-
tion framework. Self-Remixing trains a model to reconstruct orig-
inal mixtures by separating pseudo-mixtures, which are generated
by first separating the observed mixtures and then remixing the
resulting sources. Although this approach has shown promising
results, it suffers from two notable limitations: ¢) reliance on pre-
trained models, and ii) suboptimal performance on certain metrics,
particularly word error rate (WER). To address these issues, we
propose techniques that i) stabilize the training process, enabling
end-to-end training from scratch without pre-training, and i) iden-
tify the causes of WER degradation, introducing a tailored loss
function to mitigate them. Our results demonstrate that, with
improved remixing strategies and a carefully designed loss func-
tion, Self-Remixing achieves competitive performance even when
trained entirely from scratch.
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1 Introduction

Over the past decade, neural network-based approaches to source separation
have seen remarkable progress [12, 59, 23, 40, 49, 35]. These models are typi-
cally trained in a supervised manner using paired data consisting of mixtures
and corresponding clean source signals. However, collecting such annotated
data in real-world environments is challenging, and thus, synthetic mixtures
generated by simulation toolkits [37] are commonly used for training. A major
limitation of this approach is the domain mismatch between synthetic and real
mixtures, which often leads to performance degradation due to differences in
factors such as reverberation, noise characteristics, and recording conditions.

To overcome this limitation, unsupervised source separation methods have
been proposed. These methods train models directly on real-recorded mix-
tures without access to ground-truth sources [46, 9, 43, 1, 34, 24, 50, 36].
In monaural settings, one of the pioneering approaches is Mixture Invariant
Training (MixIT) [55, 54, 7, 39], which trains models to separate a mixture
of mixtures (MoMs), created by summing multiple mixtures. Despite its suc-
cess, MixIT often suffers from the over-separation problem, where the target
sources are overly suppressed or distorted. This issue arises from the mis-
match between MoMs and natural mixtures, as the former tends to contain
more sources.

Several approaches have been proposed to address the over-separation is-
sue. One such method, Teacher-Student MixIT [61], trains a student model
using outputs from a teacher model pre-trained with MixIT. RemixIT [44] sim-
ilarly adopts a teacher-student framework but trains the student to separate
pseudo-miztures generated by shuffling and remixing the teacher’s outputs. By
exposing the student model to a diverse range of pseudo-mixtures in a similar
spirit to the dynamic mixing strategy used in [60], RemixIT achieves improved
performance. Further gains can be obtained by updating the teacher’s weights
using the student’s ones by, e.g., exponential moving average (EMA) update.

However, these self-training methods are prone to instability, especially
when the model begins to under-separates sources. A common strategy in
scenarios where the number of sources is unknown is to assume the maximum
number of sources and always produce that number of outputs [52]. In such
cases, when the teacher model produces near-zero outputs, the student learns
to reproduce this behavior, as it relies on the teachers outputs for supervi-
sion. As training progresses and the teacher is updated using the student’s
outputs, both models may converge toward a degenerate solution that repro-
duces the input mixture along with near-zero signals, thus failing to perform
any meaningful separation.

To address this issue, Self-Remixing [32] was recently proposed. Like
RemixIT, it trains models to separate pseudo-mixtures but crucially differs
by using the original mixtures as static supervision targets. This design mit-
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igates the instability commonly observed in self-training frameworks, where
the teacher model progressively under-separates sources. Nevertheless, Self-
Remixing (as well as RemixIT) still suffers from two key limitations: (7) In [32],
the model is assumed to be pre-trained with MixIT to ensure that the result-
ing pseudo-mixtures remain acoustically similar to natural mixtures. How-
ever, it remains unclear how well the pre-trained model needs to perform for
Self-Remixing to be effective. Moreover, the requirement of this two-stage
training procedure, pre-training followed by fine-tuning with Self-Remixing,
complicates the training pipeline. (i) The loss functions commonly used in
prior work, negative signal-to-noise ratio (SNR) [55, 44], tend to produce sub-
optimal results for metrics sensitive to magnitude errors, such as word error
rate (WER).

This work addresses these limitations by (%) enabling Self-Remixing to
work without pre-training, and (i) introducing a loss function designed to
more strongly penalize the magnitude estimation errors. Through detailed
analysis, we found that outputs from a randomly initialized separation model
closely resemble the input mixture, and that pseudo-mixtures constructed
from these outputs can effectively act as MoMs for training. Nonetheless,
training from scratch remains unstable due to the presence of trivial solu-
tions, such as copying the input mixture, that minimize the loss without any
separation. To address this, we introduce novel remixing algorithms that sta-
bilize training and remove the need for pre-training. Additionally, to reduce
the severe distortion often observed in remixing-based methods, we introduce
a loss function that more effectively penalizes magnitude estimation errors.
Our code! and the audio examples? are publicly available to facilitate repro-
ducibility and further research.

This paper extends our previous work [31] by contributing: (i) a deeper
analysis of Self-Remixing that clarifies how separation ability emerges from
scratch; (ii) a detailed description and empirical validation of the proposed
remixing algorithm; (iii) a study of loss functions effective for remixing-based
methods, supported by qualitative analysis and experiments; and (iv) an ex-
tension of Self-Remixing on mapping-based separation models, which are more
challenging to train in an unsupervised manner due to their higher degrees of
freedom..

The remainder of this paper is organized as follows. Section 2 provides
an overview of prior work on single-channel unsupervised source separation.
Section 3 presents an analysis of the behavior of Self-Remixing and introduces
remixing algorithms to improve training stability. Section 4 investigates loss
functions suitable for remixing-based methods. Section 5 describes the exper-
imental setup, and Section 6 reports and discusses the experimental results.

Thttps://github.com/kohei0209/self-remixing
2https://kohei0209.github.io/selfremixing-demo
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2 Prior Work on Single-channel Unsupervised Sound Separation

Let us denote a mini-batch of B mixtures as & € REXT where T denotes the
number of samples in the time domain. Each mixture in the batch, denoted
as xp (b=1,...,B), contains up to K sources, where K is assumed to be
known in this work. A separation model with Ng output channels is denoted
as fs with its parameters 6g.

2.1 Mixture Invariant Training

MixIT trains a model in an unsupervised manner using a mixture of mixtures
(MoMs). Let B'(< B) mixtures in a mini-batch be x1,...,xp . MixIT adds
them together to make an MoM z € R”. 1In total, B = |B/B’| MoMs
are generated from a mini-batch of B mixtures. MixIT trains the model to
separate each MoM into each source:

8= fs(x;0s) € RNVs*T. (1)

The MixIT loss is computed between the separated signals § and the individual
mixtures, as described in [55]:

B/
Lyiar = min Zb/:l L(xy,[AS]y), (2)

where L is a loss function. The mixing matrix A € BB *Ns assigns each §,
to the original mixtures. The number of mixtures in an MoM B’ is typically
set to two, and Ng is set to satisfy Ns > B'K.

While MixIT has enabled unsupervised learning, models often produce
more sources than are actually present in inference. Such an over-separation
problem happens because i) MoMs contain more sources than individual mix-
tures do and #) the model has more output channels than the actual number
of sources (i.e., Ns > B'K > K). To mitigate the first problem, an auxiliary
source sparsity loss that encourages sparsity of the separation outputs has
been proposed [54]:

il \/172
EsparSIty - N||7’H27 r= Zn th|sn,t| (3)

where || - ||, is £, norm. The resulting sparsity-induced MixIT loss is

EMixIT—&-sparsity = EMixIT + ’Yﬁsparsityy (4)

where the weight -y is tuned based on the number of output channels Ng. The
sparsity loss is effective when the number of output channels is often more
than the number of sources in MoMs (Ng > B'K).
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2.2 Mixture Permutation Invariant Training

Mixture permutation invariant training (MixPIT) aims to address the over-
separation [15] by reducing the number of output channels Ng. Specifically,
while MixIT typically sets Ns = B'K, MixPIT reduces Ns to K, the maxi-
mum number of sources in individual mixtures, where the model tries to es-
timate the individual mixtures directly (i.e., B' = Ns = K). However, since
the model does not know which source originally belonged to which mixture,
separating mixtures from MoMs directly is essentially challenging. Indeed, as
reported in [15], MixPIT underperforms MixIT even when K = 2.

2.3 RemixlIT

RemixIT is a self-training framework designed to refine a pre-trained separa-
tion model [45]. Although originally developed for speech enhancement [44],
we extend RemixIT to the general sound separation task and introduce sev-
eral techniques to stabilize the training, one of the main contributions of this
work. In addition to the student model fs, RemixIT introduces a teacher
model f7 with Ny output channels and parameters 8. An overview of the
RemixIT framework is illustrated in Figure 1.

In RemixIT, the teacher model fy first separates the input mixtures « into
estimated sources: § = fr(x;07) € REXN7XT Here, the number of output
channels Ny may exceed the expected maximum number of sources K. For
instance, when f7 is pre-trained using MixIT, it typically satisfies Ny > 2K.
In such cases, we select the K sources with the highest powers. We then
enforce mixture consistency [53] to ensure that the selected sources sum to
the original mixtures, 25:1 Spn = Tp. Next, we apply a source shuffling
procedure within the batch to construct pseudo-mixtures . Specifically, each
source 5p, is permuted across batches using an B x B permutation matrix
IT,, for each n, and the pseudo-mixtures are obtained as:

K
_ S M) s
Ty = anl 8b7n ? Sb,n - [Hnsi,n]bu (5)
where ., £ [51,n,---,8B,n] € REXT denotes B separated sources from each

output channel n. We refer to the operation in Equation (5) as batch shuffle,
as it permutes data along the batch dimension. The student model fs is then
used to separate the pseudo-mixtures: § = fs(&;0s). As with the teacher
model, we select the K most energetic sources when K < Ng. The RemixIT
loss is computed in a permutation-invariant manner using a brute-force search
with O(K!) complexity, between the sources generated by the teacher and
those generated by the student [59].

b K (11 .
‘cg:{e)mixIT = H}len E Zn:l [’(Sl(),n)7 [Pbsb]n)a (6)

where P, is a K x K permutation matrix.
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Figure 1: Overview of RemixIT and Self-Remixing. Teacher/shuffler model fr first sepa-
rates input mixtures. Separated signals are then shuffled along output-channel and batch
dimensions (@ channel shuffle and @ batch shuffle) and summed up to make pseudo-
mixtures. Student/solver model fs separates pseudo-mixtures. Output-channel order of
fs is aligned with that of fr by minimizing the loss between them (i.e., RemixIT loss,
®). Next, reverse transformation of batch shuffle (@) is done to restore the order of batch
dimension (i.e., signals after @ have the same order as those in (D). Finally, outputs of fs
are summed up to reconstruct input mixtures to compute Self-Remixing loss.

The student model parameters Os are updated using gradient descent.
Meanwhile, the teacher model parameters 61 can also be updated using the
student parameters. While various update strategies have been explored [42,
57] in the original RemixIT work [44], we adopt the exponential moving aver-
age (EMA) update due to its proven effectiveness and efficiency [42, 13]. At
the end of each epoch, the teacher model is updated as:

09 = b + (1 - )8y, (7)
where a € [0, 1] is the EMA coefficient and j denotes the epoch index.

2.4 Potential Instability of Teacher-student Learning in General Sound
Separation

Although RemixIT has demonstrated strong performance in speech enhance-
ment [45], its teacher-student learning framework can become unstable when
the number of sources in mixtures is often smaller than the number of output
channels. This condition is expected to arise frequently in realistic general
sound separation scenarios [52, 4].
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In unsupervised sound separation, where the actual number of sources in
each mixture, denoted as K (K < K), is unknown even during training, a
common strategy is to assume a maximum number of sources K and design
the separation model to have K output channels. Ideally, the model should
output K meaningful sources and K — K silent (zero-valued) signals [52].
However, when K < K frequently holds, the student model tends to learn
under-separation behavior because it is trained using the teacher outputs that
often include low-energy or near-zero signals. As the teacher model is updated
using the student model parameters (Equation (7)), this under-separation
behavior propagates to the teacher, leading to unstable training. Indeed, in
our experiments, RemixIT failed to achieve stable training when K < K
occurred frequently, as further discussed in Section 6.3.

2.5 Self-remixing

Self-Remixing is designed to address the instability issue associated with self-
training, as discussed in Section 2.4, by using the original mixture as super-
vision rather than relying on the teacher’s outputs, as illustrated in Figure 1.
Unlike RemixIT, Self-Remixing does not follow a teacher-student learning
paradigm. Instead, fr and fs are referred to as the shuffler and solver, re-
spectively. The shuffler model decomposes the initial mixtures and shuffles
the outputs to create pseudo-mixtures, while the solver attempts to solve the
task by recovering the original mixtures from these pseudo-mixtures.

In Self-Remixing, the outputs of fr and fs are first aligned using the
optimal permutation matrix P, obtained in Equation (6). The original order
of sources, prior to the batch shuffle in Equation (5), is then restored:

s =, 8T = P, (8)

bn n s

where .§;(7IZ) £ [§§i), .. .,§S31;)J € RB*T represents B separated sources from

each output channel n. After aligning the outputs from f7 and fs along with
the output channel and batch dimensions, the reconstructed mixture Z; is

-1
obtained by summing the solver outputs F

b,n
K -1
A (I
Ly = Zn:l Sb,n . (9)
The loss is computed using the original mixtures as supervision:
b .
‘C(Se)lffRemixing = ‘C(l‘b’ Ib). (10)

Note that while Self-Remixing utilizes the RemixIT loss to efficiently re-
solve channel and batch permutations, this loss is not used to update model
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parameters.® Since the computations involved in Equations (8)-(10) are light-
weight, the overall training cost of Self-Remixing remains comparable to that
of RemixIT.

3 Training with Self-Remixing and RemixIT from Scratch

3.1 Analysis of Self-Remiring and RemixIT

In this section, we analyze the behavior of RemixIT and Self-Remixing when
the teacher model is randomly initialized, demonstrating that both models
can be trained from scratch without pre-training.

To investigate the output trends of a randomly initialized model, we
trained two architectures, a TF-masking-based Conformer [11] and a complex
spectral mapping-based TF-GridNet [49], using RemixIT or Self-Remixing,
both randomly initialized.* The input mixtures consisted of noisy, reverber-
ant two-speaker mixtures from the WSJ-mix dataset (see Section 5.1). Both
models had three output channels (N7 = Ng = 3) to estimate two speech and
one noise signal, and the mixture consistency [53] was ensured in f7, as de-
scribed in Section 2.3. Figure 2 shows the scale-invariant source-to-distortion
ratio (SI-SDR) [17] of the teacher (shuffler) model’s outputs relative to the
clean reference signals (solid lines, denoted as SI-SDR) and the input mixtures
(dotted lines, denoted as SI-SDR-mix). Note that higher SI-SDR-mix values
indicate outputs that are acoustically similar to the input mixture. The upper
and lower figures show the results for the Conformer and TF-GridNet models,
respectively, with RemixIT and Self-Remixing denoted by blue and orange
lines.

For the Conformer (upper figure), the SI-SDR-mix at epoch 0 exceeds
18 dB, indicating that the randomly initialized outputs are already close to
the input mixtures. In contrast, for TF-GridNet (lower figure), the SI-SDR-
mix starts around 5 dB but gradually increases to about 15 dB by epoch
5, indicating that its outputs become mixture-like after several training it-
erations. These results suggest that the outputs from randomly initialized
models, regardless of whether they are based on masking or mapping, tend
to converge toward the input mixtures in early training. This behavior al-
lows the pseudo-mixtures created by remixing these outputs to be treated as

3Since the batch and channel orders of § and § differ, directly aligning them via brute-
force permutation search would be computationally expensive. Instead, permutations along
the channel and batch dimensions are resolved independently. Although the RemixIT loss
aids in channel permutation alignment, it does not contribute to the gradient in the Self-
Remixing framework. Preliminary experiments showed that combining the RemixIT and
Self-Remixing losses did not yield performance improvements.

4We used the default initialization strategy of Pytorch 1.12.1 [26]. We utilized the
improved remixing algorithm described in Section 3.2.
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Figure 2: SI-SDR against clean signals (solid line) and input mixture (dotted line) at each
epoch end. Upper and lower figures show results of Conformer and TF-GridNet, respectively.
Blue and Orange lines correspond to RemixIT and Self-Remixing.

MoMs. Consequently, the RemixIT loss becomes equivalent to the MixPIT
loss, where the model is trained to separate an MoM into an individual mix-
ture. Self-Remixing similarly promotes the separation of MoMs because the
model must recover the original mixtures to minimize the loss. Given that
MixPIT has proven effective for source separation [15], these results support
the efficacy of RemixIT and Self-Remixing even when training from scratch.

Our previous work [31] only analyzed the masking-based Conformer model,
which already produced high SI-SDR-mix scores at initialization. In this work,
we additionally analyze the complex spectral mapping-based TF-GridNet
model, whose initial SI-SDR-mix is lower (around 5 dB), and show that it also
converges toward the input mixture before learning to separate sources. This
reveals a general pattern: RemixIT and Self-Remixing first produce outputs
close to the mixture, then gradually improve separation. Their effectiveness
across different architectures and estimation methods (masking and mapping)
suggests that these approaches are broadly applicable. Audio examples from
this analysis are available on our demo page.’

Shttps://kohei0209.github.io/selfremixing-demo/analysis.html
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3.2 Remixing Algorithms for Stabilizing Training

The analysis in the previous section suggests that RemixIT and Self-Remixing
can operate effectively without any pre-training. However, our preliminary ex-
periments reveal that both algorithms can suffer from instability when trained
from scratch. This section analyzes the cause of this instability and introduces
methods to improve training stability.

3.2.1 Channel Shuffle (CS)

A key limitation of Self-Remixing is the presence of a trivial solution, where
no actual separation occurs. Since Self-Remixing utilizes the input mixture as
supervision, the model can minimize the loss by outputting the input mixture
on one channel and zeros on the others (e.g., 5,1 = x and 8 21 = 0).

To mitigate this issue, we introduce channel shuffle (CS), a simple yet ef-
fective technique that randomly permutes the order of output channels before
batch shuffling (Equation (5)). This approach is motivated by our observa-
tion that, when the model goes towards the trivial solution, the channel that
outputs the mixture and the ones that output zero signals remain consistent
regardless of the input. By applying channel shuffle, such channel-wise bias is
mitigated, making it less likely for the model to converge to a trivial solution.
Formally, we apply a random permutation matrix A, € RE*X to each sample
b:

5y« Ap3y € REXT, (11)

We demonstrate that this simple modification substantially improves the sta-
bility of Self-Remixing and enables successful training from scratch.

3.2.2 Constrained Batch Shuffle (CBS)

In standard RemixIT, the permutation matrix II, used in batch shuffling
(Equation (5)) is selected randomly, which can result in pseudo-mixtures that
contain sources originating from the same original mixture. This is particu-
larly problematic during training from scratch. Consider a teacher model fr
with three output channels (N7 = 3), randomly initialized. Based on our
earlier findings (Section 3.1), the outputs initially resemble scaled versions
of the input mixtures. Consider the case where sources to be remixied are

S 1 L) am _ 1
3

1 = 371, S = %932, and § = gzw2. In this example, the resulting

pseudo-mixture, & = %xl + %xQ, contains two sources from the same origi-
nal mixture 3. The RemixIT loss would then encourage fs to separate %xz
into two %xg, which does not lead to meaningful separation and may hinder

training.
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To address this, we introduce constrained batch shuffle (CBS), which per-
forms the batch shuffle while enforcing a constraint: sources from the same
original mixture must not be remixed together. Empirically, we found CBS
essential for stabilizing RemixIT training from scratch. To satisfy the con-
straint, the batch size B needs to be at least the number of remixed sources
K (i.e., B > K), but this is a reasonable assumption in practice, as K is
typically small (e.g., three or four).

Although Self-Remixing does not strictly require this constraint to func-
tion, CBS still improves its training stability. Since Self-Remixing aims to
reconstruct the original mixtures, it encourages the model to separate T into
%xl, %x% and zero, thereby improving separation performance. However, with
random batch shuffle, there is a non-negligible chance that the pseudo-mixture
is identical to the original input mixture (e.g., all 50 — %:1:1, yielding & = 7).
Such cases are undesirable for both Self-Remixing (as well as RemixIT), as the
model is trained to replicate the input. These degenerate cases become more
frequent with smaller batch sizes. In our experiments, stable training with
random batch shuffling required a relatively large batch size of at least B = 32.
In contrast, CBS requires only B > K, which is much more practical.

4 Appropriate Loss Function for Remixing-based Methods

We empirically found that RemixIT and Self-Remixing underperform in cer-
tain evaluation metrics, such as perceptual evaluation of speech quality
(PESQ) [29] and WER, compared to supervised learning, despite achieving
comparable performance in SI-SDR. In this section, we investigate the root
cause of this performance degradation and propose a solution to mitigate it.

In unsupervised sound separation, the thresholded negative SNR [55] be-
tween the reference signal y and its estimate g has typically been adopted as
the loss function L:

X llyll*
LSNR(yay) = _1010g10 Hy — QHQ + 7_||y||2 : (12)

By design, SI-SDR is sensitive to phase errors, while metrics such as PESQ and
WER are more influenced by the accuracy of the magnitude spectrum. While
the SNR loss penalizes both magnitude and phase discrepancies, inaccurate
phase estimation can lead to degraded magnitude estimation, as discussed in
Section III-A of [51]. Since phase estimation is generally more challenging
than magnitude estimation, reliance on SNR loss can result in suboptimal
PESQ and WER scores.

Although this issue has been discussed in the context of supervised
learning, we argue that remixing-based methods such as RemixIT and Self-
Remixing are even more susceptible to this problem. In RemixIT, the stu-
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dent model must predict the distorted outputs of the teacher model from
distorted pseudo-mixtures, making accurate phase estimation more difficult
than in supervised settings. In Self-Remixing, the model is tasked with re-
constructing the original mixtures from distorted pseudo-mixtures. Because
pseudo-mixtures in a mini-batch are processed independently and cannot lever-
age cross-sample information, phase estimation becomes especially difficult.
Based on this consideration, we attribute the degradation in PESQ and WER
in RemixIT and Self-Remixing to the inherent difficulty of accurate phase
estimation.

To address this issue, we explore two potential strategies. The first is to
disable CBS, thereby allowing sources separated from the same mixture to be
remixed. This can lead to partial cancellation of distortions when such sources
are combined, resulting in cleaner pseudo-mixtures that facilitate more accu-
rate phase estimation and, in turn, improve magnitude estimation. However,
while disabling CBS simplifies phase recovery, it introduces instability during
training.

The second strategy is to supplement the SNR loss with a magnitude-
based loss function. Prior work has shown that such loss functions are effec-
tive in improving PESQ and WER [51], and we hypothesize that they are
particularly beneficial in remixing-based methods where phase estimation is
inherently more difficult. Specifically, we adopt a composite loss that com-
bines a time-domain L1 loss with multi-resolution STFT-domain magnitude
L1 losses, referred to as the multi-resolution L1 (MRL1) loss® [6, 25, 5]:

M
Lairer (4, 9) = D G ()] = G (@] [+ lly — 911, (13)

where G is STFT with varying resolutions, and M is the number of reso-
lutions [58]. Given that RemixIT has a strong convergence property when
trained with L2-based loss functions (detailed in Section II-C of [45]), we
adopt a combined loss function that integrates both SNR and MRL1 losses:

Lsnr+Mri1 (Y, ) = Lenr (Y, §) + Larea (¥, 9)- (14)

In our experiments, we demonstrate that this combined loss function sig-
nificantly improves PESQ and WER, while only slightly reducing SI-SDR,
thereby providing a better balance across evaluation metrics in remixing-based
unsupervised learning.

6The computational complexity of the MRL1 loss is approximately O(M x W log W x
%), where W and S represent the window and shift sizes used in the STFT operation,
respectively. Although this is more computationally demanding than the SNR loss, which
has a complexity of O(T'), the cost of loss computation is much smaller than other operations
of the training pipeline, such as model forward pass or gradient computation.
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5 Experimental Setup

5.1 Tasks and Datasets

We conducted experiments on both speech separation and universal sound
separation (USS).

Speech separation: The model was trained to separate noisy, reverber-
ant two-speaker mixtures. We synthesized these mixtures by combining speech
signals from WSJO [10] and WSJ1 [20] with noise samples from CHiME3 [2],
all at a sampling rate of 8 kHz. This dataset, which we refer to as the WSJ-
mix dataset, closely follows the configuration of the SMS-WSJ dataset [8],
with modifications in reverberation times, noise types, and noise levels. The
acoustic field was simulated using Pyroomacoustics [37], with reverberation
times randomly selected between 0.2 to 1.0 seconds. The SNR of the noise
ranged between 10 and 20 dB. The dataset consisted of 33561 mixtures (~87.4
hours) for training, 982 mixtures (~2.5 hours) for validation, and 1332 mix-
tures (~3.6 hours) for testing.

USS: USS aims to develop a model capable of separating mixtures con-
taining arbitrary sound classes [16]. For this purpose, we utilized the free
universal sound separation (FUSS) dataset [52]. This dataset comprises mix-
tures containing between one and four sources, drawn from 357 different au-
dio classes. Each mixture is ten seconds long and sampled at 16 kHz. The
training, validation, and test sets consist of 20000, 1000, and 1000 mixtures,
respectively.

5.2 Separation Models

We employed two separation models in our experiments: Conformer [11] and
TF-GridNet [49].

Conformer: The Conformer [11] model, implemented based on the config-
uration in [3], consisted of approximately 21.6M parameters. It was composed
of 16 Conformer encoder layers, each with four attention heads, 256 atten-
tion dimensions, and 1024 feed-forward network dimensions. We replaced
the batch normalization [14] with group normalization [56] with eight groups.
The model took as inputs log-magnitude (or magnitude) spectrograms in the
STFT domain and output real-valued TF masks in speech separation (or USS).
The STFT used a 512-point FFT with a window size of 400 and a hop size of
160.

TF-GridNet: To evaluate the effectiveness of the proposed method
for mapping-based models, we utilized TF-GridNet [49], as implemented in
ESPnet-SE [18, 22]. A smaller variant of the model, with approximately 2.3M
parameters, was used in our experiments. The model configuration followed
the notation in Table 1 of [49], with parameters set to B = 4, D = 48,
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I =4,J =4, and H = 96. The input to the model consisted of the real
and imaginary parts of the STFT spectrograms, and the model estimated the
corresponding real and imaginary components for each separated source. The
STFT settings were identical to those used in the Conformer model.

5.3 Compared Methods

We compared the following methods to evaluate the effectiveness of the im-
provements introduced in this study.

MixIT: MixIT training was performed using Equation (2). The num-
ber of output channels, Ng, was set to 2K (six for WSJ-mix and eight in
FUSS). Mixture consistency [53] was enforced when using the SNR loss, but
not when using the MRL1 loss. To reduce training costs, we employed the
efficient MixIT loss [54] for experiments using the MRL1 loss. In preliminary
experiments, we confirmed that the original and the efficient MixIT losses
yielded comparable performance.

MixIT+HSparsity: The MixIT training was augmented with the sparsity
loss as defined in Equation (4). The sparsity loss weight v was set to four when
Ns = 6 (WSJ-mix) and 23 when Ng = 8 (FUSS), following [54]. Consistent
with [54], the model was first pre-trained without the sparsity loss before
applying it.

RemixIT: The RemixIT training employed Equation (6). We evaluated
the performance both by fine-tuning a MixIT pre-trained model and by train-
ing from scratch. For fine-tuning, the teacher and the student models were
initialized with the same pre-trained weights. In the exponential moving av-
erage (EMA) update defined in Equation (7), the decay factor a was set to
0.8.

Self-Remixing: The Self-Remixing training followed Equation (10) under
the same configuration as RemixIT.

Supervised RemixIT /Self-Remixing: Supervised version of RemixIT
or Self-Remixing serve as an upper bound for each method. Ground-truth sig-
nals were used instead of the outputs of f7 to create pseudo-mixtures. This
approach is similar to dynamic mixing methods [47, 60], but mixes reverberant
signals with different room acoustics. Note that the pseudo-mixture occasion-
ally became zero signals when using datasets containing zero signals as ground
truth (e.g., FUSS); such mixtures were discarded. Moreover, we applied a loss
function capable of handling zero references (Equation (2) of [52]), instead of
Equation (12).

MixPIT was excluded from the baselines because previous studies have
shown MixIT to outperform MixPIT [15]. Additionally, we did not consider
remix-cycle-consistent learning [30, 33], which is related to Self-Remixing but
shares parameters between 61 and s, and computes gradients through two
sequential separation and remixing processes. This method requires additional
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techniques (e.g., loss thresholding as in [32]) to function effectively in single-
channel setups, making stable training from scratch challenging. Furthermore,
recent RemixIT variants [19, 48] were excluded from comparison, as they
are specifically tailored for speech enhancement and less straightforward to
generalize to universal sound separation. Therefore, this study focuses on
comparing MixIT, RemixIT, and Self-Remixing.

5.4 Training and Evaluation Details

We used the AdamW optimizer [21] with a weight decay of le-2, and ap-
plied gradient clipping with a maximum norm of 5. Each input mixture was
normalized by subtracting its mean and dividing by its standard deviation.
Only the original mixtures x were normalized; pseudo-mixtures Z, generated
in RemixIT and Self-Remixing, were left unnormalized, as normalization of
was found to degrade performance in our experiments. The same normaliza-
tion procedure was applied when generating MoMs in MixIT. For experiments
using the MRL1 loss, we computed the loss across M = 3 resolutions with
the following configurations for (FFTsize, stride, window length) = (512, 160,
400), (1024, 320, 800), and (2048, 640, 1600). In inference, we averaged the
parameters of the five checkpoints that gave the best validation performance.

In speech separation experiments, the Conformer and TF-GridNet models
were trained for 600 and 400 epochs, respectively, with batch sizes of 32 (Con-
former) and 8 (TF-GridNet).” Each input segment was 7 seconds in duration.
The learning rate was linearly increased from 0 to 2e-4 (Conformer) or le-3
(TF-GridNet) over the first 5000 training steps, followed by decay by a factor
of 0.98 every three (Conformer) or two (TF-GridNet) epochs. For evaluation,
we selected the model checkpoint that achieved the highest SI-SDR on the
validation set.® Evaluation metrics included SI-SDR [38], short-time objec-
tive intelligibility (STOTI) [41], PESQ, and WER. WER was computed using
both the ASR backend provided in SMS-WSJ [8] and the Whisper Large v2
model [28]. Before Whisper-based evaluation, separated signals were upsam-
pled to 16 kHz.

In unsupervised USS experiments, we trained the Conformer model with
a batch size of 16 on 10-second input segments, for 400 epochs. The learning
rate schedule matched that used in the unsupervised speech separation exper-
iment. Evaluation metrics followed prior work [52, 54] and included: 1S, rep-
resenting the SI-SDR for single-source inputs; kSi, representing the SI-SDR
improvement (SI-SDRi) for k-source mixtures (k = 2, 3,4); MSi, representing

"For MixIT, we define one epoch as the number of training steps to process the entire
dataset twice because each MoM requires 2B examples to create B mixtures. This definition
ensures a consistent number of training steps across all methods.

8 Although using in-domain validation data with ground-truth signals is not feasible in
an unsupervised setup, we employed them for fair comparison across methods.
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the average SI-SDRi across multi-source mixtures; and TRF, representing the
total reconstruction fidelity with average performance over all test mixtures.

6 Experimental Results

6.1 Results of Unsupervised Speech Separation with Conformer

Table 1 presents the evaluation results of the Conformer model. We trained
the models using both the SNR loss (Equation 12) and the SNR+MRL1 loss
(Equation (14)). For RemixIT and Self-Remixing, we conducted experiments
both with and without the proposed CBS and CS mechanisms to assess the
effectiveness of the improved remixing strategy.

Table 1: Average SISDR [dB], STOI, PESQ, and WER [%)] of Conformer model on WSJ-
mix test set. Two WERs were obtained with ASR backend of SMS-WSJ and Whisper
Large v2, respectively. CBS and CS stand for constrained batch shuffle and channel shuffle
(Section 3.2), respectively.

SNR SNR + Multi-resolusion L1

Method CBS CS | SISDRT STOI" PESQ" WER* SISDRT STOI" PESQ' WER*!
Unprocessed - - -0.4 68.4 1.82 82.9 / 76.2 -0.4 68.4 1.82 82.9 / 76.2
A1 MixIT - - 8.8 84.7 2.54 42.3 / 22.2 9.0 84.7 2.61 40.8 / 24.3
A2 +Sparsity - - 8.6 84.3 2.51 44.8 / 22.8 8.3 83.0 2.56 43.6 / 26.1
A3 RemixIT No No Training failed Training failed

A4 RemixIT No  Yes Training failed Training failed

A5 RemixIT Yes No 10.8 89.0 2.84 474 / 16.7 10.6 89.2 2.98 31.2 /16.2
A6 RemixIT Yes  Yes 10.3 87.8 2.75 43.3 / 20.9 10.1 87.8 2.81 36.8 /19.8
A7 Self-Remixing No No Training failed Training failed

A8 Self-Remixing No  Yes 10.3 87.8 2.74 39.7 / 19.7 10.3 87.9 2.77 34.5 /19.5
A9 Self-Remixing Yes No Training failed Training failed

A10 Self-Remixing Yes  Yes 10.3 87.7 2.69 50.1 / 22.4 10.1 87.6 2.67 38.9 / 20.0
A11  +Self-Remixing  Yes No 10.5 88.3 2.75 50.9 / 19.0 10.4 88.4 2.77 34.6 / 17.5
Sup. RemixIT Yes No 10.9 89.6 3.01 30.9 / 16.1 10.8 89.6 3.00 26.6 / 14.6
Sup. RemixIT Yes  Yes 10.6 88.9 2.93 334 /176 10.5 88.8 2.89 30.3 / 16.9
Sup. Self-Remixing Yes No 10.9 89.7 3.02 31.0 / 15.7 10.9 89.7 2.96 27.5 / 14.6
Sup. Self-Remixing Yes  Yes 10.6 88.9 2.93 33.7 /175 10.6 88.9 2.87 30.7 / 16.6

We first examine the impact of the improved remixing algorithm. Figure 3
illustrates the training curves for RemixIT and Self-Remixing under different
configurations of CBS and CS. Figure 3 and Table 1 confirm that RemixIT
fails to converge without CBS (A3 and A4). In contrast, Self-Remixing is able
to work successfully without CBS (A8), but fails when CS is not applied (A7
and A9). These results highlight the crucial role of CBS and CS in ensuring
successful training from scratch.

Interestingly, comparing performance with and without CS reveals that
excluding CS leads to better overall performance. This may be attributed to
how well-trained separation models tend to assign speech and noise to distinct
output channels (e.g., channels 1 and 2 for speech, and channel 3 for noise).
When CS is applied, pseudo-mixtures can end up containing either only speech
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Figure 3: Validation SISDR of fs of RemixIT and Self-Remixing in early stage of training.
Conformer model and MRLI loss are used.

or only noise sources, introducing a mismatch relative to the original mixture
distributions. In contrast, without CS, pseudo-mixtures are more likely to
contain a realistic combination of speech and noise sources, reducing the dis-
crepancy between the original and pseudo-mixtures and thereby improving
separation performance. Although training Self-Remixing from scratch with-
out CS is unstable, a two-stage approach, training for 200 epochs with CS
(A10) followed by 400 epochs of fine-tuning without CS (A11), yields better
results than training for 600 epochs with CS alone (A10).

As discussed in Section 4, while CBS improves training stability, it de-
grades PESQ and WER performance (e.g., compare A8 vs. A10 under SNR
loss). However, this issue can be mitigated by incorporating the MRL1 loss.
As shown in Table 1, the use of the combined SNR4+MRL1 loss consistently im-
proves PESQ or WER across most methods. Although similar improvements
are observed in supervised settings, the effect is particularly pronounced in
unsupervised RemixIT and Self-Remixing, demonstrating the effectiveness of
incorporating an amplitude-based loss in remixing-based frameworks.

6.2 Results of Unsupervised Speech Separation with TF-GridNet

Table 2 presents the evaluation results of the TF-GridNet on the WSJ-mix test
set. In all experiments, we employed the SNR+MRLI loss, as its effectiveness
was confirmed in the previous section. CBS was also always applied due to
the small batch size (eight) used in this setting.

The effect of CS follows a similar trend to the Conformer experiments.
While overall performance is consistently better when CS is not applied, it
facilitates the successful training of Self-Remixing. This pattern holds across
all scenarios: pre-training with MixIT followed by fine-tuning with RemixIT
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Table 2: Average SISDR [dB], STOI, PESQ, and WER [%] of TF-GridNet model on
WSJ-mix test set. Two WERs were obtained with ASR backend of SMS-WSJ and Whisper
Large v2, respectively. SNR + MRL1 loss was used, and constrained batch shuffle (CBS)
was always applied. CS stands for channel shuffle (Section 3.2).

Method epochs CS SISDRT STOI" PESQ' WER*

Unprocessed - - -04 68.4 1.82 829 /762
B1 MixIT 400 - 11.9 91.4 3.16 223 /7.7
B2 +RemixIT 1504250 No 12.9 92.6 3.27 21.1 /8.1
B3 +RemixIT 1504250  Yes 12.4 92.4 3.32 25.7 /8.3

B4 +Self-Remixing 150+250 No 13.1 93.0 3.41 22.7 /7.6
B5 +Self-Remixing 1504250 Yes 12.7 92.6 3.38 226 /7.8

C1 RemixIT 400 No 13.1 92.5 3.29 222 /7.7
C2 RemixIT 400 Yes 12.3 92.0 3.28 25.4 /8.5
€3 Self-Remixing 400 No Training failed

C4 Self-Remixing 400 Yes 12.7 92.6 3.40 21.6 /7.9
C5 +Self-Remixing 150+250 No 13.4 93.3 3.47 221 /7.4
Sup. RemixIT 400 No 13.5 93.7 3.55 19.7 / 6.8
Sup. RemixIT 400 Yes 12.7 93.0 3.45 18.4 /7.4
Sup. Self-Remixing 400 No 13.6 93.8 3.55 17.8 / 6.7
Sup. Self-Remixing 400 Yes 12.8 93.1 3.45 18.6 / 7.3

or Self-Remixing (B2-B5), training from scratch (C1-C5), and in supervised
setups.

In terms of separation performance, both RemixIT and Self-Remixing out-
perform MixIT. These methods are capable of separating not only speech but
also noise, which remains a limitation in MixIT (see the demo page for exam-
ples). Furthermore, RemixIT and Self-Remixing models trained from scratch
slightly outperform those fine-tuned from MixIT-pretrained models. We at-
tribute this to the fact that scratch-trained models avoid inheriting redundant
output channels that are often present in MixIT-pretrained models.

In contrast to the Conformer results, Self-Remixing with TF-GridNet
achieves better performance than RemixIT. This can be explained by the
nature of TF-GridNet, which is based on complex spectral mapping and can
jointly estimate both magnitude and phase, enabling more accurate recon-
struction of the original mixtures. Moreover, RemixIT relies on supervision
from a teacher model, which may introduce distortions due to its own separa-
tion process. In contrast, Self-Remixing constructs pseudo-mixtures without
relying on external separation outputs, avoiding such distortions and con-
tributing to its superior performance.

6.3 Results of Unsupervised Universal Sound Separation

Table 3 presents the evaluation results on the FUSS dataset. Considering that
TF-masking-based methods continue to demonstrate strong performance on
the USS task [27], we employed the Conformer model. In addition, CS was
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Table 3: Evaluation results of conformer models trained with SNR loss on FUSS test set.
CBS stands for constrained batch shuffle (Section 3.2). Channel shuffle was always applied
in RemixIT and Self-Remixing.

Best MSi Best TRF
Method epochs CBS 1S 2Si 3Si 4Si MSi TRF 1S 25i 3Si 4S8i  MSi TRF
D1 MixIT 400 - 9.5 98 144 159 132 122 9.5 9.9 143 158 132 122
D2 +Sparsity 3004100 - 152 123 15,5 16.6 147 148 | 180 123 155 165 14.7 15.6
D3 +RemixIT 3004+-50+50 No 292 149 16.1 158 156 19.2 | 329 152 16.1 15.3 155  20.0
D4 +RemixIT 300450450  Yes 292 150 165 16.0 158 194 | 31.5 151 161 15.6 156 19.9
D5 +Self-Remixing  3004+-50+50 No 272 149 16.9 17.0 162 19.1| 321 152 16.9 16.7 16.3 20.5
D6 +Self-Remixing 300450450  Yes 29.1 15.2 16.9 168 16.3 19.7 | 308 15.3 168 16.7 16.2 20.1
E1 RemixIT 400 Yes | 42.1 123 11.7 82 108 19.1 | 63.6 4.6 2.1 0.1 24 18.6
E2 Self-Remixing 400 Yes 294 147 162 136 148 187 | 344 148 159 131 14.6 198
E3 Self-Remixing 400 No 319 149 159 137 148 194 | 349 150 156 134 147 20.0
Sup. Self-Remixing 400 No 329 141 158 135 145 194 | 492 13.7 147 120 135 23.0

consistently applied throughout the USS experiments, as the gap between the
initial and pseudo-mixtures caused by CS is not a concern in this setting (see
Section 6.1 for discussion).

When training RemixIT from scratch, we observed an initial improvement
in separation performance, followed by degradation. This behavior can be
attributed to the fact that a large proportion of the mixtures (approximately
75%) contain fewer sources than the number of output channels. As discussed
in Section 2.4, RemixIT becomes unstable under such conditions.

The performance of MixIT was substantially improved by incorporating
the sparsity loss, likely due to the presence of additional output channels.
Compared to MixIT with sparsity (D2), Self-Remixing trained from scratch
(E2, E3) achieved comparable MSi but substantially higher 1S. Since MoMs
in MixIT always include mixtures of at least two sources, gains in 1S are
limited, even with the sparsity loss. Although the average MSi is similar
across methods, the composition of improvements varies: Self-Remixing excels
on mixtures containing two or three sources, whereas MixIT shows better
performance on mixtures with four sources.

In contrast to the results on WSJ-mix, the highest performance on FUSS
was achieved by fine-tuning models pre-trained with MixIT+sparsity by
RemixIT or Self-Remixing. These findings suggest that, in cases where MixIT
already achieves competitive or superior performance to RemixIT and Self-
Remixing, fine-tuning the MixIT pre-trained model is a highly effective strat-
egy.

7 Conclusion
To enhance the training stability and performance of Self-Remixing, we in-

troduced new remixing algorithms and appropriate loss functions. While
Self-Remixing originally relied on a pre-trained model, our detailed analy-
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sis revealed that the pseudo-mixtures generated in the early stages of training
resemble mixtures of mixtures (MoMs), suggesting that the method can, in
principle, be trained from scratch. Although we observed that training from
scratch often leads to trivial solutions, we successfully removed the need for
pre-training by introducing two novel remixing algorithms, channel shuffle
and constrained batch shuffle. Although we observe that Self-Remixing per-
forms poorly on metrics sensitive to amplitude estimation, through qualitative
analysis, we identify the cause and propose a loss function that emphasizes
amplitude reconstruction. This results in significant improvements in some

metrics such as PESQ and WER.
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