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ABSTRACT
Digital watermarking techniques are essential to prevent unautho-
rized use of images. Since pirated images are often geometrically
distorted by operations such as scaling and cropping, accurate
synchronization - detecting the embedding position of the water-
mark - is critical for proper extraction. In particular, cropping
changes the origin of the image, making synchronization difficult.
However, few existing methods are robust against cropping. To
address this issue, we propose a watermarking method that esti-
mates geometric transformations applied to a stego image using a
pilot signal, allowing synchronization even after cropping. A grid-
shaped pilot signal with distinct horizontal and vertical values is
embedded in the image. When the image is transformed, the grid
is also distorted. By analyzing this distortion, the transformation
matrix can be estimated. Applying the Radon transform to the
distorted image allows estimation of the grid angles and intervals.
In addition, since the horizontal and vertical grid lines are en-
coded differently, the grid orientation can be determined, which
reduces ambiguity. To validate our method, we performed simu-
lations with anisotropic scaling, rotation, shearing, and cropping.
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The results show that the proposed method accurately estimates
transformation matrices with low error under both single and com-
posite attacks.

Keywords: Image watermarking, pilot signal, Radon transform, geometric
transformation, cropping attack

1 Introduction

Digital watermarking, a technology for protecting digital content, is attracting
attention as the problem of image piracy and unauthorized use of images
becomes more serious. Digital watermarking [14] is a technique for covertly
embedding other information in digital content, such as still images, video, and
audio. The information to be embedded is called a watermark, and an image
with a watermark embedded is called a stego image. In multibit watermarking,
the information to be embedded is referred to as the message and the encoded
information is referred to as the watermark in order to distinguish between
them. By pre-embedding the owner’s ID or signature in images to be posted
on social media, the content can be controlled. For example, by detecting
a watermark in misused content, it is possible to claim true ownership of
the content. However, many pirated images are manipulated by scaling or
cropping. Additionally, images are compressed when saved. These attacks
on stego images, such as image manipulation and compression, can make the
watermark disappear or difficult to detect. Therefore, robust watermarking
methods against various attacks need to be considered.

Attacks on images are divided into non-geometric and geometric attacks.
Non-geometric attacks are those that change pixel values, such as JPEG
compression and noise addition. When a stego image is degraded by a non-
geometric attack, the embedded watermark is degraded. However, the coor-
dinates where the watermark is embedded remain unchanged. Therefore, the
watermark can be extracted from its original location and the exact message
can be decoded if the message is encoded using error-correcting codes [6] or
spread spectrum techniques [2, 15]. Many conventional methods are robust
against non-geometric attacks by introducing these techniques. Geometric
attacks are those that change the position of pixels, such as scaling, rotating,
or cropping an image. When a stego image is degraded by a geometric attack,
the coordinates of the embedded watermark are lost. Therefore, it is neces-
sary to detect the position of the watermark, i.e., to achieve synchronization.

Project Program, R04/B09 Research on Multifunctional Multimedia Production, of the
RIEC, Tohoku University. A part of the computations were performed using the supercom-
puter facilities at the Research Institute for Information Technology, Kyushu University.
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Watermarking using SIFT features [12] is one of the most robust methods
against geometric attacks. By embedding a watermark around multiple SIFT
feature points, resistance against geometric attacks can be achieved [3, 17, 16].
However, the detection performance is still insufficient.

Many conventional watermarking methods that claim robustness against
geometric attacks assume the use of clipped images for detection. It is im-
portant to distinguish between clipping and cropping [11]: clipping refers to
the process of padding certain regions of an image with zeros, whereby the
position of the watermark remains known because the location of the clipped
region is predetermined. In contrast, cropping involves the complete removal
of image regions, making it difficult to determine the location of the embedded
watermark. For example, Lin et al. [11] proposed an RST-resistant method
that embeds a watermark in the amplitude of the log-polar coordinates of the
Fourier transform. This method is resistant to rotation, scaling, and transla-
tion. However, it is not resistant to cropping. In the methods of Pereira [13]
and Pun and Kang et al. [7], an original image is padded to a fixed size and
then Fourier transformed, embedding both a template for detecting geomet-
ric transformations and a watermark in the coefficients. Similarly, the image
is padded to a fixed size and inversely transformed based on the transfor-
mation matrix obtained from the template when the watermark is extracted
from a geometrically transformed image. It is claimed that these operations
enable accurate detection of the watermark even from images that have un-
dergone geometric attacks and cropping. In addition, in the method of Hu
and Xiang [4], a watermark is embedded in the coefficients of the Zernike mo-
ments. Zernike moments not only have the property of being invariant with
respect to rotation, but they also become robust to scaling by normalizing
their amplitudes. However, a brute force search is required to synchronize
the images when using Fourier transforms or Zernike moments if the origin of
the attacked image changes due to cropping. Brute-force algorithms are often
employed to achieve synchronization, but such methods are computationally
expensive. Consequently, watermarking techniques that rely on brute-force
synchronization cannot be regarded as truly robust against geometric attacks.
Thus, effective estimation methods for geometric attacks involving cropping
have yet to be established. Section 7 of the survey paper [19] also states that
the problem of geometric attacks involving cropping is still a difficult problem.
If the type and strength of the geometric attack can be estimated, the position
of the watermark can be accurately determined, thereby reducing the number
of detection errors. Based on this idea, we focus on the communication chan-
nel estimation framework. Communication channel estimation schemes often
employ a technique that uses a pilot signal that is distinct from the actual
message. This pilot signal is degraded as it passes through a noisy communi-
cation channel, and the channel parameters can be estimated based on this
degradation. In our watermarking scheme, we introduced the concept of a
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pilot signal and proposed a method to embed it into an image [9, 8]. When
the stego image is subjected to an attack, the pilot signal is also degraded.
By analyzing the distortion of the pilot signal, the parameters of the attack
can thus be estimated.

Su et al. [18] proposed a watermarking method that incorporates pilot
signals. In their approach, the watermark is embedded in regions surrounding
SIFT feature points, and pilot signals are used as reference points to identify
these embedding regions. Accordingly, the watermark region can be located
by detecting the feature points associated with the embedded pilot signals.
However, their method uses the pilot signal only for synchronization purposes
and not for estimating the parameters of geometric attacks.

We focus on the fact that pilot signals can be used not only for synchro-
nization, but also for estimating the parameters of geometric attacks. To
enable the estimation of geometric transformations applied to an image using
pilot signals, it is essential to design an appropriate signal shape and select an
embedding domain that allows the effects of such attacks to be accurately de-
tected. In our previous work [8], we proposed a method for embedding a pilot
signal in the form of a grid. During detection, the extracted pilot signal was
projected in the vertical and horizontal directions, and the slopes and spac-
ings of the grid lines were measured from the histograms of signal intensity.
This approach enabled the estimation of geometric attacks, such as scaling
and rotation. In the proposed method, the grid-shaped signal is embedded in
the image as a pilot signal. When this signal is transformed using the Radon
transform, the slopes and intervals of the grid lines become measurable. Based
on these slopes and intervals, the transformation matrix corresponding to the
geometric attack can be estimated. Furthermore, by embedding pilot signals
with different values in the horizontal and vertical directions, the orientation
of the orthogonal grid lines can be uniquely determined. In this paper, we
propose a method for detecting a degraded pilot signal and estimating the
geometric transformation matrix from a geometrically attacked stego image.
The effectiveness of the proposed method is demonstrated by computer simu-
lations, which confirm the accurate estimation of the transformation matrix.
We demonstrate that it is possible to estimate individual transformations, in-
cluding shear, scaling, and rotation transformations, as well as their composite
transformations.

This paper is organized as follows: Section 2 provides an overview of the
proposed method. Section 3 details the performance evaluation of attack
estimation. Section 4 presents the performance evaluation of applying the
method to a watermarking method. Section 5 concludes the paper.
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2 Proposed Method

In the proposed method, the geometric attack applied to the stego image can
be estimated using a grid-shaped pilot signal. Once this signal is distorted by
the geometric attack, the slope and interval of the grid lines change. These
changes can be detected by Radon transform of the signal.

2.1 Procedure for Embedding a Pilot Signal

The original color image is decomposed into its YUV components, and the
watermark is embedded into the Y-component, the luminance value, using the
QIM [1]. The pilot signal is embedded into the V- or U-component to avoid
degradation of the watermark. In the following description, the U-component
is chosen. Let the image size be Lw × Lh pixels and the pixel value of the
U-component at the coordinate (x, y) be U(x, y). Here, the embedded area
of the pilot signal is shown in Figure 1. The width and interval of each color
grid line are 5 and γ = 100 pixels, respectively. The proposed pilot signal is
a three-valued signal with the values −1, 0, and +1. The vertical and hori-
zontal directions are distinguished by grid lines with different combinations
of values. Specifically, the vertical consists of lines with values of −1 and 0.
The horizontal consists of lines with values of 0 and +1. The blue areas are
filled with the value −1, the pink areas are filled with the value 0, and the
green areas are filled with the value +1. The overlapping areas in purple are
filled with alternating values of −1, 0, and +1. The pixel values in the other
areas remain unchanged.

Figure 1: Embedded area of the pilot signal: Values −1, 0, and +1 are embedded in the
blue, pink, and green areas as a pilot signal.

With the QIM embedder [1], the pilot signal is embedded by quantizing
the pixel value with step width ∆. Then, the pilot signal value p ∈ {−1, 0,+1}
can be embedded in the pixel value U(x, y). Let U ′(x, y) be the pixel value
after embedding. It is given by
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U ′(x, y) = ∆

(⌊
U(x, y)

∆
− p+ 1

3
+ 0.5

⌋
+

p+ 1

3

)
, (1)

where ⌊·⌋ denotes the floor function. In this paper, the step size is set to
∆ = 9. Since the usual QIM embedder uses a non-negative integer as the
embedding value p, this method uses p+ 1 as a modified version.

2.2 Attack Estimation Method

The extracted signal p̂(x, y) ∈ {−1, 0,+1} of the tri-level by the QIM extrac-
tor [1] is extracted from a U-component image U ′(x, y) of a stego image. The
extracted signal p̂(x, y) is given by

p̂(x, y) =

(⌊
3U ′(x, y)

∆
+ 0.5

⌋
mod 3

)
− 1. (2)

The process of subtracting 1 is appended to the extractor at the end of the
calculation, since the embedder has embedded the value of p+ 1.

Figure 2 shows an example of the extracted signal. The black, gray, and
white pixels in the figure represent the −1, 0, and +1 values extracted by the
QIM extractor (2). The signal contains both the grid-shaped pilot signal and
the original image component. Since the grid lines of the pilot signal appear as
straight lines, we can see that the geometric transformation can be estimated
by detecting them. In the proposed method, the grid lines with different
values are embedded in the vertical and horizontal directions. Specifically,
the vertical grid lines have values of −1 and 0, while the horizontal grid lines
have values of 0 and +1. Therefore, the extracted signals are divided into
two groups to detect the slope and interval of the grid lines. This allows the
transformation matrix to be estimated.

Figure 2: Example of extracted signal: black, gray, and white pixels represent the −1, 0,
and +1 values extracted by the QIM extractor.

2.2.1 Radon Transform

By Radon transforming the extracted signal p̂(x, y), the location and slope of
the grid lines of the pilot signal can be detected [8]. The Radon coefficient
R(ϕ, ρ) can be calculated by
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R(ϕ, ρ) =

∫ ∞

−∞
p̂ (ϕ cos θ − u sin θ, ϕ sin θ + u cos θ) du, (3)

where ρ is the projection position and ϕ is the projection angle. The range
of the projection angle of the Radon transform is 0 ≤ ϕ ≤ 180 degrees, since
the intensity distribution is rotationally symmetric. In the proposed method,
since the pilot signal is embedded in the grid structure, a strong intensity of
the Radon coefficients can be obtained by line integration in the direction
parallel to the grid orientation. This property can be used to estimate the
rotation angle.

Figure 3 shows the Radon coefficient for the extracted signal. The horizon-
tal and vertical axes represent the projection angle and position, respectively.
A series of strong intensity points can be seen at 60 and 150 degrees. A
schematic of this is shown in Figure 4. These strong intensities appear at two
angles ϕ1 and ϕ2 (ϕ1 < ϕ2). These angles are called detection angles. They
represent the slopes of the grid lines in the two directions. In addition, at each
detection angle, strong intensities appear at equal intervals in the direction of
the projection position. We call these intervals the detection intervals, γ1 and
γ2, since they represent the intervals of the grid lines in the two directions.

Figure 3: Radon coefficient for the extracted signal: horizontal and vertical axes represent
the projection angle and position, respectively.
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Figure 4: Schematic drawing of Radon coefficient: detection angles and detection intervals
are shown.

2.3 Finding Detection Angles

2.3.1 Variance of Radon Coefficient

First, we find the detection angles ϕ1 and ϕ2 from the Radon coefficients.
Focusing the Radon coefficients R(ϕ1, ρ) and R(ϕ2, ρ) on the detection angles,
strong intensities appear at equal intervals. Therefore, the variances of the
Radon coefficient are calculated for all projection angles ϕ, and if the angles
with the largest variance are selected, they should be the detection angles
ϕ1 and ϕ2. Then the numerical differentiation of the variances of the Radon
coefficient is performed, and the detection angles are found by performing
the zero crossing on the derivative values. Let Vϕi

= Varρ [R(ϕi, ρ)] be the
variance of the Radon coefficient with respect to ρ at the i-th projection
angle ϕ. Figure 5 (a) shows an example of the variance Vϕi of the Radon
coefficient. The vertical axis represents the variance, while the horizontal
axis represents the projection angle ϕ. Two prominent peaks are observed at
certain projection angles. Let the detection angle ϕ1 or ϕ2 be the angle ϕi

that satisfies the following conditions:

dVϕi−1
dVϕi+1

< 0, (4)

where dVϕi
is the discrete difference of the variance Vϕi−1

and Vϕi+1
at the

projection angle ϕi, as defined by

dVϕi
=

Vϕi+1
− Vϕi−1

2
. (5)
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(a) Original. (b) Normalized Radon coefficient.

(c) Radon coefficients with values below the
threshold set to zero.

Figure 5: Variances of Radon coefficients.

2.3.2 Discrimination of Grid Lines in Two Directions

One of the obtained detection angles ϕ1 and ϕ2 represents the detection angle
ϕv for vertical grid lines, and the other represents the detection angle ϕh for
horizontal grid lines. In the proposed method, the grid lines are embedded
with different values in the vertical and horizontal directions, so that they
can be distinguished. Since the extracted signal p̂(x, y) contains both the
vertical and horizontal pilot signals as well as the original image components,
it is necessary to distinguish between them. The Radon coefficients at the
detection angles ϕ1 and ϕ2 are normalized. The normalized Radon coefficient
Rn(ϕ, ρ) is given by

Rn(ϕ, ρ) =
R(ϕ, ρ)− µ

σ
, (6)

where µ and σ are the mean and standard deviation of the Radon coefficients.
Figure 5 (b) shows the normalized Radon coefficients at the detection angle
ϕ. The horizontal axis represents the projection position. Since the coefficient
values on the pilot signal take on large intensities, coefficient values with small
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intensities below the threshold can be considered as components derived from
the original image. These values should be set to 0. The Radon coefficient
R̃(ϕ, ρ) without the original image component is given by

R̃(ϕ, ρ) =

{
0, |Rn(ϕ, ρ)| ≤ 1.5

Rn(ϕ, ρ), otherwise
. (7)

Remember that the vertical grid line p(x, y) consists of values of −1 or
0, and the horizontal one consists of values of 0 or +1. In other words, the
Radon coefficients at the vertical detection angle ϕv appear with periodic
negative peaks, while the coefficients at the horizontal detection angle ϕh

appear with periodic positive peaks, as shown in (c). Therefore, the vertical
detection angle ϕv and the horizontal detection angle ϕh can be determined
by comparing the number of occurrences of the positive and negative peaks.

2.4 Finding Detection Intervals

Next, the detection intervals γv and γh are estimated from the extracted signal
p̂(x, y) in (2). The extracted signal consists of three values and contains an
original image component. Therefore, the extracted signal is divided into the
vertical signal p̂v(x, y) and the horizontal signal p̂h(x, y), and the detection
interval is calculated for each detection direction. The vertical and horizontal
signals are given by

p̂v(x, y) =


−1, p̂(x, y) = −1

+1, p̂(x, y) = 0

0, p̂(x, y) = +1

, (8)

and

p̂h(x, y) =


0, p̂(x, y) = −1

−1, p̂(x, y) = 0

+1, p̂(x, y) = +1

, (9)

The vertical grid lines take the values of −1 and 0. The value of +1 is
derived from the original image. Therefore, the component derived from the
original image is converted to p̂v(x, y) = 0, and the components derived from
the grid lines are converted to take positive and negative values. Similarly,
the horizontal grid lines take on values of 0 and +1. The value of −1 is
derived from the original image. Therefore, the component derived from the
original image is converted to p̂h(x, y) = 0 and the component derived from
the grid lines is converted to take positive and negative values. Normalizing
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the vertical and horizontal signals by (p̂v(x, y)− µv) /σv improves the signal-
to-noise ratio because many of the original image-derived components are
close to zero, where µv and σv are the mean and standard deviation of the
vertical signal. The same applies for the horizontal signal.

The following is a description of the processing for vertical signals, but the
process is the same for horizontal signals. The converted vertical signal p̂v(x, y)
is Radon transformed by (3) and normalized by (6). In addition, the original
image components are removed by (7). The autocorrelation of the Radon
coefficient R̂n(ρ, ϕ) is calculated. The periodic peaks of the autocorrelation
are detected. The method of estimating the grid interval from autocorrelations
was proposed in our previous paper. For further details, see Ref. [9]. Here,
we provide an overview of the procedure.

A discrete Fourier transform (DFT) is performed on the autocorrelation
coefficients. From the peak frequencies of the power spectrum of the DFT
coefficients, the base frequency f0 can be calculated, which is the inverse of
the grid interval. However, the real frequencies are not exactly odd multiples,
because they contain noise. Therefore, if there is a frequency f among the
detected frequencies that satisfies 0.9nf0 ≤ f ≤ 1.1nf0 for an odd integer n,
then the frequency f is considered to be an odd multiple of the frequency f0.
Consequently, the grid interval can be estimated by γv = 1

f̂0
.

2.5 Estimating Transformation Matrix

The next step is to compute the transformation matrix T using the detection
angles ϕv, ϕh and the detection intervals γv, γh. Note that there is a difference
between the coordinate system of the Radon coefficients and that of the image.
The transformed detection angles ϕv, ϕh are shown in Figure 6. The direction
of rotation associated with the transformation matrix is counter-clockwise,
whereas the projection angle in the Radon transform rotates clockwise. It is
therefore necessary to take this difference into account when estimating the
transformation matrix. Suppose the coordinates A(1, 0) on the horizontal sig-
nal and B(0, 1) on the vertical signal are transformed using the transformation
matrix T , and the transformed coordinates are A′(xa, ya) and B′(xb, yb). In
this case, the transformation matrix T is given by

T =

(
xa xb

ya yb

)
. (10)

Let α be the angle between the x-axis and the line OA′ and β be the angle
between the x-axis and the line OB′. The angles α and β correspond to the
angles of the horizontal and vertical signals transformed by the matrix T .

Let us derive the relationship between the detection angles ϕv, ϕh and the
angles α, β. The range of the projection angle of the Radon transform is from
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Figure 6: Coordinate transformation using transformation matrices.

0 to 180 degrees. As shown in Figure 6 (b), if both angles α and β are between
0 and 180 degrees, then the detected angle ϕv is less than the detected angle
ϕh. As shown in (c), if the angle β is less than 0 degrees, the detected angle
ϕv is greater than the detected angle ϕh. Accordingly, we obtain the following
equation;

(α, β) =

{ (
π
2 − ϕv,

π
2 − ϕh

)
, ϕv < ϕh(

3π
2 − ϕv,

π
2 − ϕh

)
, otherwise

. (11)

Note that since the pilot signal is point symmetric, it is not possible to distin-
guish between the true angle of rotation and an angle rotated by 180 degrees.

Next, we calculate the coordinates A′ and B′ using the detection intervals
γv, γh and α, β. As shown in Figure 7, the distance between the lines OB′ and
A′C represents the detection interval γv, while the distance between the lines
OA′ and B′C represents the detection interval γh. Furthermore, the angle
between the lines OA′ and OB′ is given by |β − α|. Therefore, the lengths of
the segments OA′ and OB′ are given by

|OA′| = γh
sin |β − α|

, |OB′| = γv
sin |β − α|

. (12)
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Figure 7: Relationship between the segments OA′ and OB′, the detection intervals γv and
γh, and the angles α and β: the lengths of the segments are determined by the detection
intervals and angles.

Accordingly, the coordinates A′(xa, ya) and B′(xb, yb) are given by

xa = |OA′| cosα =
γv cosα

sin |β − α|
, (13)

ya = |OA′| sinα =
γv sinα

sin |β − α|
, (14)

and

xb = |OB′| cosβ =
γh cosβ

sin |β − α|
, (15)

yb = |OB′| sinβ =
γh sinβ

sin |β − α|
. (16)

Finally, we obtain the estimated transformation matrix as

T̂ =

(
γv cosα
sin |β−α|

γh cos β
sin |β−α|

γv sinα
sin |β−α|

γh sin β
sin |β−α|

)
. (17)

3 Evaluation of the Proposed Method

In order to validate the correctness of the estimated transformation matrix
T̂ , computer simulations are performed. The accuracy is evaluated by the
relative error of the estimated matrix given by
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E
(
T̂ ;T

)
=

∥T̂ − T ∥F
∥T ∥F

, (18)

where ∥ · ∥F is the Frobenius norm, and that for the m × n matrix T = [tij ]
is defined in

∥T ∥F =

√√√√ m∑
i=1

n∑
j=1

|tij |2. (19)

3.1 Experimental Conditions

The proposed method is designed for color images. To demonstrate its appli-
cability to photos taken with a smartphone, six high-resolution IHC standard
images [5] (4608×3456 pixels) were used for evaluation. We also included ten
lower-resolution Kodak Lossless True Color images [10] (768×512 or 512×768
pixels), which are commonly used in conventional studies for evaluation pur-
poses. A geometric attack, denoted by the transformation matrix T , was
applied to the stego image. After the transformation, the center of the image
was cropped. The cropping size was 1080 × 1080 pixels for IHC standard
images and 256 × 256 pixels for Kodak images. The pilot signal is designed
to be point-symmetric, so the true angle can be estimated by adding 180 de-
grees. In this case it is also considered as the correct value. Therefore, after
estimating two different transformation matrices, the one with the smaller
relative error with respect to the Frobenius norm was used as the estimated
matrix. For each attack, the accuracy of the estimated transformation matrix
was evaluated based on its relative error across these cropped images.

3.2 Grid Interval Determination

The grid interval is an important factor that directly affects the performance of
the proposed method. The appropriate grid interval depends on the cropping
size because geometric transformations change the size of the image, and
cropping may result in the loss of grid lines. A narrow grid interval enables
the detection of more grid lines after an attack but decreases image quality.
Conversely, a wider interval increases the risk of failing to detect enough
grid lines. Therefore, the appropriate grid interval must be determined for
high- and low-resolution images, considering the accuracy of the estimated
transformation matrix and the resulting image quality.

To determine the grid interval, pilot signals with various intervals ranging
from 40 to 120 pixels were embedded. Also, the grid line width is 5 pixels. The
transformation matrix was estimated from images that were only cropped; no
geometric attacks were applied. Figure 8 shows the relative error of the esti-
mated transformation matrix for different grid intervals in order to determine
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(a) Results for high-resolution images.

(b) Results for low-resolution image.

Figure 8: Accuracy of the estimated transformation matrix for (a) high-resolution and (b)
low-resolution images.

the appropriate one. (a) shows the results for high-resolution images, and
(b) shows the results for low-resolution images.The horizontal axis represents



16 Kawano and Kawamura

the grid interval, and the vertical axis represents the relative error. The box-
and-whisker diagram for each grid interval shows the statistics of the images.
The orange lines show the median values. If no pilot signal is detected in the
cropped image, it is excluded from the statistics. In low-resolution images,
the pilot signal could not be detected in one image with a grid interval of 80
pixels and in two images with a grid interval of 120 pixels. The pilot signal was
detectable in the other images. As a result, the interval could be estimated
with a small relative error for high-resolution images with large cropping sizes,
even when the grid interval was large. Conversely, for low-resolution images
with small cropping sizes, the relative error increased when the grid interval
was 80 pixels or more. In both cases, the peak of the Radon coefficient dou-
bled due to the grid width being 5 pixels when the interval was 30 pixels or
less. This resulted in a false detection.

Figure 9 shows the PSNR versus the grid interval. When the grid interval
is narrower, more grid lines are embedded. Thus, image quality degrades.
However, since the area of embedded grid lines per unit area is constant, the
image quality stays the same across resolutions. The image quality should
be high, and the estimation matrix should have a sufficiently small relative
error. It should also be assumed that the image will be distorted. Therefore,
we empirically selected grid intervals of 50 and 100 pixels for low- and high-
resolution images, respectively. The average PSNR was 40.6 dB for the low-
resolution images and 43.6 dB for the high-resolution images.

Figure 9: PSNR for different grid intervals in high- and low-resolution images.
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3.3 Estimated Matrix for Single Attack

The estimated matrix is evaluated by applying a single attack. The stego im-
age is subjected to one of the following attacks: anisotropic scaling (Sx, Sy),
rotation θr, or shearing θy. Additionally, it is cropped. Table 1 shows the
parameters of each attack. For the evaluation of anisotropic scaling, the scal-
ing rate Sx along the x-axis is fixed at Sx = 1.0 and only the scaling rate Sy

along the y-axis is varied. Similarly, for symmetry, we consider only y-axis
shear transformations.

Table 1: Attack parameters.

Type of attack Parameter values
Anisotropic scaling Sx = 1.0, Sy = 0, 1, 0.2, · · · 2.0
Rotation θr = 0, 5, 10, · · · , 90
Shearing θx = 0, θy = 0, 5, 10, · · · , 80

The transformation matrix for applying anisotropic scaling is given by

Tm =

(
Sx 0

0 Sy

)
. (20)

The relative error E
(
T̂ ;Tm

)
to this matrix is shown in Figure 10. (a)

shows the results for high-resolution images and (b) shows the results for
low-resolution images. The horizontal axis represents the scaling rate Sy, and
the vertical axis represents the relative error. The box-and-whisker diagram
for each scaling rate Sy shows the statistics for the images. However, if the
pilot signal could not be detected, the result is excluded from the statistics.
The orange lines show the median values. The relative error was 0 for almost
all of the high-resolution images when the scaling rate Sy was between 0.2
and 1.9. When the scaling rate was 0.1, the relative error was larger because
the detection angles could not be detected in two of the six images. When
the scaling rate is small, the reason for failing to detect the pilot signal is
the difficulty in estimating the detection interval due to the thinner grid lines.
When the scaling rate is small, the reason for the pilot signal detection failure
is the difficulty in estimating the detection interval due to the thinner grid
lines. On the other hand, when the scaling rate is large, the reason for failing
to detect the pilot signal is due to the reduced number of grid lines in the
cropped image. If the number of grid lines in the cropped image is small, the
detection angle and detection interval are likely to be incorrect due to the
original image component. On the other hand, the relative error was nearly
zero for many low-resolution images when the scaling rate Sy was between
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(a) Results of high-resolution images.

(b) Results of low-resolution images.

Figure 10: Anisotropic scaling estimation results: relative error versus scaling rate is shown.

0.4 and 1.3. However, the matrix could not be estimated for one out of ten
images at scaling rates of 0.1, 0.2, 1.9, and 2.0. Matrix estimation is more
difficult for low-resolution images than for high-resolution ones because there
are fewer grid lines in the cropped image.
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Next, the results for the rotational attack are shown. The transformation
matrix of the rotation transformation is given by

Tr =

(
cos θr − sin θr

sin θr cos θr

)
, (21)

where θr is the rotation angle. The relative error for the estimated rotation
transformation matrix is shown in Figure 11. (a) shows the results for high-
resolution images and (b) shows the results for low-resolution images. The
horizontal axis represents the rotation angle θr and the vertical axis represents
the relative error E

(
T̂ ;Tr

)
. For the rotation angle θr shown in Table 1, the

results for images are shown as box-and-whisker plots. The orange lines are
the median values. As a result, for the high-resolution images, the relative
error was nearly zero for rotation angles ranging from 0 to 90 degrees. Con-
versely, for low-resolution images, the median relative error was nearly zero
for all angles. In other words, at least half of the angles could be estimated
correctly. However, the number of cases with large estimation errors increased
due to the small cropping size.

Next, the results for the shear attack are shown. The transformation
matrix of the shear transformation in the y-direction is given by

Ty =

(
1 0

tan θy 1

)
, (22)

where θy denotes the shear angle in the y-direction. Similarly, the shear
transformation in the x-direction is represented by the shear angle θx. The
relative error of the shear transformation matrix is shown in Figure 12. (a)
shows the results for high-resolution images and (b) shows the results for low-
resolution images. The horizontal axis represents the shear angle θy along
the y axis, and the vertical axis represents the relative error E

(
T̂ ;Ty

)
. The

results for images are shown as box-and-whisker plots for the shear angle θy
in Table 1. As a result, the relative error was nearly zero for high-resolution
images at shear angles below 70 degrees, and nearly zero for low-resolution
images at angles below 65 degrees.

3.4 Estimated Matrix for Composite Attacks

We evaluate the estimated transformation matrix for a composite attack. De-
graded stego images were generated by applying the composite attack of scal-
ing, rotation, and shearing. After geometric transformation, a cropping at-
tack was also applied to the image. The proposed method was applied to the
cropped image and the transformation matrix was estimated by extracting
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(a) Results of high-resolution images.

(b) Results of low-resolution images.

Figure 11: Rotation angle estimation results: relative error versus rotation angle is shown.

the pilot signal. The first attack is represented by a transformation matrix T1.
Similarly, the second and third attacks are represented by matrices T2 and T3,
respectively. The combined attack is given by the matrix Tc = T3T2T1. The
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(a) Results of high-resolution images.

(b) Results of low-resolution images.

Figure 12: Shearing angle estimation results: relative error versus shearing angle is shown.

combinations of transformation matrices T1, T2, and T3 are shown in Table 2.
Note that in the composite attack, the results vary depending on the order of
the transformations. Since there are many possible combinations of attacks,
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we performed the twelve composite attack patterns listed in Table 2. The pres-
ence of the parameters Sx and Sy in the table indicates that a scaling attack
was applied. Similarly, the presence of the parameter θr indicates a rotation
attack. If the parameters θx or θy appear, they indicate that a shear trans-
formation was applied. In the example of Pattern 1, the stego image is first
transformed by a shear transformation in the y-direction, represented by the
transformation matrix T1. It is then transformed by a scaling transformation
represented by T2, and finally by a shear transformation in the x-direction
represented by T3. These matrices are given by

T1 =

(
1.0 0.0

tan 50π
180 1.0

)
, T2 =

(
0.6 0.0

0.0 1.1

)
, T3 =

(
1.0 tan 65π

180

0.0 1.0

)
. (23)

Table 2: Combination of attacks: Three attacks were applied in the order T1, T2, T3.

pattern 1 pattern 2 pattern 3
T1 θy = 50 θr = 30 θy = 40

T2 Sx = 0.6, Sy = 1.1 θx = 30 Sx = 1.5, Sy = 1.3

T3 θx = 65 θy = 65 θx = 25

pattern 4 pattern 5 pattern 6
T1 θx = 60 Sx = 0.8, Sy = 1.4 θy = 20

T2 Sx = 1.3, Sy = 0.5 θr = 250 θx = 55

T3 θy = 70 θy = 15 θr = 355

pattern 7 pattern 8 pattern 9
T1 θy = 70 Sx = 1.9, Sy = 1.5 Sx = 0.7, Sy = 1.1

T2 θr = 195 θx = 45 θr = 215

T3 Sx = 1.2, Sy = 1.5 θy = 55 θx = 60

pattern 10 pattern 11 pattern 12
T1 θy = 30 Sx = 0.9, Sy = 0.5 Sx = 0.6, Sy = 1.1

T2 θx = 65 θr = 245 θy = 60

T3 θr = 105 θx = 20 θy = 0

Figure 13 shows examples of these transformations. An image with a grid
is shown in (a), the result of applying transformation Pattern 6 to this image
in (b), and the result of applying transformation Pattern 11 in (c). The
image transformation may result in thinner grid lines, which may make it
more difficult to detect the lines.
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(a) Original image. (b) Image transformed using
Pattern 6.

(c) Image transformed using
Pattern 11.

Figure 13: Examples of successful and unsuccessful estimation of combined attacks.

The relative errors of the estimated transformation matrices for various
composite attacks are shown in Figure 14. (a) shows the results for high-
resolution images and (b) shows the results for low-resolution images. The
horizontal axis of the figure represents the number of attack patterns, and
the vertical axis represents the relative error. The results for each attack are
shown as box-and-whisker plots. The results were generally good for the high-
resolution images, including those subjected to strong composite attacks, as
shown in Figure 13 (c). However, there were many large relative errors for
the low-resolution images, though the median relative error was nearly zero.
Additionally, the matrix could not be estimated for seven out of ten images
for pattern 8, four out of ten for pattern 11, and two out of ten for pattern
12. We find it difficult to estimate the composite attacks in the case of small
cropping sizes.

4 Evaluation of the Watermarking Method with Attack Estimation

The proposed geometric attack estimation method can be introduced into con-
ventional watermarking methods. In this section, we extract the watermarks
from the attacked stego images and evaluate their error rates. The water-
marking method that uses SIFT feature points and DFT [9] is considered
tolerant of geometric transformations and cropping. In this method, the area
around the SIFT feature points of the original image is used as the embedding
region. The watermark is then embedded in a ring shape in the coefficients
obtained by the DFT of the region. This method has the advantage that the
watermark can be extracted even if the image is cropped. However, there is
a problem with the conventional method: watermarks are difficult to extract
when the shape of the embedding region is distorted by shearing or other
geometric attacks. To address this issue, we introduce our attack estimation
method. First, the transformation matrix is estimated from the attacked im-
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(a) Results of high-resolution images.

(b) Results of low-resolution images.

Figure 14: Estimation results for random attacks: the relative error of the estimation results
for each attack is shown.

age, as shown in Figure 15 (a). Next, the image is inverted to correct the
distortion, as shown in Figure 15 (b). Finally, the watermark is extracted
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(a) Attacked image. (b) Inverse transformed image.

Figure 15: Example of an attacked image and its inverse transformed image: This figure
shows a degraded image after shearing with an angle of Sy = 30 degrees and cropping to a
size of 1080× 1080 pixels. Margins resulting from the inverse transformation are filled with
black.

from the inverse transformed image. We evaluate the bit error rate (BER) of
the estimated watermarks. We also quantitatively evaluate the image quality
using PSNR when both the watermarks and the pilot signal are embedded.

This watermarking method [9] has a limitation. The watermark is embed-
ded in a region ranging from 120 to 180 pixels on each side around the SIFT
feature point. To extract the watermark, two or more watermarked regions
must be included. Therefore, the cropping size must be large enough. Thus,
this section only applies the method to high-resolution images.

4.1 Experimental Conditions

Six IHC standard images [5] (4608 × 3456 pixels) are used as the original
images, and the pilot signal is embedded in these U-components to generate
stego images. As with the method [9], a 300-bit watermark is embedded in the
Y-components. However, no error-correcting code is used for the watermark.
The stego images were attacked by geometric attacks with transformation
matrices T , and then they were cropped to 1080×1080 pixels from an arbitrary
location. We evaluated the average BER of the watermarks extracted from
the six cropped images for each attack.
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Two transformation matrices are estimated from a single degraded image.
These matrices are related in that they are matched by a 180-degree rotation.
Since it is not possible to distinguish between them directly, inverse trans-
formed images are generated using each matrix. The matrix with the lower
BER in the resulting estimated watermark is adopted as the correct result.
Currently, it is not possible to determine which estimated watermark is cor-
rect. This problem can be solved by embedding additional known check bits
separately from the watermark [3].

4.2 Image Quality Evaluation

First, the image quality is evaluated in terms of PSNR. The average PSNR of
the stego images with only a watermark embedded in the original image was
38.29 dB. In contrast, the average PSNR of the stego images with both the
watermark and pilot signal embedded was 37.25 dB. Therefore, the average
degradation in image quality due to the pilot signal was 1.04 dB.

4.3 Evaluation Against Single Attacks

Next, a single attack is applied to a stego image that is embedded with both
a pilot signal and a watermark. Then, the watermark is extracted from the
attacked image. The stego image is subjected to one of the following attacks:
anisotropic scaling (Sx, Sy), rotation θr, or shearing θy. Additionally, it is
cropped. Table 3 shows the parameters of each attack. For the evaluation of
anisotropic scaling, the scaling rate Sx along the x-axis is fixed at Sx = 1.0
and only the scaling rate Sy along the y-axis is varied. Because of symmetry,
we consider only y-axis shear transformations.

Table 3: Attack parameters.

Type of attack Parameter values
Anisotropic scaling Sx = 1.0, Sy = 0.5, 0.8, 1.0, 1.3, 1.50

Rotation θr = 0, 30, 45, 60, 90

Shearing θx = 0, θy = 5, 20, 35, 50, 65

Figure 16 shows the BER of the watermarks against the anisotropic scaling
attack. The horizontal axis represents the scaling rate Sy, and the vertical
axis represents the BER. The box-and-whisker diagram shows the statistics
for the six stego images at each scaling rate Sy. The orange lines show the
median values. As illustrated in the figure, the BER tends to increase as
the scaling factor deviates from 1.0. However, the median BER remained
consistently below 0.1, indicating that the watermark could be extracted with
high accuracy.
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Figure 16: BER of the extracted watermarks against anisotropic scaling attacks.

Figure 17 shows the BER of the watermarks against the rotation attack.
The horizontal axis represents the rotation angle θr, and the vertical axis
represents the BER. The box-and-whisker diagram shows the statistics for the
six stego images at each rotation angle. The orange lines show the median
values. As shown in the figure, the BER was nearly zero at 0 and 90-degree
rotation angles, while it tended to increase at 45 degrees. However, the median
BER remained below 0.1 for all angles, indicating that the watermark was
extracted with sufficient accuracy.

Figure 18 shows the BER of the watermarks against shearing attacks. The
horizontal axis represents the shear angle θy, and the vertical axis represents
the BER. As shown in the figure, the median BER was nearly zero for shear
angles from 0 to 35 degrees. Conversely, the BER increased as the shear angle
increased.

4.4 Evaluation Against Composite Attacks

Next, we evaluated performance against composite attacks using BER. Two
geometric transformations were applied to the stego image, followed by crop-
ping. Table 4 shows the combination of geometric transformations T1 and
T2. Figure 19 shows the BER of the watermark for each attack pattern. The
horizontal axis represents the attack pattern number and the vertical axis rep-
resents the BER. The watermark could be estimated with low BERs for all
composite attacks. For example, empirically, as the shear angle increases, the
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Figure 17: BER of the extracted watermarks against rotation attacks.

Figure 18: BER of the extracted watermarks against shearing attacks.

attacked image becomes more distorted, making watermark extraction more
difficult. However, the image loses its value when such an attack is applied.
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Table 4: Parameters of composite attacks: Two geometric attacks, T1 and T2, are applied
in turn, followed by cropping.

pattern 1 pattern 2
T1 θy = 5 Sx = 1.0, Sy = 1.1

T2 θr = 10 θr = 10

pattern 3 pattern 4
T1 θr = 5 θx = 10

T2 Sx = 1.0, Sy = 1.2 θy = 5

Figure 19: BER of watermark against composite attacks.

5 Conclusion

In blind watermarking methods, the application of geometric transformations
and cropping attacks to the stego image can cause synchronization issues,
making it difficult to detect the embedded watermark region. While conven-
tional watermarking methods are considered robust against geometric distor-
tions such as clipping, they often lack robustness against cropping, making
it difficult to detect the embedded watermark. Cropping is an unavoidable
issue. Therefore, in this paper, we proposed a method that enabled synchro-
nization of the embedded regions even when the stego image was subjected
to geometric transformations and cropping. The proposed method embedded
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a grid-shaped pilot signal into the image and estimated the transformation
matrix based on the distortion of this signal. Furthermore, the estimation
accuracy was improved by assigning different values to the vertical and hor-
izontal components of the signal. The proposed method employs the Radon
transform to detect the pilot signal. Given that the signals are grid-shaped,
the method leverages the fact that the slope and grid interval of the signals
are prominently reflected in the Radon coefficients.

In this paper, we derived a theoretical formula for estimating the geomet-
ric transformation matrix based on the detection angle and the interval in
the Radon coefficients. The accuracy of this formula was validated through
computer simulations. The proposed method is designed for color images. We
evaluated it on six high-resolution images assumed to be smartphone photos
and ten low-resolution images commonly used in conventional studies. The
grid interval is a very important parameter because geometric transformations
change the size of the image, and cropping can result in the loss of grid lines.
Thus, appropriate grid intervals were determined for high- and low-resolution
images based on estimation matrix accuracy and image quality. As a result,
the interval was set to 100 pixels for the high-resolution image and 50 pixels
for the low-resolution image.

Geometric transformations including scaling, rotation, and shearing were
considered. The accuracy of the estimated matrix was evaluated for both
single attacks, where a single geometric transformation and cropping were
applied, and composite attacks, where three geometric transformations and
cropping were applied. For high-resolution images, the estimation for a sin-
gle attack was able to accurately estimate the transformation matrix to a
sufficient degree. For composite attacks, the transformation matrices were
accurately estimated for all other strengths, except in cases of strong distor-
tions where the stego image was severely degraded. The estimation results for
low-resolution images had larger relative errors compared to high-resolution
images. The main reason for this is the smaller cropping size. Nevertheless,
the estimation was correct for approximately half of the images.

To demonstrate the effectiveness of our proposed method, we applied it to
an existing watermarking method [9] that is robust against geometric trans-
formations and cropping. After applying single and composite attacks, we
estimated the transformation matrix from the cropped image. Finally, we
performed an inverse transformation using the estimated matrix to extract
the watermark. Then, we evaluated the accuracy of the watermark. The
results confirm that, when the distorted images have practical value, water-
marks can be extracted with BERs of less than 0.1. Conversely, there were
instances in which the BER of the watermark increased despite an accurate
estimation of the transformation matrix. This occurred when the watermark
embedding area was physically collapsed by the attack, resulting in the loss
of the watermark itself. In such cases, extracting the watermark becomes
challenging, even with conventional methods.
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