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ABSTRACT
Annotating time boundaries of sound events is labor-intensive, lim-
iting the scalability of strongly supervised learning in audio detec-
tion. To reduce annotation costs, weakly-supervised learning with
only clip-level labels has been widely adopted. As an alternative,
partial label learning offers a cost-effective approach, where a set
of possible labels is provided instead of exact weak annotations.
However, partial label learning for audio analysis remains largely
unexplored. Motivated by the observation that acoustic scenes
provide contextual information for constructing a set of possible
sound events, we utilize acoustic scene information to construct
partial labels of sound events. On the basis of this idea, in this
paper, we propose a multitask learning framework that jointly per-
forms acoustic scene classification and sound event detection with
partial labels of sound events. While reducing annotation costs,
weakly-supervised and partial label learning often suffer from de-
creased detection performance due to lacking the precise event set
and their temporal annotations. To better balance between an-
notation cost and detection performance, we also explore a semi-
supervised framework that leverages both strong and partial labels.
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Moreover, to refine partial labels and achieve better model train-
ing, we propose a label refinement method based on self-distillation
for the proposed approach with partial labels.

Keywords: Acoustic scene classification, partial label, sound event detection

1 Introduction

Computational analysis of environmental sounds has recently attracted much
attention in the field of acoustic signal and speech processing. Environmen-
tal sound analysis, which is not limited to speech or musical sound analysis,
greatly expands the range of sound-based applications, such as media retrieval,
hearing aids, machine condition monitoring, self-driving cars, robot auditions,
and biomonitoring systems [7, 23, 22].

In environmental sound analysis, acoustic scene classification (ASC) and
sound event detection (SED) are fundamental tasks. Of these tasks, ASC
estimates an acoustic scene label most related to an input sound. SED pre-
dicts all sound event labels and their corresponding start and end times in
an input sound. Recently, various ASC and SED methods based on neural
networks have been adopted, and they effected a remarkable improvement in
performance. For example, Valenti et al. [27] and Ford et al. [8] have proposed
ASC systems using the convolutional neural network (CNN) and ResNet, re-
spectively. Kong et al. [15] proposed an ASC method using a pre-trained
model with a large-scale audio dataset. Çakir et al. [4] introduced a SED
technique incorporating a convolutional recurrent neural network (CRNN).
More recently, Kong et al. [14] and Miyazaki et al. [21] proposed Transformer-
and Conformer-based SED methods, respectively, which have been widely
employed in many studies.

Acoustic scenes and sound events are mutually related and they are effec-
tively estimated by utilizing mutual information. For instance, in the acoustic
scene home, the sound events cutlery and door opening/closing tend to occur,
whereas the sound events car and bird singing are not likely to occur. Tak-
ing into account the relationship between acoustic scenes and sound events,
Mesaros et al. [19] proposed a SED method leveraging knowledge on acous-
tic scenes. Similarly, Imoto and Ono [12] and Hou et al. [9] proposed ASC
methods that take into account the association between acoustic scenes and
sound events, through the use of Bayesian generative models and graph neu-
ral network, respectively. In more recent works, Bear et al. [2], Tonami et al.
[24], and Jung et al. [13] proposed the joint analysis of acoustic scenes and
sound events using the multitask learning (MTL) framework of ASC and SED,
which learns both tasks simultaneously.
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Many methods for environmental sound analysis are based on the super-
vised learning scheme, which train model parameters using large-scale strongly
annotated data. However, annotating labels for environmental sounds, espe-
cially annotating time boundaries of sound events, is very laborious. More-
over, there are potential applications where collecting large-scale annotated
data itself is difficult. For example, in-home monitoring systems must address
privacy concerns, making it difficult to share audio data with unspecified an-
notators. Similarly, in ecological monitoring, expert knowledge is required
to annotate species-specific sounds such as bird calls or amphibian vocaliza-
tions, limiting the scalability of manual annotation. To mitigate this challenge,
in the context of single-task SED, many methods using weakly-supervised
learning have been proposed [16, 26]. In the paradigm of weakly-supervised
learning for SED, only information on clip-level activations of sound events
is provided in the training stage, whereas sound event labels and their time
boundaries are estimated in the inference stage. For the joint analysis of
acoustic scenes and sound events, Tsubaki et al. [25] and Igarashi et al. [10]
proposed a method that applies the weakly-supervised SED approach to the
MTL framework.

To further reduce the cost of annotation, partial label learning, in which a
detection or classification model is trained using a set of possible labels, has
also been proposed in image analysis [5]. However, partial label learning for
SED has been largely unexplored. To clarify the differences among strong,
weak, and partial labels in SED, Figure 1 illustrates each labeling scheme.
The partial labels actually are a form of weak labels; however, unlike conven-
tional weak labels that only include true sound event classes, partial labels
represent a set of possible sound event classes, which may contain additional
labels beyond the ground truth. Although annotating precise weak labels
still requires substantial effort, annotating only a set of possible labels can
significantly reduce annotation costs and facilitate the creation of large-scale
training data. Note that the conventional method of partial label learning
[5] has addressed the image classification task, where exactly one true label
is assumed to exist in each possible label set. In contrast, our work focuses
on SED, where multiple true sound event labels may be present within the
partial labels.

In environmental sound analysis, the strong correlation between acoustic
scenes and sound events enables the generation of effective partial labels of
sound events, as scene information can be used to constrain the candidate set
of sound event classes. Since annotating acoustic scene labels requires much
less effort than annotating precise weak labels of sound events, leveraging
scene information offers a cost-effective way to guide SED model training.
Thus, in this work, we propose the MTL framework of SED and ASC using
partial labels of sound events, which offers a suitable and practical setting for
exploring the use of partial label learning in environmental sound analysis. On
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Figure 1: Illustration comparing strong, weak, and partial labels in sound event. Strong
labels provide sound event classes and their time stamps, weak labels indicate which event
classes occur within an audio clip, and partial labels provide a candidate set of event labels.

the other hand, introducing partial label learning may result in performance
degradation compared with methods using strong labels. Thus, we further
explore an MTL-based joint analysis of acoustic scenes and sound events using
both strong and partial labels of sound events simultaneously, that is, a semi-
supervised approach. We then evaluate the performances of ASC and SED
in detail and characterize the behavior of the proposed method with partial
labels.

The subsequent sections of this paper are as follows. In Section 2, we
discuss conventional methodologies for ASC, SED, and the joint analysis of
acoustic scenes and sound events by leveraging multitask learning. Section 3 is
dedicated to introducing our methods of joint analysis of acoustic scenes and
sound events utilizing semi-supervised approaches with partial labels of sound
events. The evaluation experiments to validate the detailed performance of
scene classification and event detection are presented in Section 4. Finally, in
Section 5, we conclude this paper and discuss potential directions for a future
work.

2 Conventional Methods

2.1 Acoustic Scene Classification and Event Detection

In this section, we overview basic implementations for ASC and SED us-
ing neural networks. Many systems for ASC and SED first extract a time–
frequency representation of the acoustic signal X ∈ RD×T from an audio
input. Here, D and T represent the numbers of frequency bins and time
frames, respectively. The log mel-band spectrogram or a time series of mel
frequency cepstrum coefficients (MFCCs) is typically used for the acoustic fea-
ture. The extracted acoustic feature is subsequently fed to the ASC or SED
networks, which calculate logits y for classifying acoustic scenes or detecting
sound events, respectively.

As for the ASC network, the model parameters are trained using the logits
and the cross-entropy (CE) loss function Lscene as
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Lscene = −
N∑

n=1

{
zn log

(
σ (yn)

)}
, (1)

where N , zn ∈ {0, 1}, and σ are the number of acoustic scene classes, the
acoustic scene label, and softmax function, respectively.

On the other hand, the parameters of the SED network are tuned using
the following binary cross-entropy (BCE) loss function as follows:

Levent = −
T∑

t=1

{
zt log(yt) + (1−zt) log

(
1−s(yt)

)}

= −
T,M∑
t,m=1

{
zt,m log s(yt,m)+(1−zt,m)log

(
1−s(yt,m)

)}
, (2)

where T , M , zt,m, and s indicate the number of time frames in a sound clip,
the number of sound event classes, the target event label in the time frame t
for the sound event m, and the sigmoid function, respectively.

2.2 Joint Analysis of Acoustic Scenes and Sound Events Based on Mul-
titask Learning

In the realm of environmental sound analysis, numerous methods address
scene classification and event detection as individual tasks. Only a few works
focus on the idea that information on acoustic scenes and sound events mu-
tually enhances the performance in ASC and SED, and methods that jointly
analyze acoustic scenes and sound events, has been proposed [2, 24, 13].

A typical implementation of the joint analysis of acoustic scenes and sound
events utilizes an MTL-based neural network, which shares part of the network
and information on acoustic scenes and sound events, as shown in Figure
2. The conventional method first extracts a feature embedding common to
acoustic scenes and sound events in the shared layers. The resultant feature
embedding is subsequently fed to the dedicated layers tailored for ASC and
SED. For the dedicated layers for acoustic scenes and sound events, CNN,
the recurrent neural network (RNN), and the Transformer encoder are often
employed.

To train the model parameters, the conventional methods [24] adopt a loss
function represented by the linear combination of Equations (1) and (2) with
acoustic scene labels and strong sound event labels.

L = αLscene + βLevent (3)

Here, α and β are the constant weights for ASC and SED losses, respectively.
In this paper, we set β = 1.0 without loss of generality.
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Figure 2: Network structure of conventional MTL-based method [24].

2.3 Weakly-supervised Method for Joint Analysis of Acoustic Scenes and
Sound Events

Annotating time boundaries of sound events is labor-intensive and time-
consuming. To overcome the challenge of annotating strong labels of sound
events, in the single-task SED scenarios, many methods apply a weakly-
supervised scheme using weak labels of sound events. Here, weak labels of
sound events only have information on the presence or absence of sound events
in a sound clip. Many weakly-supervised methods for single-task SED employ
the multiple-instance learning (MIL) framework [6, 28], which makes a final
decision by aggregating small bag-level decisions. In the case of SED, the
system outputs a clip-level detection result of a sound event by aggregating
frame-level decisions.

Tsubaki et al. [25] proposed a framework for the joint analysis of ASC
and SED, in which weakly-supervised learning is integrated into the SED
task. Figure 3 shows the network structure of the conventional method [25],
which has two branches in the event layers. One branch has the pooling
layer corresponding to the MIL framework and enables the weakly-supervised
training in SED. The other branch only has the sigmoid function to hold
temporal information and it enables us to estimate time stamps of sound
events in the inference stage.
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Figure 3: Network structure of MTL-based method using weak labels of sound events.

To train the model parameters of the weakly-supervised method, the linear
combination of the ASC and SED losses represented by Equation (3) are also
used, whereas we modify the SED loss Levent as follows:

Levent = γLstrong + ζLweak

= −γ

M,T∑
m,t=1

{
zm,t log s(ym,t)+(1−zm,t) log

(
1−s(ym,t)

)}

− ζ

M∑
m=1

{
zm log s(ym)+(1− zm) log

(
1−s(ym)

)}
,

(4)

where zm and ym are the weak label for the sound event m and the clip-level
prediction of the sound event m, respectively. γ and ζ are the constant weights
for the losses for the frame- and clip-level predictions, respectively. Here, in
the training stage, the strong event label zm,t is prepared from the weak label
zm as a pseudo-sound event label as
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T︷ ︸︸ ︷
Zpseudo_strong =



z1 · · · z1 · · · z1
...

. . .
...

...
zm · · · zm · · · zm
...

...
. . .

...
zM · · · zM · · · zM

 . (5)

2.4 Semi-supervised Method for Joint Analysis of Acoustic Scenes and
Sound Events With Weak Labels of Sound Events

The MTL-based method using weak labels of sound events mitigates the chal-
lenge inherent in collecting strong labels of sound events to some extent.
Nonetheless, joint analysis of ASC and SED using weak labels results in a
lower SED performance as compared with that using strongly labeled data.
To address this problem, a semi-supervised learning scheme has been pro-
posed for SED, in the context of joint analysis of ASC and SED [10]. In
general, methods that amalgamate both supervised and unsupervised train-
ing modalities are termed as semi-supervised learning. In this paper, however,
we specifically refer to the method leveraging both strong and weak/partial
labels for the SED model training as semi-supervised learning.

Let the acoustic feature sets with strong and weak labels be Xstrong and
Xweak, respectively. Similarly, we consider that the strong and weak label
sets as Zstrong and Zweak, respectively. For the semi-supervised approach, we
construct the acoustic feature and label sets as

Xsemi = {Xstrong,Xweak}, (6)
Zsemi = {Zstrong,Zweak}. (7)

For the semi-supervised approach, we can employ various network archi-
tectures once it is designed with four key modules: (i) an acoustic embedding
extractor, (ii) acoustic scene classifier, and (iii)(iv) sound event detectors with
weak labels and strong labels. In this paper, we illustrate the conventional
semi-supervised method with the same network structure as that of the weakly-
supervised method as shown in Figure 3.

To train the model parameters, Equations (3) and (4) are also used as the
loss function, while γ and ζ are replaced with the following Kronecker delta
functions:

δγ =

{
1 if z is strong label
0 otherwise,

(8)
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δζ =

{
1 if z is weak label
0 otherwise.

(9)

This strategy enables switching between SED networks depending on whether
strong labels are available or only weak labels can be used. The semi-
supervised method using strong and weak labels is expected to achieve more re-
liable model training than the weakly-supervised method that relies on pseudo
labels of sound events.

3 Joint Analysis of Acoustic Scenes and Sound Events Based on Semi-
supervised Approach With Partial Labels of Sound Events

Annotating weak labels for sound events indeed alleviates the cost of labor
involved in annotating strong labels for sound events. However, compared
with annotating acoustic scene labels, annotating weak labels for sound events
is still labor-intensive. Therefore, we propose a method that utilizes acoustic
scene labels to generate candidate weak labels for sound events, which can
then be employed as partial labels in model training. In particular, this paper
explores the use of partial labels in semi-supervised learning for joint analysis
of acoustic scenes and sound events.

To generate partial labels of sound events, we can utilize acoustic scene
labels in several ways: one approach is to pre-construct candidate label lists
for each acoustic scene, while an alternative is to generate these candidate
lists using a pre-trained model, such as a large language model (LLM). For
instance, in our experiments in this study, we created partial weak labels by
inputting acoustic scene labels into ChatGPT o3-mini-high.1,2 The prompt
used for generating the partial labels is provided in Appendix, and the re-
sulting constructed partial labels are listed in Table 1. Compared with the
actual sound event label list shown in Table 2, the generated partial label
set includes a significantly larger number of candidate sound events, such as
generic events like (object) impact, which commonly appear in various acous-
tic scenes. On the other hand, we observed no case where actually occurring
events were omitted from the generated labels. Given that the partial labels
were created using the publicly available LLM, we believe that the quality of
partial labels reflects a realistic application scenario, and their reliability is
sufficient for practical use.

In this work, we further apply a method that refines sound event labels
and generates pseudo strong labels using self-distillation, to mitigate the noise

1The label list was generated using ChatGPT o3-mini-high on February 02, 2025.
2We have also generated partial labels using the same prompts with several LLMs,

including ChatGPT 5 Thinking and Gemini 2.5 Pro. These models produced sound event
label sets largely similar to those obtained with ChatGPT o3-mini-high.
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Table 1: Partial labels generated by ChatGPT o3-mini-high for TUT Acoustic Scenes 2016
and TUT Sound Events 2016/2017.
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Table 2: Sound event list of training dataset in TUT Acoustic Scenes 2016 and TUT Sound
Events 2016/2017.
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in the partial label set generated using an LLM. This self-distillation-based
approach represents one of the simplest methods for label refinement in semi-
supervised learning. To verify the feasibility of model training from partial
labels in the multitask learning of sound events and acoustic scenes, we employ
this simple label refinement method in this study. The procedure for this
partial label learning is shown in Figure 4. First, partial labels are treated
as weak ground truth labels, and the joint ASC and SED model is trained
using both strong and partial labels according to the method described in
Section II-D. Once the model parameters have been trained, the pre-trained
model is frozen and the training data with partial labels is fed into the self-
distillation module to obtain logits. The posterior probabilities of the sound
events are then calculated using a sigmoid function, and the distillated strong
event labels are obtained by thresholding them with ϕ. After that, the main
module is re-trained using the strong and distillated strong event labels with
the conventional MTL-based method described in Section II-B.

4 Evaluation Experiments

4.1 Experimental Conditions

We carried out experiments to evaluate the conventional and proposed MTL-
based joint analyses of acoustic scenes and sound events. For the evaluation
experiments, we constructed a dataset composed of the TUT Acoustic Scene
2016/2017 and TUT Sound Events 2016/2017 [20, 18], which includes four
acoustic scenes (city center, home, office, and residential area) and 25 sound
events (e.g., bird singing, car, dishes, and keyboard typing). The dataset con-
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Figure 4: Self-distillation-based model training for semi-supervised method using partial
labels of sound events.

tains a total of 266 min of sounds, which includes 192 min of sounds for
model training and 74 min of sounds for evaluation. The partial labels were
created using ChatGPT o3-mini-high, which was one of the most capable and
generally applicable models available at the time of our experiments. All ex-
periments were conducted on a single Intel Xeon Gold 6128 Processor and
an NVIDIA RTX 6000 Ada Generation GPU. The details of the dataset and
baseline code are available.3,4

We calculated the 64-dimensional log mel-band spectrogram with a frame
length of 40 ms and a hop size of 20 ms. The model structure used for our
experiment is shown in Figures 2, 3, and 4, and Table 3, which are based on
conventional works [24]. In our preliminary experiments, we also evaluated
other sophisticated model architectures for the SED-specific layers such as
the Transformer and Conformer. However, these model architectures showed
performance nearly equivalent to that of the CRNN-based method. This may
be because we used the dataset with limited size. In this study, we thus
adopt the same model architecture as in previous research to enable direct
comparisons. The threshold ϕ for self-distillation was determined through
the preliminary experiment using cross-validation setup on the training data
as shown in Table 4. The other experimental conditions are also found in
Table 4. These settings and hyperparameters were determined by referring to
[24]. Since the original dataset has strong labels of sound events, we randomly
selected samples from the training set and discarded time stamps to create
weak labels. We conducted the evaluation experiments 10 times for each
experimental condition with random initial values of model parameters.

3https://www.ksuke.net/dataset/.
4https://github.com/KeisukeImoto/mtl_sed_asc.

https://www.ksuke.net/dataset/
https://github.com/KeisukeImoto/mtl_sed_asc
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Table 3: Detailed structure of MTL network of ASC and SED using weak/partial labels.

Shared layers
Log-mel energy (500 frames × 64 mel bin)

3×3 kernel size/128 ch.
Batch norm., Leaky ReLU

1×8 Max pooling 3×3 kernel size/128 ch.
Batch norm., Leaky ReLU

1×2 Max pooling

 × 2

Scene layers Event layers
3×3 kernel size/256 ch.

Batch norm., Leaky ReLU Transformer Enc. w/ 512 units
25×1 Max pooling

3×3 kernel size/256 ch.
FC w/ 48 units, Leaky ReLUBatch norm., Leaky ReLU

Global max pooling
FC w/ 32 units, Leaky ReLU FC w/ 25 units

FC w/ 4 units, Softmax Sigmoid FC w/ 16 units
Leaky ReLU

Global max pooling
Sigmoid

Table 4: Experimental conditions.

Acoustic feature Log-mel energy (64 dim.)
Frame length/shift 40 ms/20 ms
Length of sound clip 10 s
Optimizer RAdam [17]
SED detection threshold 0.5
α, β, γ, ζ 0.001, 1.0, 1.0, 0.01
ρGTC , ρDTC 0.1, 0.1
Threshold ϕ for self-distillation 0.2

4.2 Experimental Results

4.2.1 Overall Performance Characteristics of ASC and SED

Table 5 shows the overall performance of ASC and SED in terms of Fscore,
especially in the segment-based and intersection-based (IS-based) metrics [3]
for SED. In our experiments, we refer to the methods using strong and weak
labels of sound events as strong MTL and weak MTL, respectively. The semi-
supervised methods using weak and partial labels are referred to as semi-MTL
w/ weak labels and semi-MTL w/ partial labels, respectively. For the semi-
MTL conditions, we conducted the experiments using 30% of the strongly
labeled data and 70% of the weakly/partially labeled data. We also conducted
experiments under a condition where data without strong labels were excluded
from training. This setting is referred to as Strong MTL w/ reduced data.
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Table 5: Overall performance characteristics of ASC and SED. We conducted the exper-
iments with 30% of the strongly labeled data and 70% of the weakl/partial labeled data
under the semi-MTL condition.

Method
Scene Event Event

(Segment-based) (IS-based)
Micro- Macro- Micro- Macro- Micro- Macro-
Fscore Fscore Fscore Fscore Fscore Fscore

Strong MTL 91.42% 91.68% 53.91% 24.09% 26.22% 16.81%
±3.00 ±3.09 ±0.94 ±0.83 ±1.50 ±1.32

Weak MTL 90.51% 90.57% 22.74% 10.60% 8.66% 7.18%
±2.97 ±3.31 ±18.99 ±7.37 ±1.26 ±1.00

Strong MTL 91.78% 91.86% 49.01% 15.95% 20.90% 10.01%
w/ reduced data ±2.19 ±2.38 ±2.03 ±1.77 ±2.74 ±1.88

Semi-MTL 91.76% 92.08% 52.11% 21.58% 23.57% 14.55%
w/ weak labels ±2.70 ±2.81 ±1.98 ±1.35 ±2.21 ±1.75

Semi-MTL 92.12% 92.58% 51.77% 21.51% 23.96% 14.87%w/ partial labels ±2.59 ±2.43 ±1.76 ±1.24 ±1.69 ±1.47(proposed)

The results show that the semi-MTL-based methods achieve reasonable
micro- and macro-Fscores for ASC that are similar to those of the conventional
strong and weak MTL methods. In particular, the proposed semi-supervised
approach using partial labels outperformed conventional MTL methods in
ASC. This is because the partial labels for sound events, which were generated
using acoustic scene labels from an LLM, contain information on acoustic
scenes, and they may have enhanced scene classification.

For SED, the proposed semi-supervised methods with partial labels
achieves the detection performance equivalent to that of the conventional
semi-supervised method using weak labels in terms of both segment- and
IS-based metrics. This result indicates that the proposed method can further
reduce the annotation costs for sound events compared to the conventional
semi-supervised method with promising SED results.

4.2.2 Performance Characteristics of ASC and SED at Various Proportion of
Weak/partial Labels

To investigate the detailed behavior of strong, weak, and semi-MTL ap-
proaches, we show the evaluation performance of ASC and SED as the pro-
portion of strongly labeled sound event data varies in Figures 5–7. Figure 5
shows that the ASC performance of the proposed semi-MTL approaches re-
mains nearly equivalent to that of the strong MTL approach, even as the
proportion of weak/partial labels increases. This result indicates that ASC
does not necessarily require temporal information on sound events, but re-
quires only clip-level information on sound events in acoustic signals.

For the SED performance, Figures 6–7 show that the F-score does not
decrease considerably until the proportion of partial labels reaches around
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Figure 7: SED performance for various ratios of weakly/partially labeled data of sound
events in terms of macro-Fscore.

60–70%. This result indicates that the proposed semi-MTL approach de-
liver reasonable performance even when only a small number of strongly la-
beled data are available alongside a large number of partially labeled data.
Consequently, the proposed methods alleviate the challenges associated with
annotating sound event labels. When comparing the method based on the
semi-supervised MTL using weak labels with that using partial labels, we ob-
served nearly equivalent performance in both these methods except when all
the training data have weak or partial labels. This suggests that if part of
audio data for the model training do not have strong labels, generating partial
labels using LLMs instead of annotating weak labels would be a reasonable
solution. On the other hand, when all training data consist of weak partial la-
bels, the SED performance can degrade significantly. This result suggests that
incorporating strong labels with partial labels and applying semi-supervised
learning can substantially enhance the reliability of detection results.

Furthermore, since the results of the proposed method are comparable to
those of the Semi-MTL w/ weak labels, it implies that the proposed method
remains effective even when using partial labels of the quality shown in Table 1.
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Table 6: ASC performance for each scene in terms of Fscore.

city residentialMethod center home office area

Strong MTL 91.38% 94.23% 96.54% 84.57%
±2.38 ±3.47 ±1.85 ±6.28

Weak MTL 90.45% 93.40% 94.16% 81.95%
±2.57 ±4.91 ±3.22 ±10.27

Strong MTL 92.27% 93.98% 96.63% 84.56%
w/ reduced data ±2.23 ±2.73 ±1.69 ±5.75

Semi-MTL 90.71% 95.77% 95.63% 86.20%
w/ weak labels ±2.39 ±3.09 ±2.25 ±5.82

Semi-MTL 90.40% 96.44% 96.52% 86.97%w/ partial labels ±4.13 ±1.41 ±1.88 ±4.01(proposed)

Thus, the SED performance of the proposed method is comparable across
reasonable variations in the size of the sound event label set between that of
the actual weak label and the current partial label sets, suggesting that the
proposed method is robust to the size of the partial label set.

4.2.3 Detailed Performance Evaluation for Each Acoustic Scene and Sound Event

Table 6 shows the detailed ASC performance for each acoustic scene. The
result indicates that there are no significant differences in ASC performance
among the strong and semi-MTL approaches. This also implies that the tem-
poral information on sound events is not critical for each scene classification,
and that clip-level sound event information is sufficient for ASC.

Table 7 presents the SED performance and sound duration for each sound
event. These results indicate that the proposed semi-supervised MTL ap-
proach using partial labels achieves comparable performance to the method us-
ing weak labels in detecting each sound event. Furthermore, for sound events
with longer durations, such as bird singing, fan, and large vehicle, the SED
performance is comparable to that of strong MTL. However, for sound events
with short duration, such as cutlery and keyboard typing, the performance
of the proposed method slightly degrades compared with strong MTL. It is
known that the SED model trained with strong labels tends to fail to detect
short-duration events compared with that trained with weak labels [11, 10].

To further investigate this result, Table 8 shows the numbers of true pos-
itives (# TP), false positives (# FP), and false negatives (# FN) for each
sound event. Although the proposed method achieves improvements in TP
count, it also exhibits an increase in FP count. This indicates that the pro-
posed method tends to be overconfident in the detection of sound events. We
attribute the overconfidence to confirmation bias [1], which reinforces errors
in pseudo labels through iterative label refining. In our proposed method, the
partial labels are self-distillated and the MTL model is retrained using the
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Figure 8: Sound event detection results for 276.wav recorded in an office scene from the
TUT Acoustic Scenes 2016 dataset. Only sound events that include multiple ground truth
labels or detected events are shown. We conducted the experiments with 30% of the strongly
labeled data and 70% of the weakly/partially labeled data under the semi-MTL condition.

distillated labels. This procedure tends to amplify confidence of the distil-
lated labels. In particular, prior work [1] pointed out that confirmation bias
becomes more serious near detection boundaries. For SED, short duration
events tend to contain many boundary frames relative to their total frames.
As a result, the proposed method result in more TP and FP counts for short
duration classes.

4.2.4 Qualitative Analysis of Sound Event Detection Results

To qualitatively assess the behavior of the proposed method, Figures 8 and
9 show the detection results on randomly selected sound clips. Each figure
presents the ground truth of sound event labels, the detection outputs from
the conventional and proposed methods.

In Figure 8, the proposed method shows a more accurate detection perfor-
mance for the keyboard typing event than the conventional strong MTL and
semi-MTL methods with weak labels. In addition, we observed false positives
where events were detected at the correct time boundary but with incorrect la-
bels; for example, keyboard typing and mouse clicking were detected instead of
(object) impact. For these cross-triggering cases, incorporating a more refined
mechanism for sound event classification may help mitigate such errors.
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Figure 9: Sound event detection results for b043.wav recorded in a home scene from the TUT
Sound Events 2016 dataset. The figure includes the additional visualization of background
noise not annotated in the ground truth. Only sound events that include multiple ground
truth labels or detected events are shown. We conducted the experiments with 30% of the
strongly labeled data and 70% of the weakly/partially labeled data under the semi-MTL
condition.

Figure 9 includes the additional visualization of background noise, which
corresponds to sound events not annotated as ground truth labels. These
visualizations enable us to assess the model robustness to background sounds.
The results indicate that the proposed method is as robust as the conventional
strong MTL and semi-MTL methods in ignoring irrelevant background noise,
and it still can detect target sound events.

4.2.5 Model Complexity and Training Cost

Table 9 shows the numbers of model parameters and training costs for the
proposed and conventional methods. Note that, in the proposed method, the
parameters used in the distillation module can be reused within the main
module, which eliminates the use of additional model parameters. As shown
in the table, there are no significant differences in the number of model pa-
rameters and training time. This indicates that our proposed method can be
implemented without considerably increasing additional computational cost
or memory requirements.
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Table 9: Comparison of model size and training cost among proposed and conventional
methods. For the semi-MTL conditions, we conducted the experiments using 30% of the
strongly labeled data and 70% of the weakly/partially labeled data.

# parameters Training Training time ratioMethod (k) time (s) (Strong MTL = 1.0)
Strong MTL 1,323 314.8 ± 2.2 1.00
Weak MTL 1,323 311.9 ± 1.3 0.99
Strong MTL 1,323 118.8 ± 1.0 0.37

w/ reduced data
Semi-MTL 1,331 327.1 ± 1.9 1.04

w/ weak labels
Semi-MTL

w/ partial labels 1,331 340.2 ± 2.5 1.08
(proposed)

5 Conclusions

We proposed the method for the joint analysis of acoustic scenes and sound
events based on the semi-supervised SED strategy using partial labels of
sound events. We further introduced the LLM-based label creation and self-
distillation-based label refining methods for the proposed partial label learning
in SED. The results of experiments using our constructed dataset show that
the semi-supervised approach using partial labels achieve reasonable perfor-
mance even with a small number of strongly labeled data and a large number
of partially labeled data. Future work should focus on exploring more effective
approaches to refining partial labels of sound events. Also, the application of
partial label learning to single-task SED settings where acoustic scene labels
are not available should be addressed. This will require new strategies for
generating candidate event label sets without scene context, which poses a
more challenging and general problem.

Appendix: Prompts Used to Generate Partial Labels of Sound Events

To generate partial labels of sound events, we utilized the ChatGPT o3-mini-
high on February 02, 2025. The input prompts used to generate partial labels
are shown in Table 10, which includes the possible sound events, the sup-
plemental explanation of a sound event class, the instruction to consider the
partial labels of sound events for each scene, and the output format. We ob-
tain partial labels and the reasons for including the sound events in the list.
The lists of partial labels and reasons are available.5

5https://github.com/KeisukeImoto/SED_ASC_partial_label.git.

https://github.com/KeisukeImoto/SED_ASC_partial_label.git
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Table 10: Prompts for generating partial labels of sound events input into ChatGPT o3-
mini-high.

Here is the list of 25 possible sound events:
object banging, object impact, object rustling, object snapping, object squeaking,
bird singing, brakes squeaking, breathing, car, children, cupboard, cutlery, dishes,
drawer, fan, glass jingling, keyboard typing, large vehicle, mouse clicking, mouse
wheeling, people talking, people walking, washing dishes, water tap running, wind
blowing.
Here, “object” refers to an unknown sound source, although we can understand
how the sound is produced. We can include these ambiguous object sounds in
the list.
If we are in a <scene name> scene, which sound events are likely to be heard?
Please list all the sound events one by one (without merging) in CSV format,
and provide your reasoning process in a two-column CSV format.
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