Online Technical Appendix

Estimation of the Exposure Function

Define z,,; as one arbitrary characteristic 4 from those contained in z,,. The Simmons data provides
estimates of the form lg;(wmp,c = 1|z,; = ¢q). For example, this could be the percentage of very
liberal viewers in the Simmons sample that watched 60 Minutes on a given viewing occasion. We

would like to compare these to their theoretical counterparts, which are given by,
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Here, Pr(z) denotes the probability mass function of the demographic characteristics. This
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distribution is not directly observed in our television viewership data, but we observe a large sample
of z in the NAES rolling cross section. Specifically, let 2] denote the demographic characteristics
of an individual observed in the rolling cross section sample of the NAES and let N"* denote the
sample size of the rolling cross section. We use the empirical distribution to obtain an estimate of

the (population) distribution of z. That is, we can estimate,
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We use this to obtain the desired estimate of the model predicted probabilities. Specifically, we
estimate the probability that an individual with characteristic z; at a value ¢ watches program p

on occasion c,
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Based on this, we can form the following moment conditions,
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Here f’;(wn,p,c = 1|z; = q) is observed in the Simmons data, i denotes the variable being conditioned



on, and g denotes a value that the variable takes.

For each i, we select moments based on all the values ¢ that z; can take.!® This corresponds
to using the proportion of each subgroup that watches each show as moments in our estimation.
Let /ﬁp('yp) denote the vector of moments for program p. By choosing these moments, we have that
Ep('yp) % 0 if and only if 7, = vyp0 (Where 7,0 denotes the true parameter vector characterizing
the data generating process for one program), so the moments will define a minimum distance

estimator. We therefore have an exactly identified minimum distance estimator and we estimate

Yp,0 by solving the nonlinear system ﬁp(wp) =0.
Estimation of the Effectiveness of Advertising
Based on the model we aggregate over individuals to get the turnout and Republican shares by
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where ./\/ffﬁ denotes the indices of individuals that reside in the jth congressional district and the
mth media market and N;fz = |/\fj ng .

Our estimation therefore maximizes the log-likelihood function,
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subject to the constraints,
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For example, if 2; denotes gender, then z; can take on the values 1 (for females) and 0 (for males).
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In our implementation, we apply a nested fixed point approach (Berry, 1994; Berry, Levinsohn
and Pakes, 1995). Each time we evaluate the likelihood at (8, «), we find the vector of fixed effects
that are consistent with the constraints. For each 7 and m, we first solve Equation 5 for §§7m using
a one-dimensional solver and then solve Equation 6 for &m again using a one-dimensional solver.

Our estimation problem is related to the estimation problems of Petrin (2002) and Berry,
Levinsohn and Pakes (2004) in that we observe a combination of micro and macro level data and
we want to invert aggregate data to recover unobserved characteristics (shocks). In Petrin (2002)
and Berry, Levinsohn and Pakes (2004) the primary data to estimate the parameters of interest
comes from aggregate level moments, so it is simpler for them to combine the two types of data
by constructing aggregate level moments from the micro data. However, in our application, the
primary data to estimate the parameters of interest is available at the individual level, so we form
the likelihood of an individual observation and constrain the unobserved characteristics to match

the aggregate level data. Hence, we apply constrained maximum likelihood estimation.



