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Calculations for [5;3,2,2,1]

By contradiction, suppose v =
(
3
8
, 2
8
, 2
8
, 1
8

)
. What would be the optimal pro-

poser behavior given v? The player with 3 votes needs to buy 2 votes, hence

it always offers v[2] to one of the players with 2 votes (the player with 1 vote

is of no use to this player, regardless of the value of v[1]). The player with 1

vote needs to buy 4 votes, and buys them from the two players that control

2 votes each. A player with 2 votes needs to buy 3 votes, and is indifferent

between buying them from the large player or from the other two players since

v[3] = v[2] + v[1]. Let p be the probability that a player with 2 votes proposes

to the player with 3 votes (conditional on a player with 2 votes being selected

as proposer). Expected payoffs for types [3] and [1] must satisfy the following

equations:
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From the second equation we find p = 0. This means that in order to

sustain a payoff of 1
8

for type [1], type [2] must always propose a coalition

of type [221]. However, p = 0 does not solve the first equation: in order to

sustain a payoff of 3
8

for type [3], p must be 1
2
.

Interestingly, the equilibrium is still competitive in the sense that v[3] =

v[2] + v[1]. Below we construct an equilibrium strategy profile. Let player [3]

propose to each of the two players of type [2] with probability 1
2
, and let each of

the players of type [2] propose to player [3] with probability p. The equilibrium

values of v[3], v[2], v[1] and p can be found from the following system:

v[3] =
3

8
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]
+

4

8
pv[3]

v[2] =
2

8

[
p(1− v[3]) + (1− p)(1− v[2] − v[1])

]
+

3

8

1

2
v[2] +

2

8
(1− p)v[2] +

1

8
v[2]

v[1] =
1

8
[1− 2v[2]] +

4

8
(1− p)v[1]

v[3] = v[2] + v[1]

The solution to this system is v[3] = 5
14

, v[2] = 4
14

, v[1] = 1
14

and p = 1
2
.

This is an equilibrium since players are behaving optimally both as proposers

and as responders. Because of the uniqueness result of Eraslan and McLennan

(2013), all SSPE must have the same payoff vector.

Calculations for [13;7,6,4,3,3,1]

There are seven MWCs of five types: [76], [743], [733], [643], [6331]. If ex-

pected equilibrium payoffs were proportional, only types [76], [733], [643] and

[6331] could be proposed in equilibrium. It can be checked that the necessary

and sufficient condition for proportionality does not hold: for any probability

distribution over those coalitions, type [6] and/or type [3] would appear in the

final coalition disproportionately often.
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It turns out that, even though there are five player types, SSPE payoffs

divide the players in only three groups, which we denote as L, M and S. We

now construct an equilibrium with v[7] = v[6] := vL, v[4] = v[3] := vM , v[1] := vS

and vL = 2vM . In this situation, player [7] is indifferent between proposing to

the other large player and paying vL, and proposing to two medium players,

paying vM to each (vL in total). Type [6] is also indifferent between buying

votes from the large player or from two medium players (except that, when

buying votes from a medium player, one of the two medium players has to be

of type [4] because otherwise the coalition would be losing). Coalition [6331]

would be too expensive, since on top of 2vM one needs to pay vS > 0. Type

[4] may propose [743] or [643]; in both cases it needs to pay vL+vM . Likewise,

type [3] has three coalition types that are equally optimal: [743], [733] and

[643]; coalition [6331] is too expensive. Player [1] has [6331] as its only MWC;

given the prices, it could replace [6] with [7] or/and [3] with [4] at no extra

cost, hence the surplus coalitions [7331] and [7431] would also be optimal for

type [1] (we return to this point below).

We now construct a profile of SSPE strategies. The following table intro-

duces a notation for the strategies. The rows in the table are player types and

the columns are coalition types. Each entry in the table represents the prob-

ability that the player type in the corresponding row proposes the coalition

type in the corresponding column. It is assumed that all players of the same

type follow the same strategy and each coalition of the same type is proposed
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with equal probability.

[76] [743] [733] [643] [6331]

[7] α β 1− α− β − −
[6] γ − − 1− γ 0

[4] − µ − 1− µ −
[3] − π ρ 1− π − ρ 0

[1] − − − − 1

Equilibrium strategies and payoffs solve the following system of equations1
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There are many solutions to this system, all with vL = 46
164

, vM = 23
164

and

vS = 3
164

. The mixed strategies are not uniquely determined. A possible solu-

tion is α = µ = π = 0, β = 5
23

, γ = 14
23

, ρ = 55
138
. These strategies constitute an

SSPE since players are behaving optimally both as proposers and as respon-

ders: only optimal coalitions are proposed given the acceptance thresholds

1Note that we are simplifying the first five equations by using the sixth one (i.e., all

coalitions proposed with positive probability in equilibrium must give the same payoff to

the proposer). For example, player [6]’s proposer payoff is written as 1 − vL rather than

γ[1− vL] + (1− γ)[1− 2vM ].
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(vL, vM and vS), and the acceptance thresholds equal the continuation values

given the strategies. Due to the uniqueness result of Eraslan and McLennan

(2013), all SSPE must have the same v-values.

There are also equilibria in which surplus coalitions are proposed with

positive probability. For example, if type [1] proposes [6331] with probability

1
2

and [7431] with probability 1
2
, the system of equations can be amended

accordingly and a new solution for the equilibrium strategies is α = µ = π = 0,

β = 12
161

, γ = 14
23

, ρ = 29
92

(the v-values are of course unaffected).

Predicted size of the deviations

The following tables compare equilibrium payoffs and weights for all games in

the dataset with at most 7 players that fail to satisfy the condition (excluding

games with a veto player, of which there are two in the database). For each

game, the tables shows wi (the MIWs), vi (expected equilibrium payoffs),

and two quantitative measures of how far v is from being proportional to

w. One such measure is vi
wi/

∑
j∈N wj

, the ratio of payoffs to weights, where

weights are normalized so that they add up to 1. This ratio measures how

much of a player’s weight is translated into expected equilibrium payoffs; if

expected equilibrium payoffs were proportional to weights it would always

be 1. Another measure is the relative payoffs vi/vn, i.e. the exchange rate

between players according to equilibrium predictions. If expected equilibrium

payoffs were proportional, this exchange rate would always be equal to wi/wn

(in particular, if wn = 1, this ratio would replicate the MIWs).

Expected payoffs for individual players can be substantially different from

weight shares, and this is very often true for the smallest player type, who may

get as little as 43% of its weight share. As a result, ratios between a player’s

5



payoff and the payoff of the smallest player are often very different from wi/wn.

Nevertheless, if we focus on the ratio of expected payoffs to weights, we see

that many players have a ratio close to 1.

Table A1. Homogeneous games with up to 6 players

Weights

Payoffs

Payoffs/weights

Relative payoffs

7 5 5 2 2 1

0.323 0.226 0.226 0.097 0.097 0.032

1.014 0.993 0.993 1.067 1.067 0.699

10.16 7.10 7.10 3.05 3.05 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

5 4 4 1 1 1

0.324 0.297 0.297 0.027 0.027 0.027

1.038 1.190 1.190 0.430 0.430 0.430

12.06 11.06 11.06 1 1 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

5 3 3 2 1

0.376 0.208 0.208 0.168 0.040

1.053 0.970 0.970 1.178 0.556

9.47 5.24 5.24 4.24 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

5 2 2 2 1

0.412 0.176 0.176 0.176 0.059

0.988 1.059 1.059 1.059 0.706

7 3 3 3 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

4 3 3 1 1

0.333 0.295 0.295 0.038 0.038

1.000 1.181 1.181 0.456 0.456

8.77 7.77 7.77 1 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

3 2 2 1

0.357 0.286 0.286 0.071

0.952 1.143 1.143 0.571

5 4 4 1
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Table A2. Homogeneous games with 7 players

Weights

Payoffs

Payoffs/weights

Relative payoffs

9 7 7 2 2 2 1

0.302 0.233 0.233 0.069 0.069 0.069 0.026

1.006 0.998 0.998 1.035 1.035 1.035 0.771

11.74 9.06 9.06 2.69 2.69 2.69 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

9 6 6 3 2 1 1

0.325 0.217 0.217 0.108 0.085 0.024 0.024

1.013 1.013 1.013 1.013 1.188 0.661 0.661

13.79 9.19 9.19 4.60 3.60 1 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

9 3 3 3 2 1 1

0.416 0.139 0.139 0.139 0.109 0.023 0.023

1.017 1.017 1.017 1.017 1.200 0.650 0.650

14.08 4.69 4.69 4.69 3.69 1 1

Table A3. Nonhomogeneous games with up to 6 players

Weights

Payoffs

Payoffs/weights

Relative payoffs

9 5 5 3 2 2

0.364 0.182 0.182 0.091 0.091 0.091

1.051 0.945 0.945 0.788 1.182 1.182

4 2 2 1 1 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

8 6 5 3 3 1

0.320 0.227 0.206 0.113 0.113 0.020

1.039 0.983 1.073 0.983 0.983 0.528

15.75 11.16 10.16 5.58 5.58 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

7 6 4 3 3 1

0.280 0.280 0.140 0.140 0.140 0.018

0.962 1.122 0.841 1.122 1.122 0.439

15.33 15.33 7.67 7.67 7.67 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

5 4 3 2 2

0.290 0.280 0.150 0.140 0.140

0.928 1.119 0.801 1.119 1.119

2.07 2 1.07 1 1
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Table A4. Nonhomogeneous games with 7 players

Weights

Payoffs

Payoffs/weights

Relative payoffs

13 11 9 6 5 4 2

0.261 0.218 0.174 0.130 0.088 0.087 0.043

1.003 0.989 0.968 1.082 0.877 1.082 1.082

6.03 5.03 4.03 3 2.03 2 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

13 10 9 6 6 3 1

0.264 0.198 0.198 0.132 0.132 0.066 0.010

0.975 0.951 1.056 1.056 1.056 1.056 0.472

26.86 20.14 20.14 13.43 13.43 6.71 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

12 10 7 5 4 3 1

0.288 0.237 0.170 0.119 0.102 0.068 0.017

1.009 0.996 1.017 0.997 1.070 0.947 0.704

17.20 14.16 10.12 7.08 6.08 4.04 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

11 8 7 4 4 1 1

0.320 0.222 0.209 0.111 0.111 0.014 0.014

1.046 1.000 1.073 1.000 1.000 0.491 0.491

23.43 16.28 15.28 8.14 8.14 1 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

10 9 7 3 3 3 1

0.269 0.269 0.179 0.090 0.090 0.090 0.013

0.969 1.077 0.923 1.077 1.077 1.077 0.462

21 21 14 7 7 7 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

10 3 3 3 2 2 1

0.426 0.120 0.120 0.120 0.093 0.093 0.027

1.023 0.961 0.961 0.961 1.117 1.117 0.649

15.76 4.44 4.44 4.44 3.44 3.44 1

Weights

Payoffs

Payoffs/weights

Relative payoffs

9 8 5 4 4 1 1

0.278 0.278 0.139 0.139 0.139 0.014 0.014

0.988 1.111 0.889 1.111 1.111 0.444 0.444

20 20 10 10 10 1 1
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An alternative way of checking the condition

using linear programming

Consider the following linear programming problem

min e (1)

s.t.
∑
i∈S

xi + e ≥ 1 for all S ∈ W∑
i∈N

xi = 1

xi ≥ 0 for all i ∈ N ; e ≥ 0

Its interpretation is the following. Take any (x1, ..., xn) vector, and any

winning coalition S. Coalition S can divide the dollar by itself, but it is getting

only
∑

i∈S xi in this particular allocation. The difference 1−
∑

i∈S xi is known

as the excess of the coalition, though perhaps deficit would be a better term.

The linear program above finds allocations x that minimize the maximum

excess.2 This linear programming problem is well known in cooperative game

theory and is related to the core (in particular, if the solution has e = 0, the

core is nonempty; this is not the case in weighted majority games unless there

are veto players).

The following result is adapted from Peleg and Rosenmüller’s (1992) the-

orems 3.2 and 3.3, which concern the set Wm and homogeneous games.

Claim 1 Let [q;w1, ..., wn] be an arbitrary weighted majority game, normalized

so that
∑

i∈N wi = 1. Then W ∗ is weakly balanced if and only if x = w and

e = 1− q solve linear programming problem (1).

2Rewriting
∑

i∈S xi + e ≥ 1 as e ≥ 1−
∑

i∈S xi, we see that the inequalities impose that

excesses of the winning coalitions are at most e. This number e is then minimized.
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This result allows us to check the weak balancedness of W ∗ by solving (1)

and comparing the optimal value of e with 1− q.
To see that claim 1 is correct, construct the dual program of (1) (see, for

example, Vanderbei (2008), chapter 5), where λS is the dual variable associated

to the constraint
∑

i∈S xi + e ≥ 1 and µ is the dual variable associated to∑
i∈N xi = 1 (rewritten as

∑
i∈N xi ≤ 1, or equivalently as −

∑
i∈N xi ≥ −1).

max
∑
S∈W

λS − µ (2)

s. t.
∑

S∈W,S3i

λS − µ ≤ 0 for all i ∈ N∑
S∈W

λS ≤ 1

λS ≥ 0 for S ∈ W , µ ≥ 0.

The complementary slackness theorem (see theorem 5.3 in Vanderbei (2008))

tells us that a pair of feasible solutions for the primal (1) and for the dual (2)

are optimal for their respective problems if and only if λS(1−
∑

i∈S xi−e) = 0

for all S ∈ W , µ(1−
∑

i∈N xi) = 0, xi(
∑

S∈W,S3i λS−µ) = 0 for all i ∈ N , and

e(1−
∑

S∈W λS) = 0.

We now prove claim 1.

1. Sufficiency. Suppose W ∗ is weakly balanced. Then we can construct

feasible solutions for the primal and for the dual such that the complementary

slackness conditions are satisfied. For the primal, let x = w and e = 1 − q.
This is clearly feasible for the primal since by definition q = minS∈W wi, hence∑

i∈S wi + (1 − q) ≥ 1 for all S ∈ W . As for the dual, we can construct

λS in the same way we constructed p(S) in the proof of the main proposi-

tion. Since W ∗ is weakly balanced, there are balancing weights (λ′S)S∈W ∗ such

that
∑

S∈W ∗,S3i λ
′
S = 1 for all i ∈ N . Now construct λS in the following

way. Draw a player at random from i using w as probability vector, and,
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given i, draw a coalition S ∈ W ∗, S 3 i at random using (λ′S)S∈W ∗,S3i. For

any S ∈ W , denote by λS the probability that S is drawn given this pro-

cedure. Clearly,
∑

S∈W λS = 1 (since the process always draws exactly one

coalition), λS > 0 implies S ∈ W ∗ (since only coalitions in W ∗ have been con-

sidered), and
∑

S3i λS = q (the probability that i appears in the final coalition

is
∑

S3i
∑

j∈S wjλ
′
S =

∑
S∈W ∗,S3i

∑
j∈S wjλ

′
S =

∑
S∈W ∗,S3i qλ

′
S = q). Take the

(λS)S∈W constructed in this way and µ = q as feasible solutions for the dual.

They are clearly feasible, and moreover
∑

S∈W,S3i λS−µ ≤ 0 for all i ∈ N and∑
S∈W λS ≤ 1 both hold with equality, which immediately implies two of the

complementary slackness conditions, xi(
∑

S∈W,S3i λS − µ) = 0 for all i ∈ N ,

and e(1 −
∑

S∈W λS) = 0. The other two conditions are also immediate: by

construction, λS > 0 implies
∑

i∈S wi = q. We have also assumed that weights

are normalized, hence 1 =
∑

i∈N wi.

2. Necessity. Suppose x = w and e = 1 − q solve the primal program, in

which case the optimal value of the primal is 1− q. By the strong duality the-

orem (see Vanderbei, 2008, theorem 5.2) the dual program also has a solution

(and the optimal value of the objective function in the dual problem is also

1−q). Since both the primal and the dual have a solution, the complementary

slackness conditions must be satisfied for x = w, e = 1− q and some suitable

values of λS and µ. According to the complementary slackness conditions, if

λS > 0, then 1−
∑

i∈S wi = 1−q, that is, only coalitions in W ∗ have a positive

value of λS. Also, wi > 0 implies
∑

S∈W,S3i λS = µ for i, which, since only

coalitions in W ∗ have a positive weight, can be written as
∑

S∈W ∗,S3i λS = µ.

If the weighted majority game is such that q = 1, we are in the trivial case

in which a winning coalition requires the presence of all players with positive

weight. Then the optimal value of the primal is 0, and the optimal value of the

dual is 0. This is a trivial case in which the set W ∗ is clearly weakly balanced
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since one can place a weight of 1 on the grand coalition and 0 on all others.

Let q < 1. Then the optimal value of the primal is positive, and the

optimal value of the dual must be positive as well. This in turn requires that

µ > 0 (if µ = 0, feasibility of the dual program would imply λS = 0 for all

S ∈ W , and the value of the objective function of the dual program would

be 0). We can then construct weights λ′S = λS
µ

. Are these weights balancing

weights? If wi > 0, complementary slackness requires that
∑

S∈W,S3i λS = µ,

or equivalently that
∑

S∈W ∗,S3i λ
′
S = 1. Once we have a collection of coalitions

that is weakly balanced when only players with wi > 0 are considered, we

can construct a collection in which the result is also true for players with

wi = 0. Take a player j with wj > 0, and add i to the coalition if and only

if j is in it. Thus, coalitions including both i and j or neither are unchanged,

coalitions including only i have i removed from them, and coalitions including

only j have i added to them; the new coalitions inherit the weight of the old

ones, and, since wi = 0, i can be freely added or removed from coalitions in

W ∗ to obtain coalitions still in W ∗. The resulting weights λ′′S are such that∑
S∈W ∗,S3i λ

′′
S = 1 for all i, hence W ∗ is weakly balanced.

The nucleolus is always a solution to (1), hence, when W ∗ is weakly bal-

anced, w has the same maximum excess as the nucleolus. This does not imply

that w coincides with the nucleolus, or even that the nucleolus is a system

of weights (see footnote 13 in the paper). Calculating the nucleolus is not a

convenient way to solve (1): to calculate the nucleolus, one has to start by

solving (1), which may have many solutions and, if this is the case, additional

calculations have to be performed to determine which of the many solutions is

the nucleolus. The upside of calculating the nucleolus is that researchers have

developed algorithms and computer programs for this very purpose. Besides

the more direct approach described in the supplementary files, all calculations
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in table 1 of the paper have been double-checked with the help of a computer

program written by Jean Derks to compute the nucleolus.

Proof of the corollary

The proof of the corollary in the paper is very similar to the proof of the main

proposition. For sufficiency, no changes need to be made since the proof does

not rely on w being a set of voting weights. The proof of necessity rests on

the following lemma.

Lemma 2 Let x be such that xi > 0 for all i ∈ N . If v = x is a vector of

equilibrium payoffs for the game with θ = x, all players must belong to at least

one of the cheapest winning coalitions in this equilibrium.

We have denoted the set of cheapest winning coalitions according to x (the

set of winning coalitions with minimum
∑

i∈S xi) as W∗(x). Denote by x :=∑
i∈S xi the total payoff of players in any such coalition (what we have denoted

by q when x is a set of weights). The proof of the analogous result in the main

text relies on q > 1
2
, which is known to hold since w is a system of weights.

The result holds more generally, but requires a longer proof.

Suppose an equilibrium exists with v = x. Consider the set C of players

that belong to at least one coalition in W∗(x). Since players only propose

a coalition if it is among the cheapest winning coalitions to which they be-

long, players in C only propose to other players in C, and they only propose

coalitions of total payoff x.

Take any coalition S that i ∈ C proposes with positive probability in equi-

librium. The total expected payoff of players in S, including i, is
∑

j∈S xj = x

(the total actual payoff if i is selected as a proposer and proposes S is of course
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1). Player i may play a mixed strategy as a proposer, but he always proposes

a coalition of total expected payoff x; hence,
∑

S:i∈S pi(S)
∑

j∈S xj = x in equi-

librium, since each S has a total expected payoff of x and
∑

S:i∈S pi(S) = 1.

We can re-arrange the expression
∑

S:i∈S pi(S)
∑

j∈S xj to highlight the

probabilities pij, where pij is the probability that i includes j in the coalition

(of course, pii = 1). We then get∑
j∈C

pijxj = x for all i ∈ C. (3)

The next step is to look at i’s expected payoff equation, where i ∈ C. We

have xi = xi(1 − δ(x − xi)) + riδxi, where we are already using θ = x, and

ri denotes the probability that i is included in the coalition as a responder.

Dividing by xi, which we have assumed to be positive, we find 1 = 1− δ(x−
xi) + riδ, which we can re-arrange to find that all players in C must be in the

final coalition with probability x.

Now suppose N\C is nonempty. We now show that this leads to a contra-

diction, hence N = C.

If N\C is nonempty, at least one player in C must receive proposals from

players in N\C since C is a winning coalition and, given that the game is

proper, this makes N\C a losing coalition. Thus, if we only consider proposals

from players in C to each other, we should find that at least one player in C

is in the coalition with a probability less than x.

Taking expression (3), we can multiply both sides by xi to find
∑

j∈C pijxjxi =

xxi, and then add all such expressions up over i to find∑
i∈C

∑
j∈C

pijxjxi = x
∑
i∈C

xi. (4)

Now let us look at the left-hand side of (4). If we re-arrange the expres-

sion taking the point of view of the players j who receive proposals, we have
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∑
j∈C
∑

i∈C pijxjxi =
∑

j∈C xj
∑

i∈C pijxi. The expression
∑

i∈C pijxi is the

probability that j is included in the final coalition when only proposers from

C are considered; we know that this number is at most x for any j and it is

strictly below x for some j. Thus,
∑

j∈C xj
∑

i∈C pijxi <
∑

j∈C xjx, but this

contradicts (4).

Given that N = C and that xi > 0 for all i, since a player i ∈ C with

xi > 0 must be in the coalition with probability x, the set W∗(x) must be

weakly balanced.
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