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to the repeated application of the chain-rule, the computation of the
gradient itself is often mathematically more involved than a sampling-
based estimate.

Let us consider an example where the immediate reward r only de-
pends on the state (generalizations to control-dependent rewards are
straightforward) and the system dynamics are deterministic, such that
i1 = f(xe,ur) = f(xe, mo(x4,0)), where f is a (nonlinear) transition
function, mg is the (deterministic) policy, and @ are the policy pa-
rameters. The gradient of the long-term reward Jg = Y, 7'r(z;) with
respect to the policy parameters is obtained by applying the chain-rule
repeatedly:
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From these equations we observe that the total derivative dx;/d@ de-
pends on the total derivative da;—1/d€@ at the previous time step.
Therefore, the derivative dJg/d@ can be computed iteratively.

Extension to Probabilistic Models and Stochastic MDPs. For
the extension to derivatives in stochastic MDPs and/or probabilis-
tic models, we have to make a few adaptations to the gradients in
Equation (3.20)—(3.21): When the state x; is represented by a prob-
ability distribution p(a;), we have to compute the ezpected reward
Elr(xz:)]) = [ r(x:)p(x:) das. Moreover, we need to compute the deriva-
tives with respect to the parameters of the state distribution, assuming
that p(a;) has a parametric representation.

For example, if p(x;) = N (@, | uf, X7), we compute the derivatives
of E[r(x;)] with respect to the mean puf and covariance X¥ of the state
distribution and continue applying the chain-rule similarly to Equa-
tion (3.20)—(3.21): With the definition & = Eg,[r(x:)], we obtain the



