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to the repeated application of the chain-rule, the computation of the

gradient itself is often mathematically more involved than a sampling-

based estimate.

Let us consider an example where the immediate reward r only de-

pends on the state (generalizations to control-dependent rewards are

straightforward) and the system dynamics are deterministic, such that

xt+1 = f(xt,ut) = f(xt, πθ(xt,θ)), where f is a (nonlinear) transition

function, πθ is the (deterministic) policy, and θ are the policy pa-

rameters. The gradient of the long-term reward Jθ =
∑

t γ
tr(xt) with

respect to the policy parameters is obtained by applying the chain-rule

repeatedly:
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From these equations we observe that the total derivative dxt/dθ de-

pends on the total derivative dxt−1/ dθ at the previous time step.

Therefore, the derivative dJθ/ dθ can be computed iteratively.

Extension to Probabilistic Models and Stochastic MDPs. For

the extension to derivatives in stochastic MDPs and/or probabilis-

tic models, we have to make a few adaptations to the gradients in

Equation (3.20)–(3.21): When the state xt is represented by a prob-

ability distribution p(xt), we have to compute the expected reward

E[r(xt)] =
∫
r(xt)p(xt) dxt. Moreover, we need to compute the deriva-

tives with respect to the parameters of the state distribution, assuming

that p(xt) has a parametric representation.

For example, if p(xt) = N
(
xt |µxt ,Σx

t

)
, we compute the derivatives

of E[r(xt)] with respect to the mean µxt and covariance Σx
t of the state

distribution and continue applying the chain-rule similarly to Equa-

tion (3.20)–(3.21): With the definition Et := Ext [r(xt)], we obtain the


